1. Let $\beta=\left\{e_{1}, e_{2}\right\}$ or $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{2} or \mathbb{R}^{3}.
(a) We have

$$
P\left(e_{i}\right)= \begin{cases}0 & \text { if } i=1 \\ e_{i} & \text { if } i=2,3 .\end{cases}
$$

Thus

$$
[P]_{\beta}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) We have

$$
Q\left(e_{1}\right)=\binom{\cos \frac{\pi}{3}}{\sin \frac{\pi}{3}}=\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}, \quad Q\left(e_{2}\right)=\binom{\cos \frac{5 \pi}{6}}{\sin \frac{5 \pi}{6}}=\binom{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} .
$$

Hence

$$
[Q]_{\beta}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

(c) Let $v_{1}=\binom{-3}{1}, v_{2}=\binom{1}{3}$ and $\gamma=\left\{v_{1}, v_{2}\right\}$, which is an ordered basis of \mathbb{R}^{2}. We have

$$
[R]_{\gamma}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad[\mathbf{1}]_{\gamma}^{\beta}=\left(v_{1}, v_{2}\right)=\left(\begin{array}{cc}
-3 & 1 \\
1 & 3
\end{array}\right)
$$

and

$$
[\mathbf{1}]_{\beta}^{\gamma}=\left([\mathbf{1}]_{\gamma}^{\beta}\right)^{-1}=\frac{-1}{10}\left(\begin{array}{cc}
3 & -1 \\
-1 & -3
\end{array}\right)
$$

Therefore

$$
[R]_{\beta}=[\mathbf{1}]_{\gamma}^{\beta}[R]_{\gamma}[\mathbf{1}]_{\beta}^{\gamma}=\frac{1}{5}\left(\begin{array}{cc}
4 & -3 \\
-3 & -4
\end{array}\right) .
$$

2. (a) Assume that S and T are linearly dependent. Since S and T are non-zero elements in a vector space, we have $S=\alpha T$ for some non-zero $\alpha \in F$. Thus $S(v)=\alpha T(v)=T(\alpha v)$, which implies that $\operatorname{Im}(S) \subset \operatorname{Im}(T)$ and $\operatorname{ker}(S) \supset \operatorname{ker}(T)$.
On the other hand, we have $T=\beta S$ where $\beta=\alpha^{-1}$. Thus we have the other directions $\operatorname{Im}(S) \supset \operatorname{Im}(T)$ and $\operatorname{ker}(S) \subset \operatorname{ker}(T)$.
(b) Suppose that S and T are linearly dependent. We have

$$
\begin{aligned}
\{0\} & =\operatorname{Im}(S) \cap \operatorname{Im}(T) \quad \text { (by assumption) } \\
& =\operatorname{Im}(S) \quad \text { (by part (a)), }
\end{aligned}
$$

i.e., S is the zero map, which is then a contradiction.
3. We provide 3 (or 9 by various combinations) methods here. (Notice that given A of rank r, the decomposition $A=B C$ in the statement is not unique.)
Method I (via linear transformations). (\Rightarrow) The idea is that the desired equation $A=B C$ means that the map L_{A} can be decomposed as $L_{B} \circ L_{C}$ with $L_{B}: F^{r} \rightarrow F^{m}$ injective and $L_{C}: F^{n} \rightarrow F^{r}$ surjective. This can be realized as follows.
Consider the linear map

$$
L_{A}: F^{n} \rightarrow F^{m}
$$

defined by left multiplication by A on column vectors of F^{n}. By assumption L_{A} is of rank r. Thus there exists linearly independent subset $\alpha=\left\{v_{1}, \cdots, v_{r}\right\}$ of F^{n} such that $\left\{L_{A}\left(v_{1}\right), \cdots, L_{A}\left(v_{r}\right)\right\}$ forms a basis of $\operatorname{Im}\left(L_{A}\right)$.

