There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

- 1. [15%] Write down the matrix representations of the following linear transformations with respect to the standard ordered bases.
 - (a) The projection $P : \mathbb{R}^3 \to \mathbb{R}^3$ of \mathbb{R}^3 onto the *yz*-coordinate plane.
 - (b) The rotation $Q : \mathbb{R}^2 \to \mathbb{R}^2$ of 60° on \mathbb{R}^2 .
 - (c) The reflection $R : \mathbb{R}^2 \to \mathbb{R}^2$ along the line x + 3y = 0 on \mathbb{R}^2 .
- 2. [10%] Let $S, T \in \mathcal{L}(V, W)$ be two non-zero linear maps.
 - (a) Prove that if S and T are linearly dependent, then Im(S) = Im(T) and ker(S) = ker(T).
 - (b) Show that if $\text{Im}(S) \cap \text{Im}(T) = \{0\}$, then S and T are linearly independent.
- 3. [10%] Let $A \in M_{m \times n}(F)$ be an $m \times n$ matrix. Prove that A is of rank r if and only if there exist two matrices $B \in M_{m \times r}(F)$ and $C \in M_{r \times n}(F)$, both of rank r, such that A = BC.
- 4. [15%] Let $T: V \to W$ be a linear map between two vector spaces V and W of dimension n and m, respectively. Suppose $\operatorname{rk}(T) = r$. Show that there exist ordered bases β and γ of V and W, respectively, such that

$$[T]^{\gamma}_{\beta} = \left(\begin{array}{cc} I_r & O_1\\ O_2 & O_3 \end{array}\right)$$

where $I_r \in M_r(F)$ is the identity matrix and $O_1 \in M_{r,n-r}(F), O_2 \in M_{m-r,r}(F), O_3 \in M_{m-r,n-r}(F)$ are zero matrices.

- 5. [10%]
 - (a) Prove that tr(AB) = tr(BA) for any $A \in M_{m \times n}(F)$ and $B \in M_{n \times m}(F)$. (Here tr denotes the trace which takes a square matrix to the sum of its diagonal entries.)
 - (b) Fix a finite dimensional vector space V. For any $T \in \mathcal{L}(V)$ and an ordered basis β of V, we define the trace $\operatorname{tr}(T)$ of T by

$$\operatorname{tr}(T) := \operatorname{tr}([T]_{\beta})$$

where the right hand side is the usual trace of a matrix. Prove that tr(T) does not depend on the choice of the ordered basis β .

- 6. [20%] Let V, W be finite dimensional vector spaces and $T, U \in \mathcal{L}(V, W)$.
 - (a) Show that $\operatorname{Im}(T+U) \subset \operatorname{Im}(T) + \operatorname{Im}(U)$.
 - (b) Show that $\operatorname{rk}(T+U) \leq \operatorname{rk}(T) + \operatorname{rk}(U)$.
 - (c) Give an example of V, W, T, U such that rk(T + U) = rk(T) + rk(U).
 - (d) Give an example of V, W, T, U such that $\operatorname{rk}(T + U) < \operatorname{rk}(T) + \operatorname{rk}(U)$.
- 7. [20%] Let V be a finite dimensional vector space and $T \in \mathcal{L}(V)$. Suppose that $T^2 = T$. (Here $T^2(v) := T \circ T(v) = T(T(v))$ for any $v \in V$.) Let $\mathbf{1}_V \in \mathcal{L}(V)$ be the identity transformation and let $S = \mathbf{1}_V - T$.
 - (a) Show that $S^2 = S$.
 - (b) Show that $\ker(S) = \operatorname{Im}(T)$ and $\operatorname{Im}(S) = \ker(T)$.

- (c) Show that $V = \ker(T) \oplus \ker(S)$, i.e., $V = \ker(T) + \ker(S)$ and $\ker(T) \cap \ker(S) = \{0\}$.
- (d) Show that $V = \text{Im}(T) \oplus \text{Im}(S)$.
- (e) Show that there exists an ordered basis β of V such that $[T]_{\beta}$ is a diagonal matrix with diagonal entries equal to either 0 or 1.
- 8. [10%] Compute the determinant of the matrix $A \in M_n(F)$ in terms of $\lambda, a_0, \dots, a_{n-1}$ where

$$A = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 & a_0 \\ -1 & \lambda & 0 & \dots & 0 & a_1 \\ 0 & -1 & \lambda & \dots & 0 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & a_{n-2} \\ 0 & 0 & 0 & \dots & -1 & \lambda + a_{n-1} \end{pmatrix}$$

(the diagonal entries are λ except the last one, the entries below λ are all -1, the last column is the vector

$$\begin{pmatrix} 0\\0\\\vdots\\0\\\lambda \end{pmatrix} + \begin{pmatrix} a_0\\a_1\\\vdots\\a_{n-2}\\a_{n-1} \end{pmatrix},$$

and other entries are all zero). You may try the cases n = 2, 3 and guess the answer first.