Homework Assignment 2

Due on ?, 2011

In the following \mathbb{F}_q denotes a finite field of q elements.

- 1. Let k be a field, $A = k[x_1, \dots, x_n]$, and \mathbb{A}^n the affine n-space. For any subset $S \subset A$, let $V(S) = \{ \alpha \in \mathbb{A}^n \mid f(\alpha) = 0 \ \forall f \in S \}.$
 - (a) Let I, J be two ideals of A. Show that

$$V(I) \cup V(J) = V(IJ).$$

(b) Let $\{I_j\}_{j\in J}$ be a collection of ideals of A. Show that

$$\bigcap_{j \in J} V(I_j) = V\Big(\sum_{j \in J} I_j\Big).$$

- 2. Let $X = V(I) \subset \mathbb{A}^n$. Show that X is an irreducible topological space (under the Zariski topology) if and only if the radical \sqrt{I} is a prime ideal.
- 3. Let \mathbb{F} be an algebraically closed field of characteristic p > 0. Let $f(X, Y) = XY^p YX^p 1$ and $X = V(f) \subset \mathbb{A}^2$. Show that X is irreducible. [Hint: Use the change of variables (X,Y) = (Z/T, 1/T) and then the Eisenstein's irreducibility criterion.]
- 4. Recall that any morphism $f: X \to Y$ between affine varieties over k induces naturally a k-algebra homomorphism $f^*: k[Y] \to k[X]$ between their coordinates rings. Now let $g: Y \to Z$ be another morphism of affine varieties over k. Show that

$$(g \circ f)^* = f^* \circ g^*$$

as k-algebra homomorphisms from k[Z] to k[X].

5. Let $X \subset \mathbb{A}^n$ be an algebraic set. Let $\overline{X} \subset \mathbb{P}^n$ be the Zariski closure of X in \mathbb{P}^n (via the inclusions $X \subset \mathbb{A}^n \subset \mathbb{P}^n$). Show that X is irreducible in \mathbb{A}^n if and only if \overline{X} is irreducible in \mathbb{P}^n .