There are 7 problems (I) - (VII) in total; some problems contain sub-problems, indexed by (1), (2), etc.
(I) [20\%] True or false. (No explanation is needed.)
(1) Let F be a field. For any two positive integers m, n, the set of all $m \times n$ matrices is a vector space over F of dimension $m+n$.
(2) For any two finite dimensional vector spaces V and W over F, there exists a linear map T from V to W.
(3) If the linear map $T: V \rightarrow W$ is onto, then $\operatorname{dim} V \geq \operatorname{dim} W$.
(4) Let $T: V \rightarrow W$ be a linear map. Suppose that $\operatorname{ker}(T)=\{0\}$ and $T\left(v_{1}\right)=T\left(v_{2}\right)$. Then $v_{1}=v_{2}$.
(5) There exists a linear map from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ sending $(1,2)$ to $(2,4,6)$ and $(3,6)$ to $(1,3,5)$.
(6) Let $T: V \rightarrow W$ be a linear map and S be a subset of V. If $T(S)$ is a subspace of W, then S is a subspace of V.
(7) Let S be a subset of a vector space V. Then the span of S is a subspace of V.
(8) If $\{u, v, w\}$ be a basis of V, then $\{u, u+v, u+v+w\}$ is also a basis.
(II) $[15 \%]$
(1) Give an example (and explanation) of a vector space V and two subspaces W_{1} and W_{2} of V such that the union $W_{1} \cup W_{2}$ is not a subspace of V. You should not use the statement in the following question but give explicit indications.
(2) Let V be a vector space and W_{1} and W_{2} be subspaces of V. Show that if $W_{1} \cup W_{2}$ is a subspace of V, then $W_{1} \supset W_{2}$ or $W_{1} \subset W_{2}$.
(III) $[10 \%]$ Show that $\cos x$ and $\sin x$ are linearly independent (over \mathbb{R}) in the vector space of all functions from \mathbb{R} to \mathbb{R}.
(IV) $[15 \%]$ Let V be a finite dimensional linear space and W_{1}, W_{2} be two subspaces of V.
(1) Show that

$$
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

(2) Suppose that $\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$. Show that $V=W_{1}+W_{2}$ if and only if $W_{1} \cap W_{2}=\{0\}$.
(V) $[10 \%]$ Let $T: V \rightarrow W$ be a linear map. Let U be a subspace of W. Show that the set $T^{-1}(U)=\{v \in V \mid T(v) \in U\}$ is a subspace of V.
(VI) $[25 \%]$ Let $T: V \rightarrow W$ be a linear map.
(1) Show that T is $1-1$ if and only if T sends any linearly independent set in V to a linearly independent set in W.
(2) Show that T is onto if and only if T sends any generating set of V to a generating set of W.
(3) Show that T is an isomorphism if and only if T sends any basis of V to a basis of W.
(VII) $[35 \%]$ Recall that if W is a subspace of V over a field F, the quotient V / W is the set consisting of the cosets $v+W$ for all $v \in V$. Under the operations

$$
\begin{aligned}
\left(v_{1}+W\right)+\left(v_{2}+W\right) & =\left(v_{1}+v_{2}\right)+W \quad\left(v_{1}, v_{2} \in V\right) \\
\alpha(v+W) & =\alpha v+W \quad(\alpha \in F, v \in V)
\end{aligned}
$$

the quotient V / W is a vector space over F.
Now let $T: V_{1} \rightarrow V_{2}$ be a linear map. Let $W_{1} \subset V_{1}$ and $W_{2} \subset V_{2}$ be subspaces. Suppose that $T\left(W_{1}\right) \subset W_{2}$. Define a map

$$
\bar{T}: V_{1} / W_{1} \rightarrow V_{2} / W_{2}
$$

by requiring

$$
\bar{T}\left(v+W_{1}\right)=T(v)+W_{2}
$$

(1) Show that \bar{T} is well-defined, i.e. show that if $v_{1}+W_{1}=v_{2}+W_{1}$, then $\bar{T}\left(v_{1}+W_{1}\right)=$ $\bar{T}\left(v_{2}+W_{1}\right)$.
(2) Show that \bar{T} is linear.
(3) Prove that \bar{T} is $1-1$ if and only if $W_{1} \supset T^{-1}\left(W_{2}\right)$.
(4) Prove that \bar{T} is onto if and only if $W_{2}+T\left(V_{1}\right)=V_{2}$.

