Assignment 2

Due on December 3, 2009

1. Show that the Lubin-Tate formal group (introduced in the course Algebraic Number Theory II) for \mathbb{Q}_{p} can be taken to be the formal multiplicative group, defined by the formal power series $X+Y+X Y$. Thus its p ($=$ a uniformizer of \mathbb{Q}_{p})-power torsions are elements of the form $\zeta-1$, where $\zeta^{p^{n}}=1$ for some $n \geq 1$, and they generate the maximal totally ramified abelian extension of \mathbb{Q}_{p}.
2. Let R be a complete discrete valuation ring with maximal ideal $\mathfrak{m} ; X=\left(X_{i}\right)_{i=1}^{n}$. Define two subrings A, B of $R[[X]]$ respectively by

$$
\begin{aligned}
& A=\left\{\sum_{s=0}^{\infty} a_{s} P_{s}(X) \mid a_{s} \in \mathfrak{m}^{s}, P_{s}(X) \in R[X], \operatorname{deg} P_{s}(X) \leq c(s+1) \text { for some } c>0\right\} \\
& B=\left\{\sum_{I \in\left(\mathbb{Z}_{\geq 0}\right)^{n}} \alpha_{I} X^{I} \mid \exists \rho>1 \text { s.t. } \lim \left\|\alpha_{I}\right\| \rho^{|I|}=0\right\} .
\end{aligned}
$$

Show that $A=B$.
3. ($[2, \S 3.0]$) Let k be a perfect field of positive characteristic; $W=$ the ring of Witt vectors of k. Let \mathbb{A}^{1} be the affine line over k. Show that the rank of the W-module $H_{\text {cris }}^{1}\left(\mathbb{A}^{1} / W\right)$ is infinity.
4. ([1, p.3.3]) Let k be a ring of characteristic $p ; A=k\left[x_{1}, \cdots, x_{6}\right] /\left(x_{1}^{p}, \cdots, x_{6}^{p}, x_{1} x_{2}+x_{3} x_{4}+\right.$ $x_{5} x_{6}$) and $I \subset A$ be the ideal generated by x_{1}, \cdots, x_{6}. Show that there is no PD-structure on I.

References

[1] P. Berthelot and A. Ogus, Notes on crystalline cohomology. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.
[2] L. Illusie, Report on crystalline cohomology. Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), pp. 459-478. Amer. Math. Soc., Providence, R.I., 1975.

