January 10, 2013

1. [15\%] The characteristic polynomial $P(x)$ of A is

$$
P(x)=\operatorname{det}\left(\begin{array}{ccc}
x & 0 & 2 \\
-2 & x-1 & -4 \\
-1 & 0 & x-3
\end{array}\right)=(x-1)^{2}(x-2) .
$$

The eigenspace E_{1} consists of $v \in \mathbb{C}^{3}$ such that

$$
0=(I-A) v=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-2 & 0 & -4 \\
-1 & 0 & -2
\end{array}\right) v .
$$

Thus E_{1} is generated by the linearly independent $\left\{c_{1}, c_{2}\right\}$ where

$$
c_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad c_{2}=\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) .
$$

On the other hand, E_{2} is the set of solutions of

$$
0=(2 I-A) v=\left(\begin{array}{ccc}
2 & 0 & 2 \\
-2 & 1 & -4 \\
-1 & 0 & -1
\end{array}\right) v,
$$

which is generated by

$$
c_{3}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

Therefore one can take

$$
Q=\left(c_{1}, c_{2}, c_{3}\right)=\left(\begin{array}{ccc}
0 & 2 & -1 \\
1 & 0 & 2 \\
0 & -1 & 1
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

2. (a) [5\%] By the assumption, there exists an invertible $Q \in M_{n}(F)$ such that

$$
A=Q^{-1}\left(\lambda I_{n}\right) Q=\lambda I_{n}
$$

(b) [5\%] The characteristic polynomial of A is $(x-\lambda)^{n}$. Thus by part (a), if A is invertible, $A=\lambda I_{n}$, which is a contradiction if $n>1$.
3. (a) [5\%] Notice that for any $A, B \in M_{n}(F)$, we have $(A B)^{t}=B^{t} A^{t}$. If A is invertible, we have

$$
I=I^{t}=\left(A A^{-1}\right)^{t}=\left(A^{-1}\right)^{t} \cdot A^{t}
$$

Thus A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
(b) [5\%] Taking determinants, we have

$$
1=\operatorname{det}(I)=\operatorname{det}\left(A A^{t}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)^{2} .
$$

