Assignment 3

Due on December 24, 2009

1. ([1, Ex 6.43]) Let $\pi: E \rightarrow M$ be an oriented rank 2 bundle. As we saw in the proof of the Thom isomorphism, wedging with the Thom class is an isomorphism $\wedge \Phi: H^{*}(M) \rightarrow$ $H_{c v}^{*+2}(E)$. Therefore every cohomology class on E is the wedge product of Φ with the pullback of a cohomology class on M. Find the class u on M such that

$$
\Phi^{2}=\Phi \wedge u \quad \text { in } H_{c v}^{*}(E)
$$

2. ([1, Ex 6.45]) On the complex projective space $\mathbb{C} P^{n}$ there is a tautological line bundle S, called the universal subbundle; it is the subbundle of the product bundle $\mathbb{C} P^{n} \times \mathbb{C}^{n+1}$ given by

$$
S=\{(\ell, z) \mid z \in \ell\}
$$

Above each point ℓ in $\mathbb{C} P^{n}$, the fiber of S is the line represented by ℓ. Find the transition functions of the universal subbundle S of $\mathbb{C} P^{1}$ relative to the standard open cover and compute its Euler class.
3. ([1, Ex 6.46]) Let S^{n} be the unit sphere in \mathbb{R}^{n+1} and i the antipodal map on S^{n} :

$$
i:\left(x_{1}, \ldots, x_{n+1}\right) \rightarrow\left(-x_{1}, \ldots,-x_{n+1}\right)
$$

The real projective space $\mathbb{R} P^{n}$ is the quotient of S^{n} by the equivalent relation ${ }^{1}$

$$
x \sim i(x), \quad \text { for } x \in \mathbb{R}^{n+1} .
$$

(a) An invariant form on S^{n} is a form ω such that $i^{*} \omega=\omega$. The vector space of invariant forms on S^{n}, denoted $\Omega^{*}\left(S^{n}\right)^{I}$, is s differential complex, and so the invariant cohomology $H^{*}\left(S^{n}\right)^{I}$ of S^{n} is defined. Show that $H^{*}\left(\mathbb{R} P^{n}\right) \simeq H^{*}\left(S^{n}\right)^{I}$.
(b) Show that the natural map $H^{*}\left(S^{n}\right)^{I} \rightarrow H^{*}\left(S^{n}\right)$ is injective. [Hint : If ω is an invariant form and $\omega=d \tau$ for some form τ on S^{n}, then $\omega=d\left(\tau+i^{*} \tau\right) / 2$.]
(c) Give S^{n} its standard orientation (p. 70). Show that the antipodal map $i: S^{n} \rightarrow S^{n}$ is orientation-preserving for n odd and orientation-reserving for n even. Hence, if $[\sigma]$ is a generator of $H^{n}\left(S^{n}\right)$, then $[\sigma]$ is a nontrivial invariant cohomology class if and only if n is odd.
(d) Show that the de Rham cohomology of $\mathbb{R} P^{n}$ is

$$
H^{q}\left(\mathbb{R} P^{n}\right)=\left\{\begin{array}{cl}
\mathbb{R} & \text { for } q=0 \\
0 & \text { for } 0<q<n \\
\mathbb{R} & \text { for } q=n \text { odd } \\
0 & \text { for } q=n \text { even }
\end{array}\right.
$$

4. ([1, Ex 11.19]) Show that the Euler class of an oriented sphere bundle with even-dimensional fibers is zero, at least when the sphere bundle comes from a vector bundle.

[^0]5. ([1, Ex 11.21]) Compute the Euler class of the unit tangent bundle of the sphere S^{k} by finding a vector field on S^{k} and computing its local degrees.
6. ([1, Ex 11.26]) (Lefschetz fixed-point formula). Let $f: M \rightarrow M$ be a smooth map of a compact oriented manifold into itself. Denote by $H^{q}(f)$ the induced map on the cohomology $H^{q}(M)$. The Lefschetz number of f is defined to be
$$
L(f)=\sum_{q}(-1)^{q} \operatorname{trace} H^{q}(f) .
$$

Let Γ be the graph of f in $M \times M$.
(a) Show that

$$
\int_{\Delta} \eta_{\Gamma}=L(f) .
$$

(b) Show that if f has no fixed points, then $L(f)$ is zero.
(c) At a fixed point P of f the derivative $(D f)_{P}$ is an endomorphism of the tangent space $T_{P} M$. We define the multiplicity of the fixed point P to be

$$
\sigma_{P}=\operatorname{sgn} \operatorname{det}\left((D f)_{P}-I\right)
$$

Show that if the graph Γ is transversal to the diagonal Δ in $M \times M$, then

$$
L(f)=\sum_{P} \sigma_{P}
$$

where P ranges over the fixed points of f. (For an explanation of the meaning of the multiplicity σ_{P}, see Guillemin and Pollack [2, p. 121].)

References

[1] R. Bott abd L.W. Tu, Differential forms in algebraic topology. Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982.
[2] Guillemin, V. and Pollack, A. Differential Topology, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

[^0]: ${ }^{1}$ Convince yourself that $\mathbb{R} P^{n}$ is a manifold.

