1 Exercises for Section 1

1.1 Let A be a ring, $A \neq 0$, and M an A-module with basis $\left(w_{i}\right)_{i \in I}$.
(a) Prove that there is a ring homomorphism from A to a field k, and that $\# I=$ $\operatorname{dim}_{k}\left(M \otimes_{A} k\right)$.
(b) Suppose that M is a finitely generated A-module. Prove that $\# I$ is finite.
(a) Let \mathfrak{m} be a maximal ideal of A. Then $k:=A / \mathfrak{m}$ is a field, and the canonical map $A \longrightarrow k$ is a ring homomorphism, which gives rise to an A-action on k.

Note that $M=\bigoplus_{i \in I} A w_{i}$. Define a map

$$
f: M \times k \longrightarrow k^{\oplus I}
$$

by setting

$$
f\left(\sum_{\text {finite }} a_{i} w_{i}, x\right)=\sum_{\text {finite }}\left(a_{i} x\right) e_{i},
$$

where $\left(e_{i}\right)_{i \in I}$ is a basis for $k^{\oplus I}$. It is clear that f is A-bilinear. Hence f induces an A-homomorphism

$$
\tilde{f}: M \otimes_{A} k \longrightarrow k^{\oplus I} .
$$

Indeed, \tilde{f} is k-linear as $f(m, \cdot)$ is a k-linear map for each $m \in M$. Now consider the k-linear map

$$
g: k^{\oplus I} \longrightarrow M \otimes_{A} k
$$

given by

$$
g\left(\sum_{\text {finite }} x_{i} e_{i}\right)=\sum_{\text {finite }} e_{i} \otimes x_{i} .
$$

It is easy to check that g is the inverse of \tilde{f}, which implies \tilde{f} is a k-isomorphism. Therefore,

$$
\operatorname{dim}_{k}\left(M \otimes_{A} k\right)=\operatorname{dim}_{k}\left(k^{\oplus I}\right)=\# I
$$

(b) Suppose $\left(u_{n}\right)_{n=1}^{N}$ is a set of A-generators of M. Since $\left(w_{i}\right)_{i \in I}$ is an A-basis of M, each u_{n} can be uniquely represented as

$$
u_{n}=\sum_{r=1}^{l_{n}} \alpha_{n r} w_{n r}
$$

with $\alpha_{n r} \in A-\{0\}, w_{n r} \in\left(w_{i}\right)_{i \in I}$. Let W be the collection of all such w_{n}^{r}. Then W is finite and forms a basis of M, and $M \otimes_{A} k$ is of dimension $\# W$. But the dimension is also equal to $\# I$. So $\# I$ coincides with $\# W$ and is thereby a finite number.
1.2 (a) Let $w_{1}, w_{2}, \cdots, w_{n}$ be a basis for M over A, and let

$$
v_{i}=\sum_{j=1}^{n} a_{i j} w_{j} \in M \quad(1 \leq i \leq n)
$$

with $a_{i j} \in A$. Prove: $v_{1}, v_{2}, \cdots, v_{n}$ is a basis for M over $A \Leftrightarrow \operatorname{det}\left(\left(a_{i j}\right)_{1 \leq i, j \leq n}\right) \in$ A^{*}.
(b) The trace $\operatorname{Tr}(C)$ of an $n \times n$-matrix $C=\left(c_{i j}\right)_{1 \leq i, j \leq n}$ over A is defined by $\operatorname{Tr}(C)=\sum_{i=1}^{n} c_{i i}$. Prove

$$
\begin{aligned}
\operatorname{Tr}(C D) & =\operatorname{Tr}(D C) \\
\operatorname{Tr}\left(E C E^{-1}\right) & =\operatorname{Tr}(C)
\end{aligned}
$$

for $n \times n$-matrices C, D, E over A with $\operatorname{det}(E) \in A^{*}$.
(c) Prove that the trace of an A-endomorphism of a finitely generated free module, as defined in 1.1, is independent of the choice of the basis.
(a) If $\left(v_{i}\right)_{i=1}^{n}$ is an A-basis for, then each w_{j} can be expressed as

$$
w_{j}=\sum_{i=1}^{n} b_{j i} v_{i}
$$

for some unique $b_{j i} \in A$. Together with the assumption that $v_{i}=\sum_{j} a_{i j} w_{j}$, we have

$$
v_{r}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{r j} b_{j i} v_{i}, \quad r=1, \cdots, n
$$

Since each v_{r} is a basis element, by comparing the coefficients, we get

$$
\sum_{j=1}^{n} a_{r j} b_{j i}=\delta_{i r}
$$

In other words, the product $\left[a_{i j}\right]\left[b_{i j}\right]=\mathrm{id}_{n}$, and so

$$
\operatorname{det}\left[a_{i j}\right] \cdot \operatorname{det}\left[b_{i j}\right]=1
$$

This proves $\operatorname{det}\left[a_{i j}\right]$ is a unit of A.
Conversely, assume $\operatorname{det}\left[a_{i j}\right] \in A^{\times}$. Consider the equation

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=0
$$

Expressing v_{i} in terms of the basis $\left(w_{j}\right)_{j=1}^{n}$ the equation can be rewritten as

$$
\sum_{j=1}^{n} \sum_{i=1}^{n} \lambda_{i} a_{i j} w_{j}=0
$$

which yields

$$
\sum_{i=1}^{n} \lambda_{i} a_{i j}=0, \quad j=1, \cdots, n
$$

These equations can be written in the matrix form

$$
\left[\begin{array}{lll}
\lambda_{1} & \cdots & \lambda_{n}
\end{array}\right]\left[a_{i j}\right]=\left[\begin{array}{lll}
0 & \cdots & 0
\end{array}\right] .
$$