Extend α to a basis $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ of F^{n}. Define the linear maps

$$
F^{n} \xrightarrow{T} F^{r} \xrightarrow{S} F^{m}
$$

by requiring

$$
T\left(v_{i}\right)=\left\{\begin{array}{cl}
e_{i} & \text { if } 1 \leq i \leq r \\
0 & \text { if } r<i \leq n
\end{array} \quad \text { and } \quad S\left(e_{j}\right)=L_{A}\left(v_{j}\right) \quad(1 \leq j \leq r)\right.
$$

where $\left\{e_{i}\right\}$ is the standard basis of F^{r}. Then by construction,

$$
\begin{equation*}
L_{A}=S \circ T \tag{1}
\end{equation*}
$$

Notice that $\operatorname{rk}(S)=r$ since S is injective and $\operatorname{rk}(T)=r$ since T is surjective. Now let B and C be the matrix representations of S and T, respectively, using the standard bases. Then $\operatorname{rk}(B)=\operatorname{rk}(S)=r$ and $\operatorname{rk}(C)=\operatorname{rk}(T)=r$. Furthermore $A=B C$ by (1).
(\Leftarrow) We have

$$
F^{n} \xrightarrow{L_{C}} F^{r} \xrightarrow{L_{B}} F^{m}
$$

with $\operatorname{rk}\left(L_{B}\right)=\operatorname{rk}(B)=r$ and $\operatorname{rk}\left(L_{C}\right)=\operatorname{rk}(C)=r$ by assumption. Thus L_{B} is injective and L_{C} is surjective. We have

$$
\begin{aligned}
L_{A}\left(F^{n}\right)=L_{B C}\left(F^{n}\right) & =L_{B}\left(L_{C}\left(F^{n}\right)\right) \\
& =L_{B}\left(F^{r}\right) \quad \text { (since } L_{C} \text { is surjective) }
\end{aligned}
$$

Since L_{B} is injective, $\operatorname{dim} L_{B}\left(F^{r}\right)=\operatorname{dim} F^{r}=r$. Thus $\operatorname{rk}(A)=\operatorname{rk}\left(L_{A}\right)=\operatorname{dim} L_{A}\left(F^{n}\right)=r$.
Method II (via row/column operations). (\Rightarrow) Since A is of rank r, there exist invertible matrices $P \in M_{m}(F)$ and $Q \in M_{n}(F)$ such that

$$
P A Q=\left(\begin{array}{cc}
I_{r} & O_{1} \tag{2}\\
O_{2} & O_{3}
\end{array}\right)
$$

where $I_{r} \in M_{r}(F)$ is the identity matrix and $O_{1} \in M_{r, n-r}(F), O_{2} \in M_{m-r, r}(F), O_{3} \in$ $M_{m-r, n-r}(F)$ are zero matrices. Notice that the right hand side of (2) is equal to the product $B^{\prime} C^{\prime}$ where

$$
B^{\prime}=\binom{I_{r}}{O_{2}} \in M_{m \times r}(F) \quad \text { and } \quad C^{\prime}=\left(I_{r} O_{1}\right) \in M_{r \times n}(F)
$$

Moreover B^{\prime} and C^{\prime} are both of rank r since they are of RREF and have r pivots.
Now let

$$
B=P^{-1} B^{\prime} \quad \text { and } \quad C=C^{\prime} Q^{-1}
$$

Then $\operatorname{rk}(B)=\operatorname{rk}\left(B^{\prime}\right)=r$ since P^{-1} is invertible and similarly $\operatorname{rk}(C)=r$. We have $A=B C$ by (2).
(\Leftarrow) Since $B \in M_{m \times r}(F)$ is of rank r, the RREF of B must be

$$
\binom{I_{r}}{O_{2}}
$$

where $O_{2} \in M_{m-r, r}(F)$ is the zero matrix. Thus there exists an invertible $P \in M_{m}(F)$ such that

$$
P B=\binom{I_{r}}{O_{2}}
$$

Similarly there exists an invertible $Q \in M_{n}(F)$ such that

$$
C Q=\left(I_{r} O_{1}\right)
$$

where $O_{1} \in M_{r, n-r}(F)$ is the zero matrix (which can be seen by considering C^{t} and doing row operations or performing column operations on C directly). Then we have

