Homework Assignment 1

Due on March 31, 2011

In the following \mathbb{F}_q denotes a finite field of q elements.

- 1. Let \mathbb{F}_{q^n} be a degree *n* extension of the finite field \mathbb{F}_q . Show that the trace and the norm maps $\mathbb{F}_{q^n} \to \mathbb{F}_q$ are surjective.
- 2. Let β be a primitive element of \mathbb{F}_{64} and $m_i(x)$ the minimal polynomial of β^i over \mathbb{F}_2 . Let C be the cyclic code (over \mathbb{F}_2) generated by $g(x) = m_1(x) \cdot m_3(x) \cdot m_5(x)$ in $\mathbb{F}_2[x]/(x^{63}-1)$. Find the dimension and the distance of the code C.
- 3. Let $C = (g(x)) \subset \mathbb{F}_q[x]/(x^n 1)$ be the cyclic code of length n over \mathbb{F}_q generated by g(x) where g(x) is a factor of $x^n 1$ over \mathbb{F}_q . Write $x^n 1 = g(x)h(x)$ and $h(x) = \sum_{i=0}^k h_i x^i$. Show that the parity checking matrix can be taken to be the $(n - k) \times n$ matrix

$$H = \begin{pmatrix} 0 & \cdots & 0 & h_k & \cdots & h_1 & h_0 \\ 0 & \cdots & h_k & h_{k-1} & \cdots & h_0 & 0 \\ & \ddots & & & \ddots & & \\ h_k & \cdots & h_0 & 0 & & \cdots & 0 \end{pmatrix}$$

- 4. Determine the numbers of irreducible monic polynomials of degree 2, 3, 4, 5, and 6 over \mathbb{F}_q .
- 5. Show that

$$\sum_{\beta \in \mathbb{F}_q} \beta^n = \begin{cases} -1 & \text{if } (q-1) \mid n \\ 0 & \text{if } (q-1) \nmid n. \end{cases}$$

6. Describe the dual code of a generalized Reed-Solomon code $\text{GRS}_k(\mathbf{a}, \mathbf{v})$ over \mathbb{F}_q in terms of the evaluations of certain polynomials.