Hence it suffices to verify the invertibility of the matrix $\left[a_{i j}\right]$. Recall that for any $n \times n$ matrix X, we have the matrix identity

$$
X \operatorname{adj}(X)=\operatorname{det}(X) \operatorname{id}_{n},
$$

in which $\operatorname{adj}(X):=\left[(-1)^{i+j} \operatorname{det}\left(X_{i j}\right)\right]^{T}$ is the adjugate matrix of X, where $X_{i j}$ is the matrix obtained from deleting the i-th row and the j-th column of X. Now $\operatorname{det}\left[a_{i j}\right]$ is a unit in A, by the above matrix identity, $\frac{1}{\operatorname{det}\left[a_{i j}\right]} \operatorname{adj}\left[a_{i j}\right]$ is an inverse of $\left[a_{i j}\right]$. This means $\left[a_{i j}\right]$ is invertible and we are done.
(b) Write $C=\left[c_{i j}\right]$ and $D=\left[d_{i j}\right]$. Then

$$
C D=\left[\sum_{r=1}^{n} c_{i r} d_{r j}\right] \text { and } D C=\left[\sum_{r=1}^{n} d_{i r} c_{r j}\right] .
$$

The first identity holds since

$$
\operatorname{Tr}(C D)=\sum_{i=1}^{n}\left(\sum_{r=1}^{n} c_{i r} d_{r i}\right)=\sum_{r=1}^{n}\left(\sum_{i=1}^{n} d_{r i} c_{i r}\right)=\operatorname{Tr}(D C) .
$$

Replacing the pair (C, D) by $\left(E C, E^{-1}\right)$ for any invertible matrix E in the first identity, we get the second one.
(c) Let M be a finitely generated free A-module with basis $\left(w_{i}\right)_{i=1}^{n}$, and $f: M \longrightarrow M$ an A-linear map. Suppose that

$$
f\left(w_{i}\right)=\sum_{j=1}^{n} \mu_{i j} w_{l}, \quad i=1, \cdots, n
$$

By definition, the trace of f with respect to the basis $\left(w_{i}\right)_{i=1}^{n}$ is

$$
\operatorname{Tr}_{\left(w_{i}\right)}(f)=\sum_{i=1}^{n} \mu_{i i} .
$$

Assume that M has another basis $\left(v_{i}\right)_{i=1}^{n}$, and that for each i,

$$
v_{i}=\sum_{j=1}^{n} a_{i j} w_{j} \quad \text { and } \quad w_{i}=\sum_{j=1}^{n} b_{i j} v_{j},
$$

where $\left[a_{i j}\right]$ and $\left[b_{i j}\right]$ are mutually inverse, as was shown in part (a). Then,

$$
\begin{aligned}
f\left(v_{i}\right) & =\sum_{j=1}^{n} a_{i j} f\left(w_{j}\right)=\sum_{j=1}^{n} a_{i j} \sum_{k=1}^{n} \mu_{j k} w_{k}=\sum_{j=1}^{n} a_{i j} \sum_{k=1}^{n} \mu_{j k} \sum_{l=1}^{n} b_{k l} v_{l} \\
& =\sum_{l=1}^{n}\left(\sum_{j=1}^{n} \sum_{k=1}^{n} a_{i j} \mu_{j k} b_{k l}\right) v_{l} .
\end{aligned}
$$

So the trace of f with respect to the basis $\left(v_{i}\right)_{i=1}^{n}$ is

$$
\begin{aligned}
\operatorname{Tr}_{\left(v_{i}\right)}(f) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{i j} \mu_{j k} b_{k i}=\sum_{j=1}^{n} \sum_{k=1}^{n}\left(\sum_{i=1}^{n} b_{k i} a_{i j}\right) \mu_{j k} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \delta_{k j} \mu_{j k}=\sum_{j=1}^{n} \mu_{j j} \\
& =\operatorname{Tr}_{\left(w_{i}\right)}(f) .
\end{aligned}
$$

This proves the trace map is invariant under a change of basis.
1.3 Let B be an A-algebra that is finitely generated and free as an A-module, with basis $w_{1}, w_{2}, \cdots w_{n}$. Prove: B is separable over $A \Leftrightarrow \operatorname{det}\left(\operatorname{Tr}\left(w_{i} w_{j}\right)_{1 \leq i, j \leq n}\right) \in A^{*}$.

By definition, B is separable over A if and only if the A-linear map

$$
\phi: B \longrightarrow \operatorname{Hom}_{A}(B, A),
$$

given by $\phi(b)(\tilde{b})=\operatorname{Tr}(b \tilde{b})$ for $b, \tilde{b} \in B$, is a bijection.
Let $\left(w_{i}\right)_{i=1}^{n}$ be a basis for B over A. Then the A-module $\operatorname{Hom}_{A}(B, A)$ has a corresponding basis $\left(\chi_{i}\right)_{i=1}^{n}$, where $\chi_{i}: B \longrightarrow A$ is the A-linear map so that $\chi_{i}\left(w_{j}\right)=\delta_{i j}$. Write

$$
\phi\left(w_{i}\right)=\sum_{j=1}^{n} a_{i j} \chi_{j}, \quad i=1, \cdots, n .
$$

In actuality, the $a_{i j}$ above can be expressed explicitly as

$$
a_{i j}=\sum_{l=1}^{n} a_{i l} \chi_{l}\left(w_{j}\right)=\phi\left(w_{i}\right)\left(w_{j}\right)=\operatorname{Tr}\left(w_{i} w_{j}\right) .
$$

Note that ϕ is bijective if and only if $\phi\left(w_{1}\right), \cdots, \phi\left(w_{n}\right)$ form a basis for $\operatorname{Hom}_{A}(B, A)$; and this is the case if and only if, by Exercise 2, the determinant $\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right)\right]$ is a unit of A.
1.4 Let B be a free separable A-algebra, A^{\prime} an A-algebra, and $B^{\prime}=B \otimes_{A} A^{\prime}$. Prove that B^{\prime} is a free separable A^{\prime}-algebra.

