Homework Assignment 1

Due on March 31, 2011

In the following \mathbb{F}_{q} denotes a finite field of q elements.

1. Let $\mathbb{F}_{q^{n}}$ be a degree n extension of the finite field \mathbb{F}_{q}. Show that the trace and the norm maps $\mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q}$ are surjective.
2. Let β be a primitive element of \mathbb{F}_{64} and $m_{i}(x)$ the minimal polynomial of β^{i} over \mathbb{F}_{2}. Let C be the cyclic code (over \mathbb{F}_{2}) generated by $g(x)=m_{1}(x) \cdot m_{3}(x) \cdot m_{5}(x)$ in $\mathbb{F}_{2}[x] /\left(x^{63}-1\right)$. Find the dimension and the distance of the code C.
3. Let $C=(g(x)) \subset \mathbb{F}_{q}[x] /\left(x^{n}-1\right)$ be the cyclic code of length n over \mathbb{F}_{q} generated by $g(x)$ where $g(x)$ is a factor of $x^{n}-1$ over \mathbb{F}_{q}. Write $x^{n}-1=g(x) h(x)$ and $h(x)=\sum_{i=0}^{k} h_{i} x^{i}$. Show that the parity checking matrix can be taken to be the $(n-k) \times n$ matrix

$$
H=\left(\begin{array}{cccccccc}
0 & \cdots & & 0 & h_{k} & \cdots & h_{1} & h_{0} \\
0 & \cdots & & h_{k} & h_{k-1} & \cdots & h_{0} & 0 \\
& \ddots & & & & \ddots & & \\
h_{k} & \cdots & h_{0} & 0 & & \cdots & & 0
\end{array}\right) .
$$

4. Determine the numbers of irreducible monic polynomials of degree $2,3,4,5$, and 6 over \mathbb{F}_{q}.
5. Show that

$$
\sum_{\beta \in \mathbb{F}_{q}} \beta^{n}= \begin{cases}-1 & \text { if }(q-1) \mid n \\ 0 & \text { if }(q-1) \nmid n\end{cases}
$$

6. Describe the dual code of a generalized Reed-Solomon code $\operatorname{GRS}_{k}(\mathbf{a}, \mathbf{v})$ over \mathbb{F}_{q} in terms of the evaluations of certain polynomials.