$$
P A Q=(P B)(C Q)=\left(\begin{array}{ll}
I_{r} & O_{1} \\
O_{2} & O_{3}
\end{array}\right)
$$

and

$$
\begin{aligned}
\operatorname{rk}(A) & =\operatorname{rk}(P A Q) \quad \text { (since } P, Q \text { invertible) } \\
& =\operatorname{rk}\left(\begin{array}{cc}
I_{r} & O_{1} \\
O_{2} & O_{3}
\end{array}\right) \\
& =r \text { (since } r \text { pivots) } .
\end{aligned}
$$

Method III (via matrix operations). (\Rightarrow) Write $A=\left(c_{1}, \cdots, c_{n}\right)$ where $c_{i} \in F^{m}$ are columns of A. Since A is of rank r, there exist r linearly independent columns of A, say $c_{k_{1}}, \cdots, c_{k_{r}}$ such that all columns of A are linear combinations of them. Thus there exist $\alpha_{i j} \in F$ for $1 \leq i \leq r, 1 \leq j \leq n$ such that

$$
\begin{equation*}
c_{j}=\sum_{i=1}^{r} \alpha_{i j} c_{k_{i}} . \tag{3}
\end{equation*}
$$

Now if we let $B=\left(c_{k_{1}}, \cdots, c_{k_{r}}\right) \in M_{m \times r}(F)$ and $C=\left(\alpha_{i j}\right) \in M_{r \times n}(F)$, then $A=B C$ by (3).

The matrix B has rank r since the columns of B are linearly independent. The matrix C also has rank r since the k_{1}, \cdots, k_{r}-th columns of C form the identity matrix I_{r} by (3).
(\Leftarrow) Since $A=B C$, we have $\operatorname{rk}(A) \leq \operatorname{rk}(B)=r$.
On the other hand, there are r independent rows $d_{i_{1}}, \cdots, d_{i_{r}}$ of B and r independent columns $c_{j_{1}}, \cdots, c_{j_{r}}$ of C. The product

$$
M=\left(\begin{array}{c}
d_{i_{1}} \\
\vdots \\
d_{i_{r}}
\end{array}\right)\left(c_{j_{1}} \cdots c_{j_{r}}\right)
$$

of these rows and columns forms a minor of the product $A=B C$. We have

$$
\operatorname{det} M=\operatorname{det}\left(\begin{array}{c}
d_{i_{1}} \\
\vdots \\
d_{i_{r}}
\end{array}\right) \cdot \operatorname{det}\left(c_{j_{1}} \cdots c_{j_{r}}\right),
$$

which is non-zero since the two terms in the right hand side are the determinants of two square matrices of full rank. Thus $\operatorname{rk}(M)=r$ and consequently $\operatorname{rk}(A) \geq r$.
4. Since $\operatorname{rk}(T)=r$, there are r linearly independent vectors v_{1}, \cdots, v_{r} of V such that $\left\{T\left(v_{1}\right), \cdots, T\left(v_{r}\right)\right\}$ forms a basis of $\operatorname{Im}(T)$.
On one hand, $\nu(T)=n-r$ by dimension formula. Take a basis $\left\{v_{r+1}, \cdots, v_{n}\right\}$ of $\operatorname{ker}(T)$. Then $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is an ordered basis of V (cf. the proof of the dimension formula).
On the other hand, extend $\left\{T\left(v_{1}\right), \cdots, T\left(v_{r}\right)\right\}$ to an ordered basis

$$
\gamma=\left\{T\left(v_{1}\right), \cdots, T\left(v_{r}\right), w_{r+1}, \cdots, w_{m}\right\} .
$$

Then $[T]_{\beta}^{\gamma}$ gives the result.
5. (a) Let $A=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$ and $B=\left(b_{p q}\right), 1 \leq p \leq n, 1 \leq q \leq m$. Write $A B=\left(c_{i j}\right)$ and $B A=\left(d_{i j}\right)$. Then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \quad \text { and } \quad d_{i j}=\sum_{l=1}^{m} b_{i l} a_{l j} .
$$

