There are 7 problems (I) - (VII) in total; some problems contain sub-problems, indexed by (1), (2), etc.

- (I) [20%] True or false. (No explanation is needed.)
 - (1) Let F be a field. For any two positive integers m, n, the set of all $m \times n$ matrices is a vector space over F of dimension m + n.
 - (2) For any two finite dimensional vector spaces V and W over F, there exists a linear map T from V to W.
 - (3) If the linear map $T: V \to W$ is onto, then dim $V \ge \dim W$.
 - (4) Let $T: V \to W$ be a linear map. Suppose that $\ker(T) = \{0\}$ and $T(v_1) = T(v_2)$. Then $v_1 = v_2$.
 - (5) There exists a linear map from $\mathbb{R}^2 \to \mathbb{R}^3$ sending (1,2) to (2,4,6) and (3,6) to (1,3,5).
 - (6) Let $T: V \to W$ be a linear map and S be a subset of V. If T(S) is a subspace of W, then S is a subspace of V.
 - (7) Let S be a subset of a vector space V. Then the span of S is a subspace of V.
 - (8) If $\{u, v, w\}$ be a basis of V, then $\{u, u + v, u + v + w\}$ is also a basis.
- (II) [15%]
 - (1) Give an example (and explanation) of a vector space V and two subspaces W_1 and W_2 of V such that the union $W_1 \cup W_2$ is not a subspace of V. You should not use the statement in the following question but give explicit indications.
 - (2) Let V be a vector space and W_1 and W_2 be subspaces of V. Show that if $W_1 \cup W_2$ is a subspace of V, then $W_1 \supset W_2$ or $W_1 \subset W_2$.
- (III) [10%] Show that $\cos x$ and $\sin x$ are linearly independent (over \mathbb{R}) in the vector space of all functions from \mathbb{R} to \mathbb{R} .
- (IV) [15%] Let V be a finite dimensional linear space and W_1, W_2 be two subspaces of V.
 - (1) Show that

 $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2).$

- (2) Suppose that dim $V = \dim W_1 + \dim W_2$. Show that $V = W_1 + W_2$ if and only if $W_1 \cap W_2 = \{0\}.$
- (V) [10%] Let $T: V \to W$ be a linear map. Let U be a subspace of W. Show that the set $T^{-1}(U) = \{v \in V \mid T(v) \in U\}$ is a subspace of V.
- (VI) [25%] Let $T: V \to W$ be a linear map.
 - (1) Show that T is 1-1 if and only if T sends any linearly independent set in V to a linearly independent set in W.
 - (2) Show that T is onto if and only if T sends any generating set of V to a generating set of W.
 - (3) Show that T is an isomorphism if and only if T sends any basis of V to a basis of W.
- (VII) [35%] Recall that if W is a subspace of V over a field F, the quotient V/W is the set consisting of the cosets v + W for all $v \in V$. Under the operations

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W \quad (v_1, v_2 \in V)$$

 $\alpha(v + W) = \alpha v + W \quad (\alpha \in F, v \in V),$

the quotient V/W is a vector space over F.

Now let $T: V_1 \to V_2$ be a linear map. Let $W_1 \subset V_1$ and $W_2 \subset V_2$ be subspaces. Suppose that $T(W_1) \subset W_2$. Define a map

$$\overline{T}: V_1/W_1 \to V_2/W_2$$

by requiring

$$\overline{T}(v+W_1) = T(v) + W_2.$$

- (1) Show that \overline{T} is well-defined, i.e. show that if $v_1 + W_1 = v_2 + W_1$, then $\overline{T}(v_1 + W_1) = \overline{T}(v_2 + W_1)$.
- (2) Show that \overline{T} is linear.
- (3) Prove that \overline{T} is 1-1 if and only if $W_1 \supset T^{-1}(W_2)$.
- (4) Prove that \overline{T} is onto if and only if $W_2 + T(V_1) = V_2$.