Thus $\operatorname{det}(A)= \pm 1$.
4. (a) [5\%] Let $v \in E_{\lambda}$. Since E_{λ} is a subspace, $T(v)=\lambda v \in E_{\lambda}$.
(b) $[5 \%]$ Let $v \in W_{1} \cap \cdots \cap W_{r}$. Since $v \in W_{i}$ for all $1 \leq i \leq r$, we have $T(v) \in W_{i}$. Thus $T(v) \in W_{1} \cap \cdots \cap W_{r}$.
(c) $[5 \%]$ Let $v \in W_{1}+\cdots+W_{r}$. Then there exist $w_{i} \in W_{i}$ such that $v=w_{1}+\cdots+w_{r}$. Since $T\left(w_{i}\right) \in W_{i}$, one has $T(v)=T\left(\sum w_{i}\right)=\sum T\left(w_{i}\right) \in \sum W_{i}$.
(d) $[10 \%]$ Suppose W is T-invariant. Let $f \in W^{\circ}$ and $w \in W$. Then $T^{*}(f)(v)=$ $f(T(v)) \in f(W) \subset W$. Thus W° is T^{*}-invariant.
Conversely suppose W° is T^{*}-invariant. Let $w \in W$ and $f \in W^{\circ}$. Consider the canonical isomorphism $\psi: V \rightarrow V^{\circ \circ}$. Then $\psi(T(w))(f)=f(T(w))=T^{*}(f)(w)=0$. Thus $\psi(T(W)) \subset W^{\circ \circ}=\psi(W)$ and hence $T(W) \subset W$.
(e) $[5 \%]$ Suppose W is T-invariant. Since T is invertible, we must have $T(W)=W$. Thus $T^{-1}(W)=W$ and in particular W is T^{-1}-invariant.
By replacing T by T^{-1} in the above argument, we obtain the other direction.
5. (a) $[10 \%](\Rightarrow)$ If one takes a basis β_{i} for each W_{i}, then the disjoint union of β_{i} is a basis of V. Thus by counting elements, we obtain $\sum \operatorname{dim} W_{i}=\operatorname{dim} V$.
(\Leftarrow) Again take a basis β_{i} for each W_{i}. Then the union β of these β_{i} is a generating set of $W_{1}+\cdots+W_{r}=V$. However the number of elements in β is at most equal to the sum N of numbers of elements in β_{i}. By assumption $N=\sum \operatorname{dim} W_{i}=\operatorname{dim} V$. Thus β must be a basis and consequently $V=\bigoplus W_{i}$.
(b) $[5 \%]$ Let V be the plane, $W_{1}=x$-axis, $W_{2}=y$-axis and $U=$ the diagonal line $x-y=0$. Then $V=W_{1}+W_{2}$. However $U \cap W_{1}=U \cap W_{2}=\{0\}$. Thus $U \neq\left(U \cap W_{1}\right)+\left(U \cap W_{2}\right)$.
6. (a) [5\%] Suppose $f \in\left(W_{1}+W_{2}\right)^{\circ}, w_{i} \in W_{i}$. Then $f\left(w_{i}\right)=0$ since $w_{i} \in W_{i} \subset W_{1}+W_{2}$. Thus $f \in W_{1}^{\circ} \cap W_{2}^{\circ}$.
Conversely suppose $g \in W_{1}^{\circ} \cap W_{2}^{\circ}$ and $v \in W_{1}+W_{2}$. Then there exist $w_{i} \in W_{i}$ such that $v=w_{1}+w_{2}$. One has $g(v)=g\left(w_{1}+w_{2}\right)=g\left(w_{1}\right)+g\left(w_{2}\right)=0$. Thus $g \in\left(W_{1}+W_{2}\right)^{\circ}$.
(b) [10\%] Method I. Let $f \in W_{1}^{\circ}+W_{2}^{\circ}$ and $v \in W_{1} \cap W_{2}$. Then there exist $f_{i} \in W_{i}^{\circ}$ such that $f=f_{1}+f_{2}$. Since $v \in W_{1} \cap W_{2} \subset W_{i}$, one has $f(v)=f_{1}(v)+f_{2}(v)=0$. Thus we obtain $W_{1}^{\circ}+W_{2}^{\circ} \subset\left(W_{1} \cap W_{2}\right)^{\circ}$.
Now we compare the dimensions. Let $n=\operatorname{dim} V$. One has

$$
\begin{aligned}
\operatorname{dim}\left(W_{1}^{\circ}+W_{2}^{\circ}\right) & =\operatorname{dim} W_{1}^{\circ}+\operatorname{dim} W_{2}^{\circ}-\operatorname{dim}\left(W_{1}^{\circ} \cap W_{2}^{\circ}\right) \\
& =\operatorname{dim} W_{1}^{\circ}+\operatorname{dim} W_{2}^{\circ}-\operatorname{dim}\left(W_{1}+W_{2}\right)^{\circ} \quad(\operatorname{part}(\mathrm{a})) \\
& =\left(n-\operatorname{dim} W_{1}\right)+\left(n-\operatorname{dim} W_{2}\right)-\left(n-\operatorname{dim}\left(W_{1}+W_{2}\right)\right) \\
& =n-\left(\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1}+W_{2}\right)\right) \\
& =n-\operatorname{dim}\left(W_{1} \cap W_{2}\right) \\
& =\operatorname{dim}\left(W_{1} \cap W_{2}\right)^{\circ} .
\end{aligned}
$$