We have

$$
\begin{aligned}
\operatorname{tr}(A B)=\sum_{i=1}^{m} c_{i i} & =\sum_{i=1}^{m} \sum_{k=1}^{n} a_{i k} b_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{m} b_{k i} a_{i k} \\
& =\sum_{k=1}^{n} d_{k k}=\operatorname{tr}(B A) .
\end{aligned}
$$

(b) Let γ be another ordered basis of V and $Q=[\mathbf{1}]_{\beta}^{\gamma}$. Then $[T]_{\gamma}=Q[T]_{\beta} Q^{-1}$ and hence

$$
\begin{aligned}
\operatorname{tr}\left([T]_{\gamma}\right) & =\operatorname{tr}\left(\left(Q[T]_{\beta}\right) Q^{-1}\right) \\
& =\operatorname{tr}\left(Q^{-1}\left(Q[T]_{\beta}\right)\right) \quad \text { (by part (a)) } \\
& =\operatorname{tr}\left([T]_{\beta}\right) .
\end{aligned}
$$

6. (a) For any $(T+U)(v) \in \operatorname{Im}(T+U)$, we have $(T+U)(v)=T(v)+U(v) \in \operatorname{Im}(T)+\operatorname{Im}(U)$. Thus $\operatorname{Im}(T+U) \subset \operatorname{Im}(T)+\operatorname{Im}(U)$.
(b) We have

$$
\begin{aligned}
\operatorname{rk}(T+U) & =\operatorname{dim} \operatorname{Im}(T+U) \\
& \leq \operatorname{dim}(\operatorname{Im}(T)+\operatorname{Im}(U)) \quad \text { (by part (a)) } \\
& =\operatorname{dim} \operatorname{Im}(T)+\operatorname{dim} \operatorname{Im}(U)-\operatorname{dim}(\operatorname{Im}(T) \cap \operatorname{Im}(U)) \\
& \leq \operatorname{dim} \operatorname{Im}(T)+\operatorname{dim} \operatorname{Im}(U) \\
& =\operatorname{rk}(T)+\operatorname{rk}(U) .
\end{aligned}
$$

(c) For example $U=0$.
(d) For example T is any non-zero (hence $\operatorname{rk}(T)>0$) linear map and $U=-T$.
7. The goal of this question is to give basic properties of projections on a vector space. Geometrically speaking, given a projection T means to have a decomposition $V=W \oplus W^{\prime}$ such that T on W is the identity and is zero on W^{\prime} (as in the textbook). Algebraically a linear $T \in \mathcal{L}(V)$ is a projection if

$$
\begin{equation*}
T^{2}=T . \tag{4}
\end{equation*}
$$

The latter equation actually means a decomposition of the identity map

$$
\mathbf{1}_{V}=T+\left(\mathbf{1}_{V}-T\right)
$$

such that the two terms in the right hand side both satisfy (4) (meaning: square $=$ itself). The last equation is part (a) and the equivalence of the two definitions is part (e).
(a) We have $S^{2}=(1-T)^{2}=1-2 T+T^{2} \stackrel{(*)}{=} 1-T=S$ where $(*)$ follows from $T^{2}=T$.
(b) If $v \in \operatorname{ker}(S)$, then $0=S(v)=v-T(v)$, i.e., $v=T(v) \in \operatorname{Im}(T)$. Therefore $\operatorname{ker}(S) \subset$ $\operatorname{Im}(T)$. On the other hand, for any $T(v) \in \operatorname{Im}(T)$, we have $S T(v)=T(v)-T^{2}(v)=0$ since $T^{2}=T$ again. Thus $\operatorname{Im}(T) \subset \operatorname{ker}(S)$.
Notice that $S^{2}=S$ and $T=1-S$. Thus one can replace T by S and S by T in the above argument and obtain the equality $\operatorname{Im}(S)=\operatorname{ker}(T)$.
(c,d) First notice that

$$
\mathbf{1}_{V}=T+S
$$

which immediately shows that $V=\operatorname{Im}(T)+\operatorname{Im}(S)$. On the other hand, we have