We will adopt the notations used in and apply the result of the previous exercise. Since the A-algebra B is free separable, $B=\bigoplus_{i=1}^{n} A w_{i}$ as an A-module, and $\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right)\right]$ is a unit in A.

To show $B^{\prime}=B \otimes_{A} A^{\prime}$ is free separable A^{\prime}-algebra, first we check that B^{\prime} is finitely generated and free as an A^{\prime}-module. In fact, this is true since tensor products commute with direct sums:

$$
B^{\prime}=B \otimes_{A} A^{\prime}=\left(\bigoplus_{i=1}^{n} A w_{i}\right) \otimes_{A} A^{\prime} \simeq \bigoplus_{i=1}^{n}\left(A w_{i} \otimes_{A} A^{\prime}\right) \simeq \bigoplus_{i=1}^{n} A^{\prime}\left(w_{i} \otimes 1\right)
$$

This identification (about the A^{\prime}-module structure) also implies that the collection $\left(w_{i} \otimes\right.$ $1)_{i=1}^{n}$ forms an A^{\prime}-basis for B^{\prime}. Hence it remains to verify

$$
\operatorname{det}\left[\operatorname{Tr}^{\prime}\left(w_{i} \otimes 1\right)\left(w_{j} \otimes 1\right)\right] \in\left(A^{\prime}\right)^{\times}
$$

where $\operatorname{Tr}^{\prime}$ stands for the trace map on $\operatorname{Hom}_{A^{\prime}}\left(B^{\prime}, B^{\prime}\right)$, as well as the induced map on B^{\prime}. Note that $\left(w_{i} \otimes 1\right)\left(w_{j} \otimes 1\right)=w_{j} w_{j} \otimes 1$, so what we need to be aware of is $\operatorname{Tr}^{\prime}\left(w_{i} w_{j} \otimes 1\right)$. More precisely, we have to understand Tr^{\prime}.

Consider the A^{\prime}-module $\operatorname{Hom}_{A^{\prime}}\left(B \otimes_{A} A^{\prime}, A \otimes_{A} A^{\prime}\right)$, in which we write the original A^{\prime} as $A \otimes_{A} A^{\prime}$, regarded as A^{\prime}-algebra, for clarity in latter discussion. It has a natural A^{\prime}-basis $\left(\chi_{i}^{\prime}\right)_{i=1}^{n}$, where χ_{i}^{\prime} is the A^{\prime}-linear map determined by $\chi_{i}^{\prime}\left(w_{j} \otimes 1\right)=\delta_{i j}(1 \otimes 1)=\delta_{i j} \otimes 1$. Also, $\chi_{i}\left(w_{j}\right) \otimes 1=\delta_{i j} \otimes 1$. So for any $a_{j}^{\prime} \in A^{\prime}, j=1, \cdots, n$, by the linearity of χ_{i}^{\prime}, we have

$$
\begin{aligned}
\chi_{i}^{\prime}\left(\sum_{j=1}^{n} w_{j} \otimes a_{j}^{\prime}\right) & =\sum_{j=1}^{n} a_{j}^{\prime} \chi_{i}^{\prime}\left(w_{j} \otimes 1\right)=\sum_{j=1}^{n} a_{j}^{\prime}\left(\chi_{i}\left(w_{j}\right) \otimes 1\right) \\
& =\sum_{j=1}^{n} \chi_{i}\left(w_{j}\right) \otimes a_{j}^{\prime}=\chi_{i}\left(\sum_{j=1}^{n} w_{j}\right) \otimes a_{j}^{\prime}
\end{aligned}
$$

that is,

$$
\chi_{i}^{\prime}=\chi_{i} \otimes \operatorname{id}_{A^{\prime}}
$$

By the definition of trace, we have $\operatorname{Tr}^{\prime}\left(\chi_{i}^{\prime}\right)=1 \otimes 1$. Together with $\operatorname{Tr}\left(\chi_{i}\right)=1$, we get

$$
\operatorname{Tr}^{\prime}\left(\chi_{i}^{\prime}\right)=\operatorname{Tr}\left(\chi_{i} \otimes \mathrm{id}_{A^{\prime}}\right)=\operatorname{Tr}\left(\chi_{i}\right) \otimes 1
$$

Now, suppose that $m_{w_{i} w_{j}}=\sum_{l=1}^{n} a_{l} \chi_{l}$ with $a_{l} \in A$. Then

$$
m_{w_{i} w_{j} \otimes 1}=m_{w_{i} w_{j}} \otimes \operatorname{id}_{A^{\prime}}=\sum_{l=1}^{n} a_{l} \chi_{l} \otimes \mathrm{id}_{A}^{\prime} .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Tr}^{\prime}\left(w_{i} w_{j} \otimes 1\right) & =\operatorname{Tr}^{\prime}\left(\sum_{l=1}^{n} a_{l} \chi_{l} \otimes \operatorname{id}_{A^{\prime}}\right) \\
& =\sum_{l=1}^{n} a_{l} \operatorname{Tr}\left(\chi_{l}\right) \otimes 1=\sum_{l=1}^{n} a_{l} \otimes 1 \\
& =\operatorname{Tr}\left(w_{i} w_{j}\right) \otimes 1
\end{aligned}
$$

