Assignment 1

Due on October 22, 2009

1. Show that $\overline{\mathbb{Q}}_{p}$ is not complete (under the p-adic topology).
2. Find out the roots of $f(X)=\log (1+X)$ in the disc $D(1)$ (of radius 1) of \mathbb{C}_{p}.

Define the Möbius function $\mu: \mathbb{Z}_{>0} \rightarrow\{0, \pm 1\}$ by the following three rules:

- $\mu(1)=1$.
- For a prime p and $k \in \mathbb{Z}_{>0}$,

$$
\mu\left(p^{k}\right)=\left\{\begin{array}{cl}
-1 & \text { if } k=1 \\
0 & \text { if } k>1 .
\end{array}\right.
$$

- For $(m, n)=1, \mu(m n)=\mu(m) \mu(n)$.

3. Show that
(a) For all $n>1$,

$$
\sum_{d \mid n} \mu(d)=0 .
$$

(b) Formally (i.e. in $\mathbb{Q}[[X]]$ in this case) we have

$$
\exp (X)=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-\frac{\mu(n)}{n}}
$$

(c) Fix a prime p. Formally we have the equality for the Artin-Hasse exponential ${ }^{1}$

$$
E_{p}(X):=\exp \left(\sum_{k=0}^{\infty} \frac{X^{p^{k}}}{p^{k}}\right)=\prod_{(n, p)=1}\left(1-X^{n}\right)^{-\frac{\mu(n)}{n}} .
$$

(Hint: For (b, c), take log.)

[^0]
[^0]: ${ }^{1}$ (For fun; no credit) From Wikipedia: "The coefficient of X^{n} of $n!E_{p}(X)$ is the number of elements of the symmetric group on n points of order a power of p."