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim}(\operatorname{Im}(T)+\operatorname{Im}(S)) \\
& =\operatorname{dim}(\operatorname{Im}(T)+\operatorname{ker}(T)) \quad \text { (by part }(\mathrm{b})) \\
& =\operatorname{dim} \operatorname{Im}(T)+\operatorname{dim} \operatorname{ker}(T)-\operatorname{dim}(\operatorname{Im}(T) \cap \operatorname{ker}(T)) \\
& =\operatorname{dim} V-\operatorname{dim}(\operatorname{Im}(T) \cap \operatorname{ker}(T)) \quad(\text { dimension formula). }
\end{aligned}
$$

Thus $\operatorname{dim}(\operatorname{Im}(T) \cap \operatorname{ker}(T))=0$, i.e., $\operatorname{Im}(T) \cap \operatorname{ker}(T)=\{0\}$. We then obtain

$$
\begin{aligned}
V & =\operatorname{Im}(T) \oplus \operatorname{Im}(S) \\
& =\operatorname{ker}(S) \oplus \operatorname{ker}(T) \quad(\text { by part }(\mathrm{b}))
\end{aligned}
$$

(e) Parts (b) and (c) imply $V=\operatorname{Im}(T) \oplus \operatorname{ker}(T)$. Also if $v \in \operatorname{Im}(T)=\operatorname{ker}(S)$, then $0=S(v)=v-T(v)$, i.e., $T(v)=v$ for any $v \in \operatorname{Im}(T)$. Thus if we take a basis $\left\{v_{1}, \cdots, v_{r}\right\}$ of $\operatorname{Im}(T)$ and a basis $\left\{v_{r+1}, \cdots, v_{n}\right\}$ of $\operatorname{ker}(T)$, then $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ forms an ordered basis of V and

$$
T\left(v_{i}\right)=\left\{\begin{array}{cl}
v_{i} & \text { if } 1 \leq i \leq r \\
0 & \text { if } r<i \leq n
\end{array}\right.
$$

Hence $[T]_{\beta}$ satisfies the required property.
Remark. Another way to prove part (e) is as follows. The equation $T(T-1)=T^{2}-T=0$ shows that the minimal polynomial of T is a factor of $P(x)=x(x-1)$. Since $P(x)$ has different roots 0 and $1, T$ is diagonalizable with diagonal entries belonging to $\{0,1\}$. With this result, parts (a) - (d) then follow easily (exercise!).
8. This determinant is the characteristic polynomial (with variable λ) of a so-called rational canonical form. We will learn this in next semester. The answer is

$$
\begin{equation*}
\operatorname{det}(A)=\lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0} \tag{5}
\end{equation*}
$$

To obtain this, one can expand it along the last column. Then each minor is just a lower triangular matrix. (Leave to you as an exercise since I am tired of typing.)

Or one can expand it along the first row and use induction. Thus

$$
\operatorname{det}(A)=(\boldsymbol{\varphi})+(\Omega)
$$

where

$$
\begin{aligned}
(\boldsymbol{\oplus}) & =\lambda \cdot \operatorname{det}\left(\begin{array}{ccccc}
\lambda & 0 & \ldots & 0 & a_{1} \\
-1 & \lambda & \ldots & 0 & a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda & a_{n-2} \\
0 & 0 & \ldots & -1 & \lambda+a_{n-1}
\end{array}\right) \\
& =\lambda\left(\lambda^{n-1}+a_{n-1} \lambda^{n-2}+\cdots+a_{2} \lambda+a_{1}\right)
\end{aligned}
$$

by induction, while

$$
(\Omega)=(-1)^{n+1} a_{0} \cdot \operatorname{det}\left(\begin{array}{ccccc}
-1 & \lambda & 0 & \ldots & 0 \\
0 & -1 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda \\
0 & 0 & 0 & \ldots & -1
\end{array}\right)=(-1)^{n+1} a_{0}(-1)^{n-1}=a_{0}
$$

The equation (5) then follows.