Finally, by the definition of determinant, we have

$$
\operatorname{det}\left[\operatorname{Tr}^{\prime}\left(w_{i} w_{j} \otimes 1\right)\right]=\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right) \otimes 1\right]=\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right)\right] \otimes 1
$$

Since $\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right)\right]$ is a unit in A, we know $\operatorname{det}\left[\operatorname{Tr}\left(w_{i} w_{j}\right)\right] \otimes 1$ is a unit in $A \otimes_{A} A^{\prime}=A^{\prime}$ and we are done.
1.5 Let K be an algebraic number field with discriminant Δ and ring of integers A. Prove that $A[1 / \Delta]$ is a free separable $\mathbb{Z}[1 / \Delta]$-algebra.

Let $A^{\prime}=A[1 / \Delta]$ and $Z^{\prime}=\mathbb{Z}[1 / \Delta]$. Take an integral basis $\omega_{1}, \cdots, \omega_{n}$ of K, i.e. it is a free \mathbb{Z} basis of A. Note that $\omega_{1}, \cdots, \omega_{n}$ is also a basis of K over \mathbb{Q}. By the definition of the discriminant of K,

$$
\Delta=\operatorname{det}\left(\operatorname{Tr}_{\mathrm{K} / \mathbb{Q}}\left(\omega_{\mathrm{i}} \omega_{\mathrm{j}}\right)\right)
$$

Notice that $\operatorname{Tr}_{\mathrm{K} / \mathbb{Q}}\left(\omega_{\mathrm{i}} \omega_{\mathrm{j}}\right)=\operatorname{Tr}_{\mathrm{A}^{\prime} / Z^{\prime}}\left(\omega_{\mathrm{i}} \omega_{\mathrm{j}}\right)$. Using exercise 1.3 and Δ is invertible in Z^{\prime}, A^{\prime} is a free separable Z^{\prime}-algebra.
1.6 Let A be a ring.
(a) Let $a \in A$. Prove that $A[X] /\left(X^{2}-a\right)$ is a free separable A-algebra if and only if $2 a \in A^{*}$.
(b) Let, more generally, $f \in A[X]$ be a monic polynomial. Prove that $A[X] /(f)$ is a free separable A-algebra if and only if the discriminant $\Delta(f)$ of f belongs to A^{*}.
(a) Let $B=A[X] /\left(X^{2}-a\right)$ and $[b]=b+\left(X^{2}-a\right)$. It is easy to check that $\{[1],[x]\}$ is a A-basis of B and thus $\operatorname{rank}_{A}(B)=2$. By the definition of $m_{[x]}$, we have $m_{[x]}([1])=[x]$ and $m_{[x]}([x])=[x]^{2}=[a]$. Then $\operatorname{Tr}([x])=\operatorname{Tr}\left(m_{[x]}\right)=0$. Clearly, $\operatorname{Tr}([a])=\operatorname{rank}_{A}(B) \cdot a=2 a$. Using Exercise 1.3, B is a free separable A-algebra if and only if

$$
4 a=\operatorname{det}\left(\begin{array}{cc}
\operatorname{Tr}([1]) & \operatorname{Tr}([x]) \\
\operatorname{Tr}([x]) & \operatorname{Tr}\left([x]^{2}\right)
\end{array}\right) \in A^{*}
$$

(b) Let $B=A[X] /(f),[b]=b+(f)$ and $n=\operatorname{deg}(f)$. It is easy to check that $\left\{[1],[x], \cdots,[x]^{n-1}\right\}$ is a A-basis of B and thus $\operatorname{rank}_{A}(B)=n$. Write

$$
f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

A element t_{m} in $A\left(m \in \mathbb{Z}_{\geqslant 0}\right)$ is defined by using a recursive relations

$$
t_{m}+a_{n-1} t_{m-1}+\cdots+a_{n+m+1} t_{1}+m a_{n-m}=0
$$

for $1 \leqslant m \leqslant n$,

$$
t_{m}+a_{n-1} t_{m-1}+\cdots+a_{0} t_{m-n}=0
$$

for $m>n$ and set $t_{0}=n$. (Note that this is Newton identities. Originally it give relations between power sums and elementary symmetric polynomials.) Also, we define the discriminant $\Delta(f)$ by

$$
\Delta(f)=\operatorname{det}\left(\begin{array}{cccc}
t_{0} & t_{1} & \cdots & t_{n-1} \\
t_{1} & t_{2} & \cdots & t_{n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n-1} & t_{n} & \cdots & t_{2 n-2}
\end{array}\right) \in A
$$

By an induction on m, the definition of $\operatorname{Tr}_{B / A}\left(m_{[x]^{m}}\right)$ and the recursive relations between t_{i} and a_{i}, we get $\operatorname{Tr}\left(m_{[x]^{m}}\right)=t_{m}$ for all $m \geqslant 0$. Using Exercise 1.3, B is a free separable A-algebra if and only if

$$
\Delta(f)=\operatorname{det}\left(\begin{array}{cccc}
\operatorname{Tr}([1]) & \operatorname{Tr}([x]) & \cdots & \operatorname{Tr}\left([x]^{n-1}\right) \\
\operatorname{Tr}([x]) & \operatorname{Tr}\left([x]^{2}\right) & \cdots & \operatorname{Tr}\left([x]^{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Tr}\left([x]^{n-1}\right) & \operatorname{Tr}\left([x]^{n}\right) & \cdots & \operatorname{Tr}\left([x]^{2 n-2}\right)
\end{array}\right) \in A^{*} .
$$

1.7 Suppose that the scheme X is the disjoint union of two schemes $X^{\prime}, X^{\prime \prime}$. Prove that the category $\mathbf{F E t}_{X}$ is equivalent to a suitably defined "product category" $\mathbf{F E t}_{X^{\prime}} \times \mathbf{F E t}_{X^{\prime \prime}}$.

