(I) (1) (F) $\operatorname{dim} M_{m \times n}=m n$.
(2) (T) In fact, one can take the zero map $T(v)=0$.
(3) (T) This can be seen from the dimension formula $\nu(T)+\operatorname{rk}(T)=\operatorname{dim} V$.
(4) (T) The condition $\operatorname{ker}(T)=\{0\}$ implies that T is 1-1.
(5) (F) $(3,6)=3 \cdot(1,2)$ but $(1,3,5) \neq 3 \cdot(2,4,6)$.
(6) (F) For example, take V to be a non-zero vector space, T the zero map and $S=\{v\}$ where $v \in V$ is a non-zero vector. In this case S is not a subspace of V but $T(S)=\{0\}$ is a subspace of W.
(7) (T)
(II) (1) Take $V=\mathbb{R}^{2}, W_{1}=x$-axis, $W_{2}=y$-axis. Then $W_{1} \cup W_{2}$ is a union of two lines. We have $e_{1}=(1,0) \in W_{1}, e_{2}=(0,1) \in W_{2}$, but $e_{1}+e_{2}=(1,1) \notin W_{1} \cup W_{2}$.
(2) We show that if $W_{1} \not \supset W_{2}$, then $W_{1} \subset W_{2}$. (Or one can assume that $W_{1} \not \subset W_{2}, W_{2} \not \subset$ W_{1}, and derive a contradiction.)
Suppose that $W_{1} \not \supset W_{2}$. Then there exists a vector $v \in W_{2} \backslash W_{1}$. Let $w \in W_{1}$. We want to show that $w \in W_{2}$.
Since $v, w \in W_{1} \cup W_{2}$ and $W_{1} \cup W_{2}$ is a subspace, we have $v+w \in W_{1} \cup W_{2}$. Since $v \notin W_{1}$ and $w \in W_{1}$, the vector $v+w$ cannot be in W_{1}. Thus $v+w \in W_{2}$. The condition $v \in W_{2}$ then implies that $w \in W_{2}$, which is what we need.
(III) Suppose that $\alpha \cdot \cos x+\beta \cdot \sin x=0$ for some $\alpha, \beta \in \mathbb{R}$. Plugging in $x=0$, we get $\alpha=0$; plugging in $x=\pi / 2$, get $\beta=0$. Thus $\cos x$ and $\sin x$ are linearly independent.
(IV) (1) Let

$$
r=\operatorname{dim} W_{1} \cap W_{2}, \quad r+s=\operatorname{dim} W_{1}, \quad r+t=\operatorname{dim} W_{2} .
$$

We want to show that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=r+s+t .
$$

Let $\left\{u_{1}, \cdots, u_{r}\right\}$ be a basis of $W_{1} \cap W_{2}$. We extend it to a basis $\left\{u_{1}, \cdots, u_{r}, v_{1}, \cdots, v_{s}\right\}$ of W_{1}, and to a basis $\left\{u_{1}, \cdots, u_{r}, w_{1}, \cdots, w_{t}\right\}$ of W_{2}. We now show that the set

$$
S=\left\{u_{1}, \cdots, u_{r}, v_{1}, \cdots, v_{s}, w_{1}, \cdots, w_{t}\right\}
$$

forms a basis of $W_{1}+W_{2}$. For any $a+b \in W_{1}+W_{2}$ where $a \in W_{1}, b \in W_{2}$, we can write

$$
\begin{aligned}
a & =\alpha_{1} u_{1}+\cdots+\alpha_{r} u_{r}+\beta_{1} v_{1}+\cdots+\beta_{s} v_{s} \\
b & =\gamma_{1} u_{1}+\cdots+\gamma_{r} u_{r}+\delta_{1} w_{1}+\cdots+\delta_{t} v_{t}
\end{aligned}
$$

for some $\alpha_{i}, \beta_{j}, \gamma_{k}, \delta_{l} \in F$. Thus $a+b$ is in the span of S.
On the other hand, suppose we have

$$
\alpha_{1} u_{1}+\cdots \alpha_{r} u_{r}+\beta_{1} v_{1}+\cdots+\beta_{s} v_{s}+\gamma_{1} w_{1}+\cdots+\gamma_{t} w_{t}=0
$$

