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1. [15%] The characteristic polynomial P (x) of A is

P (x) = det

0

@
x 0 2
�2 x� 1 �4
�1 0 x� 3

1

A = (x� 1)2(x� 2).

The eigenspace E

1

consists of v 2 C3 such that

0 = (I �A)v =

0

@
1 0 2
�2 0 �4
�1 0 �2

1

A
v.

Thus E

1

is generated by the linearly independent {c
1

, c

2

} where

c

1

=

0

@
0
1
0

1

A
, c

2

=

0

@
2
0
�1

1

A
.

On the other hand, E

2

is the set of solutions of

0 = (2I �A)v =

0

@
2 0 2
�2 1 �4
�1 0 �1

1

A
v,

which is generated by

c

3

=

0

@
�1
2
1

1

A
.

Therefore one can take

Q = (c
1

, c

2

, c

3

) =

0

@
0 2 �1
1 0 2
0 �1 1

1

A
, D =

0

@
1 0 0
0 1 0
0 0 2

1

A
.

2. (a) [5%] By the assumption, there exists an invertible Q 2Mn(F ) such that

A = Q

�1(�In)Q = �In.

(b) [5%] The characteristic polynomial of A is (x��)n. Thus by part (a), if A is invertible,
A = �In, which is a contradiction if n > 1.

3. (a) [5%] Notice that for any A, B 2 Mn(F ), we have (AB)t = B

t
A

t. If A is invertible,
we have

I = I

t = (AA

�1)t = (A�1)t · At
.

Thus A

t is invertible and (At)�1 = (A�1)t.

(b) [5%] Taking determinants, we have

1 = det(I) = det(AA

t) = det(A) det(At) = det(A)2.

Thus det(A) = ±1.

4. (a) [5%] Let v 2 E�. Since E� is a subspace, T (v) = �v 2 E�.
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(b) [5%] Let v 2W

1

\ · · ·\Wr. Since v 2Wi for all 1  i  r, we have T (v) 2Wi. Thus
T (v) 2W

1

\ · · · \Wr.
(c) [5%] Let v 2 W

1

+ · · · + Wr. Then there exist wi 2 Wi such that v = w

1

+ · · · + wr.
Since T (wi) 2Wi, one has T (v) = T (

P
wi) =

P
T (wi) 2

P
Wi.

(d) [10%] Suppose W is T -invariant. Let f 2 W

� and w 2 W . Then T

⇤(f)(v) =
f(T (v)) 2 f(W ) ⇢W . Thus W

� is T

⇤-invariant.
Conversely suppose W

� is T

⇤-invariant. Let w 2 W and f 2 W

�. Consider the
canonical isomorphism  : V ! V

��. Then  (T (w))(f) = f(T (w)) = T

⇤(f)(w) = 0.
Thus  (T (W )) ⇢W

�� =  (W ) and hence T (W ) ⇢W .
(e) [5%] Suppose W is T -invariant. Since T is invertible, we must have T (W ) = W .

Thus T

�1(W ) = W and in particular W is T

�1-invariant.
By replacing T by T

�1 in the above argument, we obtain the other direction.

5. (a) [10%] ()) If one takes a basis �i for each Wi, then the disjoint union of �i is a basis
of V . Thus by counting elements, we obtain

P
dim Wi = dimV .

(() Again take a basis �i for each Wi. Then the union � of these �i is a generating
set of W

1

+ · · · + Wr = V . However the number of elements in � is at most equal to
the sum N of numbers of elements in �i. By assumption N =

P
dim Wi = dim V .

Thus � must be a basis and consequently V =
L

Wi.
(b) [5%] Let V be the plane, W

1

= x-axis, W

2

= y-axis and U = the diagonal line
x � y = 0. Then V = W

1

+ W

2

. However U \ W

1

= U \ W

2

= {0}. Thus
U 6= (U \W

1

) + (U \W

2

).

6. (a) [5%] Suppose f 2 (W
1

+ W

2

)�, wi 2 Wi. Then f(wi) = 0 since wi 2 Wi ⇢ W

1

+ W

2

.
Thus f 2W

�
1

\W

�
2

.
Conversely suppose g 2 W

�
1

\ W

�
2

and v 2 W

1

+ W

2

. Then there exist wi 2 Wi

such that v = w

1

+ w

2

. One has g(v) = g(w
1

+ w

2

) = g(w
1

) + g(w
2

) = 0. Thus
g 2 (W

1

+ W

2

)�.
(b) [10%] Method I. Let f 2 W

�
1

+ W

�
2

and v 2 W

1

\W

2

. Then there exist fi 2 W

�
i

such that f = f

1

+ f

2

. Since v 2 W

1

\W

2

⇢ Wi, one has f(v) = f

1

(v) + f

2

(v) = 0.
Thus we obtain W

�
1

+ W

�
2

⇢ (W
1

\W

2

)�.
Now we compare the dimensions. Let n = dimV . One has

dim(W �
1

+ W

�
2

) = dim W

�
1

+ dim W

�
2

� dim(W �
1

\W

�
2

)
= dim W

�
1

+ dim W

�
2

� dim(W
1

+ W

2

)� (part (a))
= (n� dim W

1

) + (n� dim W

2

)� (n� dim(W
1

+ W

2

))
= n� (dim W

1

+ dim W

2

� dim(W
1

+ W

2

))
= n� dim(W

1

\W

2

)
= dim(W

1

\W

2

)�.