Let $\phi: Z \rightarrow X=X^{\prime} \amalg X^{\prime \prime}$ be a finite étale covering. Consider $Z^{\prime}=\phi^{-1}\left(X^{\prime}\right)$ and $Z^{\prime \prime}=\phi^{-1}\left(X^{\prime \prime}\right)$. Then, $Z^{\prime} \rightarrow X^{\prime}$ and $Z^{\prime \prime} \rightarrow X^{\prime \prime}$ are flat and unramified because these are local properties. And they are finitely presented if we consider affine coverings of X^{\prime} and $X^{\prime \prime}$ induced from the affine covering of X. Thus, by 6.9 , they are finite étale coverings. Conversely, given finite étale coverings $\phi_{1}: Z^{\prime} \rightarrow X^{\prime}$ and $\phi_{2}: Z^{\prime \prime} \rightarrow X^{\prime \prime}$, we consider $Z=Z^{\prime} \amalg Z^{\prime \prime} \rightarrow X$. It is finite étale due to the similar reason as above. Consider $F: \mathbf{F E T}_{X^{\prime}} \times \mathbf{F E T}_{X^{\prime \prime}} \rightarrow \mathbf{F E T}_{X}$ is the functor sends objects as discussion. It sends morphisms in the natural way. It remains to show F is fully faithful. Its induced map on morphisms is injective clearly. Since

is commutative, surjectivity is assured.
1.8 Let $S=\lim _{\leftrightarrows} S_{i}$ be a projective limit as in 1.7, and define for each $j \in I$ the projection map $f_{j}: S \longrightarrow S_{j}$ by $f_{j}\left(\left(x_{i}\right)_{i \in I}\right)=x_{j}$. Prove that the system $\left(S,\left(f_{j}\right)_{j \in I}\right)$ has the following "universal property":
(i) $f_{i j} \circ f_{i}=f_{j}$ for all $i, j \in I$ with $i \geq j$;
(ii) if T is a set and $\left(g_{j}: T \longrightarrow S_{j}\right)_{j \in I}$ is a collection of maps satisfying $f_{i j} \circ g_{i}=g_{j}$ (for all $i, j \in I$ with $i \geq j$), then there is a unique map $g: T \longrightarrow S$ such that $g_{j}=f_{j} \circ g$ for all $j \in I$.

Prove further that this universal property characterizes $\left(S,\left(f_{j}\right)_{j \in I}\right)$ in the following sense: if S^{\prime} is a set and $\left(f_{j}^{\prime}: S^{\prime} \longrightarrow S_{j}\right)_{j \in I}$ a collection of maps satisfying the analogues of (i), (ii), then there is a unique bijection $f^{\prime}: S^{\prime} \longrightarrow S$ such that $f_{j}^{\prime}=f_{j} \circ f^{\prime}$ for all $j \in I$.

Recall that the projective limit

$$
S=\left\{\left(x_{k}\right)_{k \in I} \in \prod_{k \in I} S_{k}: f_{i j}\left(x_{i}\right)=x_{j} \text { for all } i, j \in I \text { with } i \geq j\right\}
$$

For any $\left(x_{k}\right)_{k \in I} \in S$ and any $i, j \in I$ with $i \geq j$, we have

$$
f_{i j} \circ f_{i}\left(\left(x_{k}\right)_{k \in I}\right)=f_{i j}\left(x_{i}\right)=x_{j}=f_{j}\left(\left(x_{k}\right)_{k \in I}\right) .
$$

This proves (i). Let $\left(g_{j}: T \longrightarrow S_{j}\right)_{j \in I}$ be a collection of maps with the property $f_{i j} \circ g_{i}=$ g_{j} for all $i, j \in I$ with $i \geq j$. If there is a map $g: T \longrightarrow S$ such that $g_{j}(t)=f_{j}(g(t))$ for all $t \in T$ and $j \in I$, then we will have

$$
g(t)=\left(g_{j}(t)\right)_{j \in I},
$$

in which $\left(g_{j}(t)\right)_{j \in I}$ indeed belongs to S because of the the property of $\left(g_{j}\right)_{j \in I}$. Now define the map $g: T \longrightarrow S$ by the above formula. Then we obtain both the existence and uniqueness of g that satisfies the required equations.

The second part that the universal property characterizes projective limits is just a consequence of the standard formal argument.
1.9 Let the notations be as in 1.7 , and $S=\lim _{\leftarrow} S_{i}$
(a) Suppose that all sets S_{i} are endowed with a compact Hausdorff topology, that all S_{i} are non-empty, and that all maps $f_{i j}$ are continuous. Prove that S is non-empty and compact. [Hint: Apply Tikhonovs theorem.]
(b) Suppose that all sets S_{i} are finite and non-empty. Prove that $S \neq \emptyset$.
(c) Suppose that I is countable, that all S_{i} are non-empty, and that all $f_{i j}$ are surjective. Prove that $S \neq \emptyset$.
(d) Let I be the collection of all finite subsets of \mathbb{R}, and let I be partially ordered by inclusion. For each $i \in I$, let S_{i} be the set of injection maps $\phi: i \rightarrow \mathbb{Z}$, and let $f_{i j}: S_{i} \rightarrow S_{j}$ (for $j \subset i$) map ϕ to its restriction $\phi \mid j$. Prove that this defines a projective system in which all S_{i} are non-empty and that all $f_{i j}$ are surjective, but that the projective limit S is empty.
(a) Define $S_{i j}:=\left\{\left(s_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i} \mid f_{i j}\left(s_{i}\right)=s_{j}\right\}$. We have $S=\cap_{i \geq j} S_{i j}$. Since each $S_{i j}$ is closed in $\prod_{i \in I} S_{i}$, by Tikhonov's theorem, $\prod_{i \in I} S_{i}$ is compact, and hence $S_{i j}$ is compact.