Method II. Take a basis α of $W_{1} \cap W_{2}$, and extend it to bases $\alpha \cup \beta_{i}$ of W_{i}. Then the disjoint union $\alpha \cup \beta_{1} \cup \beta_{2}$ is a basis of $W_{1}+W_{2}$. Extend it further to a basis $\beta=\alpha \cup \beta_{1} \cup \beta_{2} \cup \gamma$ of V and consider the dual basis $\beta^{*}=\alpha^{*} \cup \beta_{1}^{*} \cup \beta_{2}^{*} \cup \gamma^{*}$. Then by direct checking, $\beta_{2}^{*} \cup \gamma^{*}$ is a basis of $W_{1}^{\circ}, \beta_{1}^{*} \cup \gamma^{*}$ a basis of W_{2}° and $\beta_{1}^{*} \cup \beta_{2}^{*} \cup \gamma^{*}$ a basis of $\left(W_{1} \cap W_{2}\right)^{\circ}$. Thus $W_{1}^{\circ}+W_{2}^{\circ}=\left(W_{1} \cap W_{2}\right)^{\circ}$.
Method III. Since two subspaces are the same if and only if their annihilators in the dual space are the same, we can just take the annihilators of $\left(W_{1} \cap W_{2}\right)^{\circ}$ and $W_{1}^{\circ}+W_{2}^{\circ}$ in the double dual $V^{* *}=V$ and apply part (a). Thus

$$
\left(W_{1}^{\circ}+W_{2}^{\circ}\right)^{\circ} \stackrel{\operatorname{part}(\mathrm{a})}{=} W_{1}^{\circ \circ} \cap W_{2}^{\circ \circ}=W_{1} \cap W_{2}=\left(W_{1} \cap W_{2}\right)^{\circ \circ}
$$

(Here we use the canonical isomorphism $\psi: V \rightarrow V^{* *}$ to identity V and $V^{* *}$.)
7. (a) $[5 \%]$ Let $v \in E_{\lambda}$. Then

$$
T(S(v))=S(T(v))=S(\lambda v)=\lambda S(v) .
$$

Thus $S(v) \in E_{\lambda}$, which is what we need.
(b) $[10 \%]$ This can be proved by induction. Suppose $\operatorname{dim} V=1$. Then $S=\lambda I_{1}$ and $T=\mu I_{1}$ for some $\lambda, \mu \in F$.
Fix an integer $n>1$. Assume that for any diagonalizable $S^{\prime}, T^{\prime} \in \mathcal{L}\left(V^{\prime}\right)$ with $\operatorname{dim} V^{\prime}<n$ and $S^{\prime} T^{\prime}=T^{\prime} S^{\prime}$, there exists an ordered basis β^{\prime} such that $\left[S^{\prime}\right]_{\beta^{\prime}},\left[T^{\prime}\right]_{\beta^{\prime}}$ are diagonal. Suppose we are given $S, T \in \mathcal{L}(V)$ with $\operatorname{dim} V=n$ and $S T=T S$.
Case 1. Suppose S, T both have only one eigenvalue. Then $S=\lambda I_{n}$ and $T=\mu I_{n}$ and hence their matrix representations are diagonal for any ordered basis of V.
Case 2. Suppose one of S and T, say T, has more then one eigenvalue. Let λ be an eigenvalue and V_{1} be the associated eigenspace of T. Then

- $V=V_{1} \oplus V_{2}$ where V_{2} is the direct sum of other eigenspaces of T. In particular V_{1} and V_{2} are T-invariant.
- $1 \leq \operatorname{dim} V_{1}, \operatorname{dim} V_{2}<n$ since T has more than one eigenvalue.
- V_{1} and V_{2} are also S-invariant by part (a).