for some $\alpha_{i}, \beta_{j}, \gamma_{k} \in F$. Then the equation

$$
\alpha_{1} u_{1}+\cdots \alpha_{r} u_{r}+\beta_{1} v_{1}+\cdots+\beta_{s} v_{s}=-\left(\gamma_{1} w_{1}+\cdots+\gamma_{t} w_{t}\right)
$$

says that this vector lies in $W_{1} \cap W_{2}$, which has $\left\{u_{i}\right\}$ as a basis. Since $\left\{u_{i}, v_{j}\right\}$ is linearly independent, we must have $\beta_{j}=0$ for all $1 \leq j \leq s$. Since $\left\{u_{i}, w_{k}\right\}$ is linearly independent, we then have $\alpha_{i}=\gamma_{k}=0$ for all $1 \leq i \leq r, 1 \leq k \leq t$ as well.
(2) Using the formula in (1), we have

$$
\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1}+W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Thus

$$
\begin{aligned}
V=W_{1}+W_{2} & \Longleftrightarrow \operatorname{dim} V=\operatorname{dim}\left(W_{1}+W_{2}\right) \\
& \Longleftrightarrow \operatorname{dim}\left(W_{1} \cap W_{2}\right)=0 \\
& \Longleftrightarrow W_{1} \cap W_{2}=0 .
\end{aligned}
$$

(V) First we have $T\left(0_{V}\right)=0_{W} \in U$. Thus $0_{V} \in T^{-1}(U)$.

Secondly suppose that $v_{1}, v_{2} \in T^{-1}(U)$, i.e., $T\left(v_{1}\right), T\left(v_{2}\right) \in U$. (Remember the "function" T^{-1} does not exist in general.) Then $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right) \in U$. Thus $v_{1}+v_{2} \in$ $T^{-1}(U)$.
Finally suppose that $v \in T^{-1}(U)$ and let $\alpha \in F$. Then $T(\alpha v)=\alpha T(v) \in U$. Therefore $\alpha v \in T^{-1}(U)$ as well.
(VI) $(1)(\Rightarrow)$ Let $\left\{v_{1}, \cdots, v_{m}\right\}$ be a linearly independent set of V and suppose that

$$
\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{m} T\left(v_{m}\right)=0
$$

for some $\alpha_{i} \in F$. Then $T\left(\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}\right)=0$, i.e., $\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m} \in$ $\operatorname{ker}(T)$. Since T is $1-1$, we have $\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0$. Since v_{1}, \cdots, v_{m} are linearly independent, we much have $\alpha_{1}=\cdots=\alpha_{m}=0$.
(\Leftarrow) Suppose $T(v)=0_{W}$ for some $v \in V$. Since 0_{W} is not linearly independent in W, v cannot be linearly independent in V by assumption. Thus $v=0$ and T is 1-1.
(2) Let S be a generating set of V and let w be a vector in W.
(\Rightarrow) Since T is onto, there exists $v \in V$ such that $T(v)=w$. Since S is a generating set, we have

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{r} v_{r}
$$

for some $\alpha_{i} \in F, v_{i} \in S$. Thus $T(v)$ is a linear combination of $\left\{T\left(v_{i}\right)\right\}_{1 \leq i \leq r}$ and hence $T(S)$ is a generating set of W.
(\Leftarrow) Here we want to find $v \in V$ such that $T(v)=w$. Since $T(S)$ is a generating set of W by assumption, there exist $\alpha_{1}, \cdots, \alpha_{n} \in F$ and $v_{1}, \cdots, v_{n} \in S$ such that