For all $\bar{I}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\bar{J}=\left\{j_{1}, \ldots, j_{m}\right\}$, by I is a projective system, there is an $i_{0} \in I$ such that $S_{i_{0}} \rightarrow S_{i}$ via $f_{i_{0}, i}$ and $S_{i_{0}} \rightarrow S_{j}$ via $f_{i_{0}, j}$, respectively. Hence $\cap_{i \in \bar{I}, j \in \bar{J}} S_{i j} \neq \emptyset$. So $S=\cap_{i, j} S_{i j} \neq \emptyset$ by the finite intersection property. (Recall: X is
compact Hausdorff space and $\left\{F_{i}\right\}$ a family of closed subsets in X. If for all finite indes set $J \subset I$, we have $X \cap\left(\cap_{i \in J} F_{i}\right) \neq \emptyset$, then $X \cap\left(\cap_{i \in I} F_{i}\right) \neq \emptyset$.) So $S \subset \prod_{i \in I} S_{i}$ is closed, hence compact.
(b) Given discrete topology on each S_{i}; then apply (a).
(c) \ldots
(d)

$$
\begin{aligned}
& I:=\{i \text { is a finite subset in } \mathbb{R}\}, i \geq j \Leftrightarrow i \supseteq j \\
& S_{i}:=\{\phi: i \hookrightarrow \mathbb{Z}\} \\
& f_{i j}: S_{i} \rightarrow S_{j} \\
& \phi\left.\mapsto \phi\right|_{j}
\end{aligned}
$$

(i) For each $i, j \in I$, set $k:=i \cup j$. Then $k \geq i, j$
(ii) $f_{i i}=\mathrm{id}$ is clear.
(iii) $f_{i k}=f_{j k} f_{i j}$ is the compose of restriction map. Hence ($i \in I, S_{i}$) is a projective system. $S \neq \emptyset$ is clear and $f_{i j}$ is surjective since we can freely extend all $\psi: j \rightarrow \mathbb{Z}$ to $\psi_{\text {ext }}: i \rightarrow \mathbb{Z}$ if $i \supset j$.

To prove $\lim _{\lfloor } S_{i}$ is empty, suppose $\left(\phi_{i}\right)_{i \in I}$ is an element in $\varliminf_{i} S_{i}$. By definition, $\phi_{i}: i \rightarrow \mathbb{Z}$ such that $\left.\phi_{i}\right|_{j}=\phi_{j}$ for $j \subset i$. In particular, all ϕ_{i} have the same restriction on all singleton $\{x\} \subset \mathbb{R}$. This says we have an injection $\mathbb{R} \hookrightarrow \mathbb{Z}$, a contradiction.
1.10 Prove: if π_{j} is a profinite group for each j in a set J, then $\prod_{j \in J} \pi_{j}$ is a profinite group.
1.13 Let p be a prime number, and \mathbb{Z}_{p} the ring of p-adic integers. Prove:
(a) $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p}-p \mathbb{Z}_{p}$;
(b) each $a \in \mathbb{Z}_{p}-\{0\}$ can be uniquely written in the form $a=u p^{n}$ with $u \in \mathbb{Z}_{p}^{*}$, $n \in \mathbb{Z}, n \geq 0 ;$
(c) \mathbb{Z}_{p} is a local domain with residue class field \mathbb{F}_{p}.

First, we prove that, for each $n \geqslant 1$, there is an exact sequence of abelian groups

$$
0 \rightarrow \mathbb{Z}_{p} \xrightarrow{\cdot p^{n}} \mathbb{Z}_{p} \xrightarrow{\pi_{n}} \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow 0,
$$

where π_{n} sends $\left(\left(a_{m}\right)\right)$ to a_{n}.
Clearly, π_{n} is surjective. If $a=\left(a_{m}\right)$ belongs to $\operatorname{ker}\left(\pi_{n}\right)$, then $a_{m} \equiv 0\left(\bmod p^{n}\right)$ for all $m \geqslant n$. This means that, under the isomorphism $\mathbb{Z} / p^{m-n} \mathbb{Z} \rightarrow p^{n} \mathbb{Z} / p^{m} \mathbb{Z}$, there is a element b_{m-n} of $\mathbb{Z} / p^{m-n} \mathbb{Z}$ such its image in $\mathbb{Z} / p^{m} \mathbb{Z}$ satisfies $a_{m}=p^{n} b_{m-n}$. The b_{l} define an element b of \mathbb{Z}_{p} such that $p^{n} b=a$. Obversely, the kernel of π_{n} contains $p^{n} \mathbb{Z}_{p}$ and thus the above sequence is exact at the middle term. Similarly, the multiplicative map $\cdot p^{n}$ is injective.
(a) By the above exact sequence for $n=1$, we know that $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$ is isomorphic to the field \mathbb{F}_{p}. This implies that $\mathbb{Z}_{p}^{*} \subseteq \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$. On the other hand, if $a \in \mathbb{Z} / p^{n} \mathbb{Z}$ which is not
divided by p, then its image in $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ is nonzero thus invertible. Hence there are $b, c \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that $a b=1-p c$. Then

