7. The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called Blaschke factors, will reappear in various applications in later chapters.
(a) Let z, w be two complex numbers such that $\bar{z} w \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1 \quad \text { if }|z|<1 \text { and }|w|<1,
$$

and also that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 \quad \text { if }|z|=1 \text { or }|w|=1
$$

[Hint; Why can one assume that z is real? It then suffices to prove that

$$
(r-w)(r-\bar{w}) \leq(1-r w)(1-r \bar{w})
$$

with equality for appropriate r and $|w|$.]
(b) Prove that for a fixed w in the unit disc \mathbb{D}, the mapping

$$
F: z \mapsto \frac{w-z}{1-\bar{w} z}
$$

satisfies the following conditions:
(i) F maps the unit disc to itself (that is, $F: \mathbb{D} \rightarrow \mathbb{D}$), and is holomorphic.
(ii) F interchanges 0 and w, namely, $F(0)=w$ and $F(w)=0$.
(iii) $|F(z)|=1$ if $|z|=1$.
(iv) $F: \mathbb{D} \rightarrow \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]
9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r} .
$$

Use these equations to show that the logarithmic function defined by

$$
\log z=\log r+i \theta \quad \text { where } z=r e^{i \theta} \text { with }-\pi<\theta<\pi
$$

is holomorphic in the region $r>0$ and $-\pi<\theta<\pi$.
11. Use exercise 10^{1} to prove that if f is holomorphic in the open set Ω, then the real and imaginary parts of f are harmonic; that is, their Laplacian is zero.
12. Consider the function defined by

$$
f(x+i y)=\sqrt{|x||y|}, \quad \text { where } x, y \in \mathbb{R}
$$

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holomorphic at 0.
13. Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following cases:
(a) $\operatorname{Re}(f)$ is constant;
(b) $\operatorname{Im}(f)$ is constant;
(c) $|f|$ is constant;
one can conclude that f is constant.
${ }^{1} \mathbf{1 0}$. Show that
where Δ is the Laplacian
$4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\Delta$
$\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.

