Midterm Exam

November 12, 2009

There are 5 problems below with points indicated; the maximal total points you can get is set to be 30.

1. (10pts) Compute the de Rham cohomology groups of the following compact, orientable surface with g holes in \mathbb{R}^3 . (If this is too hard, do the case g=2 for partial credit.)

- 2. (10pts) Let p_1, \dots, p_r be r distinct points on the torus $T = S^1 \times S^1$ $(r \ge 1)$. Let $M = T \setminus \{p_1, \dots, p_r\}$. Find the de Rham cohomology groups $H^*(M)$ and $H_c^*(M)$. (If this is too hard, do r = 1 for partial credit.)
- 3. (5pts) For a manifold M (with a finite good cover) of dimension n, let

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} \dim_{\mathbb{R}} H^{i}(M) \quad ; \quad \chi_{c}(M) = \sum_{i=0}^{n} (-1)^{i} \dim_{\mathbb{R}} H_{c}^{i}(M).$$

Does $\chi(M) = \chi_c(M)$ always hold true? If yes, prove it; if not, give a counterexample.

4. (5pts) Let X_1, X_2 be two manifolds and $Y_i \subset X_i, i = 1, 2$, be closed submanifolds. Let η_i be the Poincaré duals of Y_i in $H^*(X_i)$. What is the Poincaré dual of $Y_1 \times Y_2$ in $H^*(X_1 \times X_2) = H^*(X_1) \otimes H^*(X_2)$? Verify your answer.

We use the following convention: A double complex K (will be assumed to be concentrated in the first quadrant and) is equipped with two differentials $\delta: K^{p,q} \to K^{p+1,q}$ and $d: K^{p,q} \to K^{p,q+1}$. A homomorphism $f: K \to K'$ consists of maps $f: K^{p,q} \to (K')^{p,q}$ which commutate with δ and d.

5. (10pts) Prove the statement¹: Whenever a homomorphism $f: K \to K'$ of double complexes induces H_d -isomorphism, it also induces H_D -isomorphism. (I.e., " $f: H(K^{p,\bullet},d) \to H((K')^{p,\bullet},d)$ are isomorphisms for all p" implies " $f: H(K,D) \to H(K',D)$ is an isomorphism" where $D = \delta + (-1)^p d$ is the differential on the associated single complex of K.)

¹Bott and Tu, Exercise 9.13