$$
a b(1-p c)^{-1}=a b\left(1+p c+\cdots+p^{n-1} c^{n-1}\right)=1
$$

in $\mathbb{Z} / p^{n} \mathbb{Z}$ which proves $a \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$. In general, for $a=\left(a_{n}\right) \in \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$, we have $a_{n} \in \mathbb{Z} / p^{n} \mathbb{Z}$ which is not divided by p and thus a_{n} has the inverse in $\mathbb{Z} / p^{n} \mathbb{Z}$. By the uniqueness of inverse elements, we get $\left(a_{n}^{-1}\right) \in \mathbb{Z}_{p}$ and hence $a \in \mathbb{Z}_{p}^{*}$.
(b) For each nonzero $a=\left(a_{n}\right) \in \mathbb{Z}_{p}$, there is the largest n such that $a_{i}=0$ for all $1 \leqslant i \leqslant n$. Since $\pi_{n}(a)=0$, we have $a=p^{n} u$. By the choice of $n, u \notin p \mathbb{Z}_{p}$ i.e. $u \in \mathbb{Z}_{p}^{*}$. The uniqueness of the decomposition is obvious.
(c) Use (b), we can define the p-adic valuation for \mathbb{Z}_{p} :

$$
v_{p}(a)= \begin{cases}+\infty & \text { if } a=0 \\ n & \text { if } a=p^{n} u, u \in \mathbb{Z}_{p}^{*}\end{cases}
$$

Then \mathbb{Z}_{p} is a discrete valuation ring, i.e.

$$
v_{p}(a b)=v_{p}(a)+v_{p}(b), v_{p}(a+b) \geqslant \min \left\{v_{p}(a), v_{p}(b)\right\}
$$

and $v_{p}(a)=+\infty$ if and only if $a=0$. Hence \mathbb{Z}_{p} is a local domain with the maximal ideal $\left\{a \in \mathbb{Z}_{p} \mid v_{p}(a) \geqslant 1\right\}=p \mathbb{Z}_{p}$.
1.14 Prove that there is an isomorphism $\hat{\mathbb{Z}} \cong \prod_{p \text { prime }} \mathbb{Z}_{p}$ of topological rings (definition obvious).

Recall that $\hat{\mathbb{Z}}=\lim \mathbb{Z} / m \mathbb{Z}$ and $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}$ for any prime p. For any positive integer m, which admit the prime factorization $p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, the Chinese remainder theorem gives

$$
\mathbb{Z} / m \mathbb{Z} \simeq \mathbb{Z} / p_{1}^{n_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{k}^{n_{k}} \mathbb{Z}
$$

Through this isomorphism we have a natural map $\prod_{p \text { prime }} \mathbb{Z}_{p} \longrightarrow \mathbb{Z} / m \mathbb{Z}$ for every $m \in \mathbb{N}$, which induces a unique homomorphism of topological rings

$$
f: \prod_{p \text { prime }} \mathbb{Z}_{p} \longrightarrow \hat{\mathbb{Z}}
$$

such that the natural maps mentioned above are factorized over f. On the other hand, for each prime number p the collection of canonical maps $\left(\hat{\mathbb{Z}} \longrightarrow \mathbb{Z} / p^{n} \mathbb{Z}\right)_{n \in \mathbb{N}}$ induces a unique homomorphism

$$
\hat{\mathbb{Z}} \longrightarrow \mathbb{Z}_{p}
$$

over which the canonical maps just mentioned are factorized. This gives rise to the homomorphism

$$
g: \hat{\mathbb{Z}} \longrightarrow \prod_{p \text { prime }} \mathbb{Z}_{p}
$$

Note for any $m \in \mathbb{N}$ that the natural map $\hat{\mathbb{Z}} \longrightarrow \mathbb{Z} / m \mathbb{Z}$ is factorized over g with the help of the isomorphism at the beginning. An argument concerning the uniqueness of f and g subject to their characterizing properties shows that both $f \circ g$ and $g \circ f$ are identities. Thus f and g are isomorphisms.
1.15 Let $\mathbb{Z}_{10}=\lim _{n \geq 1} \mathbb{Z} / 10^{n} \mathbb{Z}$.
(a) Prove that each $a \in \mathbb{Z}_{10}$ has a unique representation $a=\sum_{n=0}^{\infty} c_{n} 10^{n}$ with $c_{n} \in\{0, \cdots, 9\}$.
(b) Prove that there exits a unique continuous function $v: \mathbb{Z}_{10} \rightarrow \mathbb{R}$ such that $v(a)=(\text { number of factors } 2 \text { in } a)^{-1}$ for each positive integer a.
(c) Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive integers not divisible by 10 such that the number of factors 2 in a_{n} tends to infinity for $n \rightarrow \infty$. Prove that the sum of the digits of a_{n} in the decimal system tends to infinity for $n \rightarrow \infty$.
For any $a \in \mathbb{Z}_{10}$, we may write $a=\left(b_{n}\right)_{n=1}^{\infty}$ in the product coordinates. Let $\sum_{m=0}^{n-1} c_{m}^{n} 10^{m}$ be the decimal expansion of b_{n}. Note that c_{m}^{n} stable as $n \rightarrow \infty$. Let c_{m} be the stable value. Then the representation $\sum_{m=0}^{\infty} c_{m} 10^{m}$ is what we are looking for and it is unique.

For the statement (b), the image of $\mathbb{Z}_{>0}$ in \mathbb{Z}_{10} is dense. (The proof is similar to 1.12) The behavior of a continuous function is totally determined by its value on a dense subset. So (b) follows.

