Homework Assignment 2

Due on April 12, 2011

Part I: [2, Chapter 8], Exercises 20, 21 and Problems 3, 9.

Part II:

1. Prove the Schwarz-Christoffel formula that describes the conformal mapping from the upper half plane to a polygonal domain.
2. The inverse $f(z)$ of the conformal mapping

$$
F(w)=\int_{0}^{w} \frac{d \eta}{\sqrt{\left(1-\eta^{2}\right)\left(1-k^{2} \eta^{2}\right)}} \quad(0<k<1)
$$

can be extended to the whole complex plane. Show that this extended $f(z)$ is indeed meromorphic (i.e., there is no essential singularity), and that all poles are simple.

References

[1] L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
[2] E. Stein and R. Shakarchi, Complex analysis. Princeton Lectures in Analysis, II. Princeton University Press, Princeton, NJ, 2003.

