There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

In the following, for a vector space V over a field F, denote $V^{*}=\mathcal{L}(V, F)$ the dual space of V. For $T \in \mathcal{L}(V, W)$, denote

$$
\begin{aligned}
T^{*}: W^{*} & \rightarrow V^{*} \\
f & \mapsto f \circ T
\end{aligned}
$$

the transport of T. For a subset S of V, set

$$
S^{\circ}=\left\{f \in V^{*} \mid f(s)=0 \text { for all } s \in S\right\}
$$

to be the annihilator of S.

1. $[15 \%]$ Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
2 & 1 & 4 \\
1 & 0 & 3
\end{array}\right) \in M_{3}(\mathbb{C})
$$

Find an invertible Q and a diagonal D in $M_{3}(\mathbb{C})$ such that $Q^{-1} A Q=D$.
2. $[10 \%]$ Let $A \in M_{n}(F)$.
(a) Suppose that A is diagonalizable and has only one eigenvalue λ. Show that $A=\lambda I_{n}$.
(b) Show that the matrix

$$
A=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda
\end{array}\right)_{n \times n}
$$

(having λ in the diagonal, 1 above λ, and zero otherwise) is not diagonalizable for all $n>1$.
3. $[10 \%]$ Let $A \in M_{n}(F)$. Denote A^{t} the transport of A.
(a) Show that if A is invertible, then A^{t} is also invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
(b) Show that if $A A^{t}=I_{n}$, then $\operatorname{det}(A)= \pm 1$.
4. $[30 \%]$ Let $T \in \mathcal{L}(V)$. Recall that a subspace W of V is called T-invariant if $T(W) \subset W$.
(a) Let $E_{\lambda}=\{v \in V \mid T(v)=\lambda v\}$ be the eigenspace of T associated with the eigenvalue λ. Show that E_{λ} is T-invariant.
(b) Let $W_{1}, W_{2}, \cdots, W_{r}$ be T-invariant subspaces of V. Show that the intersection $W_{1} \cap$ $W_{2} \cap \cdots \cap W_{r}$ is T-invariant.
(c) Let $W_{1}, W_{2}, \cdots, W_{r}$ be T-invariant subspaces of V. Show that the sum $W_{1}+W_{2}+$ $\cdots+W_{r}$ is T-invariant.
(d) Show that a subspace W of V is T-invariant if and only if the annihilator W° is T^{*}-invariant
(e) Suppose that T is invertible. Show that a subspace W of V is T-invariant if and only if W is T^{-1}-invariant.
5. [15\%]
(a) Let $W_{1}, W_{2}, \cdots, W_{r}$ be subspaces of V. Suppose $V=W_{1}+W_{2}+\cdots+W_{r}$. Show that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$ if and only if $\operatorname{dim} V=\sum_{i=1}^{r} \operatorname{dim} W_{i}$.
(b) Give an example of a vector space V and three subspaces U, W_{1}, W_{2} such that $V=$ $W_{1}+W_{2}$ but $U \neq\left(W_{1} \cap U\right)+\left(W_{2} \cap U\right)$. Remember to verify your answer (briefly).
6. $[15 \%]$ Let W_{1}, W_{2} be subspaces of V.
(a) Show that $\left(W_{1}+W_{2}\right)^{\circ}=W_{1}^{\circ} \cap W_{2}^{\circ}$.
(b) Show that $\left(W_{1} \cap W_{2}\right)^{\circ}=W_{1}^{\circ}+W_{2}^{\circ}$.
7. [15\%] Let $S, T \in \mathcal{L}(V)$ satisfying $S T=T S$.
(a) Let E_{λ} be the eigenspace of T associated with the eigenvalue λ. Show that $S\left(E_{\lambda}\right) \subset$ E_{λ}.
(b) Suppose that S, T are diagonalizable. Show that there exists an ordered basis β such that $[S]_{\beta}$ and $[T]_{\beta}$ are diagonal.
8. [20\%] Let $T \in \mathcal{L}(V)$ and W a T-invariant subspace of V. Let $\bar{V}=V / W$ be the quotient of V by W. Denote $T_{W} \in \mathcal{L}(W)$ and $\bar{T} \in \mathcal{L}(\bar{V})$ the induced maps so that we have the commutative diagram

(a) Show that if T is diagonalizable, then T_{W} and \bar{T} are diagonalizable.
(b) Suppose that T_{W} and \bar{T} do not have a common eigenvalue and both T_{W} and \bar{T} are diagonalizable. Show that T is diagonalizable.