$$
w=\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right) .
$$

Let $v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$. Then $T(v)=w$ and we are done.
(3) (\Rightarrow) Since T is $1-1$ and onto, T sends a basis to a basis by (1) and (2).
(\Leftarrow) [This direction is not that trivial !] If a subset S of V is linearly independent, we can extend it to a basis $S^{\prime}\left(S \subset S^{\prime}\right)$. By assumption $T\left(S^{\prime}\right)$ is a basis of W and in particular $T(S)$ is linearly independent. Thus T is 1-1 by (1).
On the other hand, if a subset S of V is a generating set, there exists a subset S^{\prime} of S which forms a basis of V. Then $T\left(S^{\prime}\right)$ is a basis of W and in particular $T(S)$ is a generating set. Therefore T is onto by (2).
(VII)
(1) Suppose $v_{1}+W_{1}=v_{2}+W_{1}$. Then $v_{1}-v_{2} \in W_{1}$. Hence $T\left(v_{1}\right)-T\left(v_{2}\right)=T\left(v_{1}-v_{2}\right) \in$ W_{2} by assumption. Therefore $T\left(v_{1}\right)+W_{2}=T\left(v_{2}\right)+W_{2}$, which is what we want.
(2) We have $\bar{T}\left(0+W_{1}\right)=T(0)+W_{2}=0+W_{2}$.

Now if $v_{1}+W_{1}, v_{2}+W_{2} \in V_{1} / W_{1}$, then we have

$$
\begin{aligned}
\bar{T}\left(\left(v_{1}+W_{1}\right)+\left(v_{2}+W_{1}\right)\right) & =\bar{T}\left(\left(v_{1}+v_{2}\right)+W_{1}\right) \\
& =T\left(v_{1}+v_{2}\right)+W_{2} \\
& =\left(T\left(v_{1}\right)+T\left(v_{2}\right)\right)+W_{2} \\
& =\left(T\left(v_{1}\right)+W_{2}\right)+\left(T\left(v_{2}\right)+W_{2}\right) \\
& =\bar{T}\left(v_{1}+W_{1}\right)+\bar{T}\left(v_{2}+W_{1}\right) .
\end{aligned}
$$

Similarly if $v+W_{1} \in V_{1} / W_{1}$ and $\alpha \in F$, then

$$
\begin{aligned}
\bar{T}\left(\alpha\left(v+W_{1}\right)\right) & =\bar{T}\left(\alpha v+W_{1}\right) \\
& =T(\alpha v)+W_{2} \\
& =\alpha T(v)+W_{2} \\
& =\alpha\left(T(v)+W_{2}\right) \\
& =\alpha \bar{T}\left(v+W_{1}\right) .
\end{aligned}
$$

Thus \bar{T} is linear.
(3) (\Rightarrow) Let $v \in T^{-1}\left(W_{2}\right)$, i.e., $T(v) \in W_{2}$. We want to show that $v \in W_{1}$.

We have $\bar{T}\left(v+W_{1}\right)=T(v)+W_{2}=W_{2}$, i.e., $v+W_{1} \in \operatorname{ker}(\bar{T})$. Since \bar{T} is 1-1, we have $v+W_{1}=W_{1}$ and hence $v \in W_{1}$.
(\Leftarrow) Suppose that $\bar{T}\left(v+W_{1}\right)=0$ for some $v+W_{1} \in V_{1} / W_{1}$. Then $T(v)+W_{2}=W_{2}$ and hence $T(v) \in W_{2}$. This means $v \in T^{-1}\left(W_{2}\right)$, which is a subset of W_{1} by assumption. Thus $v+W_{1}=W_{1}$ and \bar{T} is 1-1.
(4) (\Rightarrow) Let $w \in V_{2}$. Since \bar{T} is onto, there exists $v \in V_{1}$ such that

$$
T(v)+W_{2}=\bar{T}\left(v+W_{1}\right)=w+W_{2}
$$

Thus $w \in T\left(V_{1}\right)+W_{2}$, which is what we want.
(\Leftarrow) Take any $w+W_{2} \in V_{2} / W_{2}$. Since $V_{2}=T\left(V_{1}\right)+W_{2}$, we can write

$$
w=T(v)+w^{\prime} \quad \text { for some } v \in V_{1}, w^{\prime} \in W_{2}
$$

Then

$$
\begin{aligned}
\bar{T}\left(v+W_{1}\right) & =T(v)+W_{2} \\
& =\left(T(v)+w^{\prime}\right)+W_{2} \quad\left(\text { since } w^{\prime} \in W_{2}\right) \\
& =w+W_{2}
\end{aligned}
$$

Thus \bar{T} is onto.