Thus by induction applying to the restrictions of S, T to V_{1} and V_{2}, there exist ordered bases β_{1} and β_{2} of V_{1} and V_{2}, respectively, such that the matrix representations of the restrictions associated to β_{i} are diagonal. Since V is a direct sum of V_{1} and V_{2}, the disjoint union $\beta=\beta_{1} \cup \beta_{2}$ is an ordered basis of V. Then $[S]_{\beta},[T]_{\beta}$ are diagonal.
8. (a) $[10 \%]$ (i) For \bar{T}, we first show that the eigenspaces E_{λ} of T maps to eigenspaces of \bar{T} or to $\{0\}$. Let $v \in E_{\lambda}$. Then $\bar{T}(\bar{v})=\overline{T(v)}=\overline{\lambda v}=\lambda \bar{v}$. Thus \bar{v} is in the space $\bar{E}_{\lambda}:=\{u \in \bar{V} \mid \bar{T}(u)=\lambda u\}$, which is an eigenspace if it is non-zero.
Now since V is the sum of eigenspaces of T, the above argument shows that \bar{V} is also the sum of eigenspaces of \bar{T}. Thus \bar{T} is diagonalizable.
(ii) For T_{W}, Let $V=\bigoplus_{i=1}^{r} E_{\lambda_{i}}$ be the eigenspace decomposition of V. We show that $W=\bigoplus_{i=1}^{r}\left(W \cap E_{\lambda_{i}}\right)$.
Let $w \in W$. Then there exist $v_{i} \in E_{\lambda_{i}}$ such that $w=\sum_{i=1}^{r} v_{i}$. Going to \bar{V}, we have $\sum_{i=1}^{r} \bar{v}_{i}=\bar{w}=0$. However we already know that $\bar{V}=\bigoplus \bar{E}_{\lambda_{i}}$ from (i). Thus each \bar{v}_{i} is zero in \bar{V} and hence each v_{i} is in W.
(b) [10\%] Take an ordered basis $\alpha=\left\{w_{1}, \cdots, w_{m}\right\}$ of W such that $\left[T_{W}\right]_{\alpha}$ is diagonal. Take $\gamma=\left\{v_{1}, \cdots, v_{r}\right\} \subset V$ such that $\bar{\gamma}:=\left\{\bar{v}_{1}, \cdots, \bar{v}_{r}\right\}$ forms an ordered basis and $[\bar{T}]_{\bar{\gamma}}$ is diagonal. Then the disjoint union $\beta=\alpha \cup \gamma$ is an ordered basis of V and the matrix representation looks like

$$
[T]_{\beta}=\left(\begin{array}{cc}
{\left[T_{W}\right]_{\alpha}} & * \\
0 & {[\bar{T}]_{\bar{\gamma}}}
\end{array}\right) .
$$

In the following, we replace γ by $\gamma^{\prime}=\left\{v_{1}^{\prime}, \cdots, v_{r}^{\prime}\right\}$ such that $\bar{v}_{i}^{\prime}=\bar{v}_{i}$ in \bar{V} and each v_{i}^{\prime} is an eigenvector of T. Suppose for a fixed j that $T\left(v_{j}\right)=\sum c_{i} w_{i}+\mu v_{j}$. Write $T\left(w_{i}\right)=\lambda_{i} w_{i}$. What we need is to find $v_{j}^{\prime}=v_{j}+\sum \epsilon_{i} w_{i}$ for some $\epsilon_{i} \in F$ such that $T\left(v_{j}^{\prime}\right)=\mu v_{j}^{\prime}$, i.e. we want

$$
\sum c_{i} w_{i}+\mu v_{j}+\sum \epsilon_{i} \lambda_{i} w_{i}=\mu v_{j}+\sum \mu \epsilon_{i} w_{i} .
$$

By assumption $\mu \neq \lambda_{i}$ for all i. Thus if we set $\epsilon_{i}=\frac{c_{i}}{\mu-\lambda_{i}}$, then \bar{v}_{j}^{\prime} satisfies the requirement.
Now since $\bar{\gamma}^{\prime}=\bar{\gamma}$, the disjoint union $\beta^{\prime}=\alpha \cup \gamma^{\prime}$ is a basis of V and consists of eigenvalues of T. Thus $[T]_{\beta^{\prime}}$ is diagonal.

