There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

In the following, for a vector space V over a field F, denote $V^* = \mathcal{L}(V, F)$ the dual space of V. For $T \in \mathcal{L}(V, W)$, denote

$$\begin{array}{rccc} T^*:W^* & \to & V^* \\ f & \mapsto & f \circ T \end{array}$$

the transport of T. For a subset S of V, set

$$S^{\circ} = \{ f \in V^* \, | \, f(s) = 0 \text{ for all } s \in S \}$$

to be the annihilator of S.

1. [15%] Consider the matrix

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 2 & 1 & 4 \\ 1 & 0 & 3 \end{pmatrix} \in M_3(\mathbb{C}).$$

Find an invertible Q and a diagonal D in $M_3(\mathbb{C})$ such that $Q^{-1}AQ = D$.

- 2. [10%] Let $A \in M_n(F)$.
 - (a) Suppose that A is diagonalizable and has only one eigenvalue λ . Show that $A = \lambda I_n$.
 - (b) Show that the matrix

$$A = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}_{n \times n}$$

(having λ in the diagonal, 1 above λ , and zero otherwise) is not diagonalizable for all n > 1.

- 3. [10%] Let $A \in M_n(F)$. Denote A^t the transport of A.
 - (a) Show that if A is invertible, then A^t is also invertible and $(A^t)^{-1} = (A^{-1})^t$.
 - (b) Show that if $AA^t = I_n$, then $det(A) = \pm 1$.
- 4. [30%] Let $T \in \mathcal{L}(V)$. Recall that a subspace W of V is called T-invariant if $T(W) \subset W$.
 - (a) Let $E_{\lambda} = \{v \in V | T(v) = \lambda v\}$ be the eigenspace of T associated with the eigenvalue λ . Show that E_{λ} is T-invariant.
 - (b) Let W_1, W_2, \dots, W_r be *T*-invariant subspaces of *V*. Show that the intersection $W_1 \cap W_2 \cap \dots \cap W_r$ is *T*-invariant.
 - (c) Let W_1, W_2, \dots, W_r be *T*-invariant subspaces of *V*. Show that the sum $W_1 + W_2 + \dots + W_r$ is *T*-invariant.
 - (d) Show that a subspace W of V is T-invariant if and only if the annihilator W° is $T^*\text{-invariant}$
 - (e) Suppose that T is invertible. Show that a subspace W of V is T-invariant if and only if W is T^{-1} -invariant.

- 5. [15%]
 - (a) Let W_1, W_2, \dots, W_r be subspaces of V. Suppose $V = W_1 + W_2 + \dots + W_r$. Show that $V = W_1 \oplus W_2 \oplus \dots \oplus W_r$ if and only if dim $V = \sum_{i=1}^r \dim W_i$.
 - (b) Give an example of a vector space V and three subspaces U, W_1, W_2 such that $V = W_1 + W_2$ but $U \neq (W_1 \cap U) + (W_2 \cap U)$. Remember to verify your answer (briefly).
- 6. [15%] Let W_1, W_2 be subspaces of V.
 - (a) Show that $(W_1 + W_2)^{\circ} = W_1^{\circ} \cap W_2^{\circ}$.
 - (b) Show that $(W_1 \cap W_2)^\circ = W_1^\circ + W_2^\circ$.
- 7. [15%] Let $S, T \in \mathcal{L}(V)$ satisfying ST = TS.
 - (a) Let E_{λ} be the eigenspace of T associated with the eigenvalue λ . Show that $S(E_{\lambda}) \subset E_{\lambda}$.
 - (b) Suppose that S, T are diagonalizable. Show that there exists an ordered basis β such that $[S]_{\beta}$ and $[T]_{\beta}$ are diagonal.
- 8. [20%] Let $T \in \mathcal{L}(V)$ and W a T-invariant subspace of V. Let $\overline{V} = V/W$ be the quotient of V by W. Denote $T_W \in \mathcal{L}(W)$ and $\overline{T} \in \mathcal{L}(\overline{V})$ the induced maps so that we have the commutative diagram

$$W \xrightarrow{\text{inclusion}} V \xrightarrow{\text{quotient}} \bar{V}$$

$$T_W \downarrow \qquad \qquad \downarrow T \qquad \qquad \downarrow \bar{T}$$

$$W \xrightarrow{\text{inclusion}} V \xrightarrow{\text{quotient}} \bar{V}.$$

- (a) Show that if T is diagonalizable, then T_W and \overline{T} are diagonalizable.
- (b) Suppose that T_W and \overline{T} do not have a common eigenvalue and both T_W and \overline{T} are diagonalizable. Show that T is diagonalizable.