[Taken from: Stein and Shakarchi, *Complex Analysis*, Exercises of Chapter 1.]

7. The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.

(a) Let z, w be two complex numbers such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1 \quad \text{if } |z| < 1 \text{ and } |w| < 1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right| = 1 \quad \text{if } |z| = 1 \text{ or } |w| = 1.$$

[Hint; Why can one assume that z is real? It then suffices to prove that

$$(r-w)(r-\overline{w}) \le (1-rw)(1-r\overline{w})$$

with equality for appropriate r and |w|.]

(b) Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (i) F maps the unit disc to itself (that is, $F : \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- (ii) F interchanges 0 and w, namely, F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F : \mathbb{D} \to \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]

9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$.

Use these equations to show that the logarithmic function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

11. Use exercise 10^1 to prove that if f is holomorphic in the open set Ω , then the real and imaginary parts of f are **harmonic**; that is, their Laplacian is zero.

12. Consider the function defined by

$$f(x+iy) = \sqrt{|x||y|}, \text{ where } x, y \in \mathbb{R}.$$

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holomorphic at 0.

13. Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:

- (a) $\operatorname{Re}(f)$ is constant;
- (b) $\operatorname{Im}(f)$ is constant;
- (c) |f| is constant;

one can conclude that f is constant.

¹**10.** Show that

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} = 4\frac{\partial}{\partial \bar{z}}\frac{\partial}{\partial z} = \Delta$$

where Δ is the **Laplacian**

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$