Assignment 1

Due on October 15, 2009

1. ([1, Ex 5.16]) Let x, y be the standard coordinates and r, θ the polar coordinates on $M=$ $\mathbb{R}^{2} \backslash\{0\}$.
(a) Show that the Poincaré dual of the ray $\{(x, 0) \mid x>0\}$ in M is $d \theta / 2 \pi$ in $H^{1}(M)$.
(b) Show that the closed Poincaré dual of the unit circle in $H^{1}(M)$ is 0 , but the compact Poincaré dual is the non-trivial generator $\rho(r) d r$ in $H_{c}^{1}(M)$ where ρ is a bump function with total integral 1. (By a bump function we mean a smooth function whose support is concetrated in some disc and whose graph looks like a "bump".)
2. Compute the de Rham cohomology groups $H^{*}(M)$ and $H_{c}^{*}(M)$ of $M=\mathbb{R}^{2} \backslash\{0,1\}$ by using (1) the Mayer-Vietoris sequence; (2) elementary calculus (to find out an explicit basis).
3. Compute the de Rham cohomology groups of the torus $T=S^{1} \times S^{1}$ by using (1) the Mayer-Vietoris sequence; (2) the Künneth formula.

Notation: For a homomorphism $f: A \rightarrow B$ of abelian groups, let ker $f=$ the kernel of f; $\operatorname{im} f=$ the image of $f ;$ coker $f=$ the cokernel of $f=B / \operatorname{im} f$.
4. Prove the following snake lemma: Suppose we have a commutative diagram of abelian groups

whose two rows are exact. Then (1) there exists a natural homomorphism

$$
\delta: \operatorname{ker} h \rightarrow \operatorname{coker} f
$$

such that (2) the sequence

is exact. Furthermore, (3) if p is injective, then $\operatorname{ker} f \rightarrow \operatorname{ker} g$ is injective; (4) if q is surjective, the coker $g \rightarrow$ coker h is surjective.
5. ([1, Ex 5.5]) Prove the Five Lemma: given a commutative diagram of abelian groups and group homomorphisms

in which the rows are exact, if the maps α, β, δ and ϵ are isomorphisms, then so is the middle one γ. (Hint: One can prove this either directly or by applying the snake lemma.)

Recall that a complex $\left(A_{i}, \delta_{i}\right)_{i \in \mathbb{Z}}$ of abelian groups is a chain of homomorphisms of abelian groups

$$
\cdots \longrightarrow A_{i-1} \xrightarrow{\delta_{i-1}} A_{i} \xrightarrow{\delta_{i}} A_{i+1} \longrightarrow \cdots
$$

such that $\delta_{i} \circ \delta_{i-1}=0$ (i.e. the trivial map) for all i. Let $\underline{A}=\left(A_{i}, \delta_{i}\right)$ be a complex. The i-th cohomology $H^{i}(\underline{A})$ of A is define by

$$
H^{i}(\underline{A})=\operatorname{ker} \delta_{i} / \operatorname{im} \delta_{i-1}
$$

Let $\underline{B}=\left(B_{i}, \epsilon_{i}\right)$ be another complex. A morphism $\underline{f}: \underline{A} \rightarrow \underline{B}$ from \underline{A} to \underline{B} is a collection of homomorphisms $f_{i}: A_{i} \rightarrow B_{i}$ such that the diagrams

commute for all i. A chain of morphisms $\underline{A} \rightarrow \underline{B} \rightarrow \underline{C}$ of complexes is called exact if $A_{i} \rightarrow B_{i} \rightarrow$ C_{i} is exact for each i.
6. Consider a short exact sequence of complexes

$$
0 \rightarrow \underline{A} \rightarrow \underline{B} \rightarrow \underline{C} \rightarrow 0 .
$$

Then (1) there exists a chain

$$
\cdots \rightarrow H^{i}(\underline{A}) \rightarrow H^{i}(\underline{B}) \rightarrow H^{i}(\underline{C}) \rightarrow H^{i+1}(\underline{A}) \rightarrow H^{i+1}(\underline{B}) \rightarrow \cdots
$$

of group homomorphisms such that (2) it is exact. (Hint: One can construct the maps and prove the exactness either directly or by applying the snake lemma.)

References

[1] R. Bott abd L.W. Tu, Differential forms in algebraic topology. Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982.