Method II. Take a basis ↵ of W

1

\W

2

, and extend it to bases ↵ [ �i of Wi. Then
the disjoint union ↵ [ �

1

[ �
2

is a basis of W

1

+ W

2

. Extend it further to a basis
� = ↵ [ �

1

[ �
2

[ � of V and consider the dual basis �⇤ = ↵

⇤ [ �⇤
1

[ �⇤
2

[ �⇤. Then
by direct checking, �⇤

2

[ �⇤ is a basis of W

�
1

, �⇤
1

[ �⇤ a basis of W

�
2

and �

⇤
1

[ �⇤
2

[ �⇤
a basis of (W

1

\W

2

)�. Thus W

�
1

+ W

�
2

= (W
1

\W

2

)�.
Method III. Since two subspaces are the same if and only if their annihilators in
the dual space are the same, we can just take the annihilators of (W

1

\W

2

)� and
W

�
1

+ W

�
2

in the double dual V

⇤⇤ = V and apply part (a). Thus

(W �
1

+ W

�
2

)�
part (a)

= W

��
1

\W

��
2

= W

1

\W

2

= (W
1

\W

2

)��.
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(Here we use the canonical isomorphism  : V ! V

⇤⇤ to identity V and V

⇤⇤.)

7. (a) [5%] Let v 2 E�. Then

T (S(v)) = S(T (v)) = S(�v) = �S(v).

Thus S(v) 2 E�, which is what we need.
(b) [10%] This can be proved by induction. Suppose dim V = 1. Then S = �I

1

and
T = µI

1

for some �, µ 2 F .
Fix an integer n > 1. Assume that for any diagonalizable S

0
, T

0 2 L(V 0) with
dim V

0
< n and S

0
T

0 = T

0
S

0, there exists an ordered basis �0 such that [S0]�0
, [T 0]�0

are diagonal. Suppose we are given S, T 2 L(V ) with dimV = n and ST = TS.
Case 1. Suppose S, T both have only one eigenvalue. Then S = �In and T = µIn

and hence their matrix representations are diagonal for any ordered basis of V .
Case 2. Suppose one of S and T , say T , has more then one eigenvalue. Let � be an
eigenvalue and V

1

be the associated eigenspace of T . Then
• V = V

1

� V

2

where V

2

is the direct sum of other eigenspaces of T . In particular
V

1

and V

2

are T -invariant.
• 1  dim V

1

,dim V

2

< n since T has more than one eigenvalue.
• V

1

and V

2

are also S-invariant by part (a).
Thus by induction applying to the restrictions of S, T to V

1

and V

2

, there exist ordered
bases �

1

and �

2

of V

1

and V

2

, respectively, such that the matrix representations of
the restrictions associated to �i are diagonal. Since V is a direct sum of V

1

and V

2

,
the disjoint union � = �

1

[ �
2

is an ordered basis of V . Then [S]�, [T ]� are diagonal.

8. (a) [10%] (i) For T̄ , we first show that the eigenspaces E� of T maps to eigenspaces of
T̄ or to {0}. Let v 2 E�. Then T̄ (v̄) = T (v) = �v = �v̄. Thus v̄ is in the space
Ē� := {u 2 V̄ | T̄ (u) = �u}, which is an eigenspace if it is non-zero.
Now since V is the sum of eigenspaces of T , the above argument shows that V̄ is also
the sum of eigenspaces of T̄ . Thus T̄ is diagonalizable.
(ii) For TW , Let V =

Lr
i=1

E�i be the eigenspace decomposition of V . We show that
W =

Lr
i=1

(W \ E�i).
Let w 2 W . Then there exist vi 2 E�i such that w =

Pr
i=1

vi. Going to V̄ , we havePr
i=1

v̄i = w̄ = 0. However we already know that V̄ =
L

Ē�i from (i). Thus each v̄i

is zero in V̄ and hence each vi is in W .
(b) [10%] Take an ordered basis ↵ = {w

1

, · · · , wm} of W such that [TW ]↵ is diagonal.
Take � = {v

1

, · · · , vr} ⇢ V such that �̄ := {v̄
1

, · · · , v̄r} forms an ordered basis and
[T̄ ]�̄ is diagonal. Then the disjoint union � = ↵ [ � is an ordered basis of V and the
matrix representation looks like

[T ]� =
✓

[TW ]↵ ⇤
0 [T̄ ]�̄

◆
.

In the following, we replace � by �0 = {v0
1

, · · · , v

0
r} such that v̄

0
i = v̄i in V̄ and each

v

0
i is an eigenvector of T . Suppose for a fixed j that T (vj) =

P
ciwi + µvj . Write

T (wi) = �iwi. What we need is to find v

0
j = vj +

P
✏iwi for some ✏i 2 F such that

T (v0j) = µv

0
j , i.e. we want

X
ciwi + µvj +

X
✏i�iwi = µvj +

X
µ✏iwi.

By assumption µ 6= �i for all i. Thus if we set ✏i = ci
µ��i

, then v̄

0
j satisfies the

requirement.
Now since �̄0 = �̄, the disjoint union �

0 = ↵ [ �0 is a basis of V and consists of
eigenvalues of T . Thus [T ]�0 is diagonal.
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