There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

1. $[15 \%]$ Write down the matrix representations of the following linear transformations with respect to the standard ordered bases.
(a) The projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of \mathbb{R}^{3} onto the $y z$-coordinate plane.
(b) The rotation $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of 60° on \mathbb{R}^{2}.
(c) The reflection $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ along the line $x+3 y=0$ on \mathbb{R}^{2}.
2. [10\%] Let $S, T \in \mathcal{L}(V, W)$ be two non-zero linear maps.
(a) Prove that if S and T are linearly dependent, then $\operatorname{Im}(S)=\operatorname{Im}(T)$ and $\operatorname{ker}(S)=$ $\operatorname{ker}(T)$.
(b) Show that if $\operatorname{Im}(S) \cap \operatorname{Im}(T)=\{0\}$, then S and T are linearly independent.
3. [10\%] Let $A \in M_{m \times n}(F)$ be an $m \times n$ matrix. Prove that A is of rank r if and only if there exist two matrices $B \in M_{m \times r}(F)$ and $C \in M_{r \times n}(F)$, both of rank r, such that $A=B C$.
4. $[15 \%]$ Let $T: V \rightarrow W$ be a linear map between two vector spaces V and W of dimension n and m, respectively. Suppose $\operatorname{rk}(T)=r$. Show that there exist ordered bases β and γ of V and W, respectively, such that

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}
I_{r} & O_{1} \\
O_{2} & O_{3}
\end{array}\right)
$$

where $I_{r} \in M_{r}(F)$ is the identity matrix and $O_{1} \in M_{r, n-r}(F), O_{2} \in M_{m-r, r}(F), O_{3} \in$ $M_{m-r, n-r}(F)$ are zero matrices.
5. [10\%]
(a) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for any $A \in M_{m \times n}(F)$ and $B \in M_{n \times m}(F)$. (Here tr denotes the trace which takes a square matrix to the sum of its diagonal entries.)
(b) Fix a finite dimensional vector space V. For any $T \in \mathcal{L}(V)$ and an ordered basis β of V, we define the $\operatorname{trace} \operatorname{tr}(T)$ of T by

$$
\operatorname{tr}(T):=\operatorname{tr}\left([T]_{\beta}\right)
$$

where the right hand side is the usual trace of a matrix. Prove that $\operatorname{tr}(T)$ does not depend on the choice of the ordered basis β.
6. [20\%] Let V, W be finite dimensional vector spaces and $T, U \in \mathcal{L}(V, W)$.
(a) Show that $\operatorname{Im}(T+U) \subset \operatorname{Im}(T)+\operatorname{Im}(U)$.
(b) Show that $\operatorname{rk}(T+U) \leq \operatorname{rk}(T)+\operatorname{rk}(U)$.
(c) Give an example of V, W, T, U such that $\operatorname{rk}(T+U)=\operatorname{rk}(T)+\operatorname{rk}(U)$.
(d) Give an example of V, W, T, U such that $\operatorname{rk}(T+U)<\operatorname{rk}(T)+\operatorname{rk}(U)$.
7. [20\%] Let V be a finite dimensional vector space and $T \in \mathcal{L}(V)$. Suppose that $T^{2}=T$. (Here $T^{2}(v):=T \circ T(v)=T(T(v))$ for any $v \in V$.) Let $\mathbf{1}_{V} \in \mathcal{L}(V)$ be the identity transformation and let $S=\mathbf{1}_{V}-T$.
(a) Show that $S^{2}=S$.
(b) Show that $\operatorname{ker}(S)=\operatorname{Im}(T)$ and $\operatorname{Im}(S)=\operatorname{ker}(T)$.
(c) Show that $V=\operatorname{ker}(T) \oplus \operatorname{ker}(S)$, i.e., $V=\operatorname{ker}(T)+\operatorname{ker}(S)$ and $\operatorname{ker}(T) \cap \operatorname{ker}(S)=\{0\}$.
(d) Show that $V=\operatorname{Im}(T) \oplus \operatorname{Im}(S)$.
(e) Show that there exists an ordered basis β of V such that $[T]_{\beta}$ is a diagonal matrix with diagonal entries equal to either 0 or 1 .
8. $[10 \%]$ Compute the determinant of the matrix $A \in M_{n}(F)$ in terms of $\lambda, a_{0}, \cdots, a_{n-1}$ where

$$
A=\left(\begin{array}{cccccc}
\lambda & 0 & 0 & \ldots & 0 & a_{0} \\
-1 & \lambda & 0 & \ldots & 0 & a_{1} \\
0 & -1 & \lambda & \ldots & 0 & a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & a_{n-2} \\
0 & 0 & 0 & \ldots & -1 & \lambda+a_{n-1}
\end{array}\right)
$$

(the diagonal entries are λ except the last one, the entries below λ are all -1 , the last column is the vector

$$
\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\lambda
\end{array}\right)+\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-2} \\
a_{n-1}
\end{array}\right)
$$

and other entries are all zero). You may try the cases $n=2,3$ and guess the answer first.