For (c). Suppose there exists such a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that the conditions hold but the sum of digits of a_{n} does not go to infinity. Let $s\left(a_{n}\right)$ denote the sum of digits of a_{n}. Then by assumption, $\lim \sup _{n \rightarrow \infty} s\left(a_{n}\right)=M<\infty$.

Take a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ so that $\lim \sup _{n \rightarrow \infty} s\left(a_{n}\right)$ is minimum. Firstly, observe that $a_{n} \rightarrow \infty$. Let b_{n} be the number obtained by removing the first digits from a_{n}. Then b_{n} also satisfying the condition since $a_{n}-b_{n}=k_{n} \cdot 10^{r(n)}$. So the number b_{n} must divisible by 2 sufficiently. And the number b_{n} is non-zero. But $\limsup _{n \rightarrow \infty} s\left(b_{n}\right) \leq$ $\lim \sup _{n \rightarrow \infty} s\left(a_{n}\right)-1$.

Therefore, such sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ does not exist.
1.16 (a) Prove that each $a \in \hat{\mathbb{Z}}$ has a unique representation $a=\sum_{n=1}^{\infty} c_{n} n$! with $c_{n} \in$ $\{0,1, \ldots, n\}$.
(b) Let $b \in \mathbb{Z}, b \geq 0$, and define the sequence $\left(a_{n}\right)_{n=0}^{\infty}$ of non-negative integers by $a_{0}=b, a_{n+1}=2^{a_{n}}$. Prove that $\left(a_{n}\right)_{n=0}^{\infty}$ converges in $\hat{\mathbb{Z}}$, and that $\lim _{n \rightarrow \infty} a_{n} \in \hat{\mathbb{Z}}$ is independent of b.
(c) Let $a=\lim _{n \rightarrow \infty} a_{n}$ as in (b), and write $a=\sum_{n=1}^{\infty} c_{n} n$! as in (a). Compute c_{n} for $1 \leq n \leq 10$.

Throughout the proof we adopt the fact in Problem 1.17(c) that

$$
\hat{\mathbb{Z}} \simeq{\underset{m>0}{\leftrightarrows}} \mathbb{Z} / m!\mathbb{Z}
$$

(a) Let S be the collection of formal series $\sum_{n=1}^{\infty} c_{n} n$! with $0 \leq c_{n} \leq n$. We will show that there is a bijection between $\hat{\mathbb{Z}}$ and S. Define for each m a map $S \longrightarrow \mathbb{Z} / m!\mathbb{Z}$ that sends $\sum_{n=1}^{\infty} c_{n} n!$ to $\sum_{n=1}^{m-1} c_{n} n!(\bmod m!)$. Indeed, these maps form a projective system; and we have $0 \leq \sum_{n=1}^{m-1} c_{n} n!<m$! due to the constraint on c_{n}. Now we prove the induced map $\phi: S \longrightarrow \hat{\mathbb{Z}}$ is bijective by constructing its inverse. Observing that

$$
c_{m}=\frac{1}{m!}\left(\sum_{n=1}^{m} c_{n} n!-\sum_{n=1}^{m-1} c_{n} n!\right)
$$

we define a map $\psi: \hat{\mathbb{Z}} \longrightarrow S$ sending each $\left(b_{m}(\bmod m!)\right)_{m>0}$, where $0 \leq b_{m}<m$!, to the formal series $\sum_{n=1}^{\infty}\left(\frac{1}{n!}\left(b_{n+1}-b_{n}\right)\right) n$!. It is well-defined since $b_{n+1} \equiv b_{n}(\bmod n!)$, i.e. $b_{n+1}-b_{n} \in n!\mathbb{Z}$, according to the property of projective limits; and because of the bounds of b_{n+1} and b_{n}, we know $\frac{1}{n!}\left(b_{n+1}-b_{n}\right) \in\{0,1, \cdots, n\}$. Clearly, ϕ and ψ are mutually inverse and we are done.
(b) It suffices to show that for each $N \in \mathbb{N},\left(a_{n}(\bmod N)\right)_{n \geq N}$ is stable and independent of b. We prove this by an induction argument on N. The statement is trivial for $N=1$. For an $N>1$, we suppose the statement holds up to $N-1$. Now consider $a_{n}(\bmod N)$. Write $N=2^{k} N^{\prime}$ with N^{\prime} odd. By Chinese remainder theorem, it is sufficient to verify that $\left(a_{n}\left(\bmod 2^{k}\right)\right)_{n \geq N}$ and $\left(a_{n}\left(\bmod N^{\prime}\right)\right)_{n \geq N}$ stabilize and does not depends on b. In fact, when $n \geq N>k$, we have $a_{n} \equiv 0\left(\bmod 2^{k}\right)$; also, we have $n-1 \geq N-1 \geq \varphi(N) \geq \varphi\left(N^{\prime}\right)$, where φ is the Euler function, implying that (a_{n-1} $\left.\left(\bmod \varphi\left(N^{\prime}\right)\right)\right)_{n \geq N}$ is stable and independent of b due to the induction hypothesis. It follows by Euler's theorem that $\left(a_{n}\left(\bmod N^{\prime}\right)\right)_{n \geq N}$ is stable and independent of b.
(c) According to the correspondence ψ constructed in (a), we first compute $a(\bmod n!)$ for $n=1, \cdots, 11$. Other than Chinese remainder theorem and the fact that $a=2^{a}$, in the calculation we will also need the congruence

$$
2^{p^{r}(p-1)} \equiv 1 \quad\left(\bmod p^{r+1}\right)
$$

where p is a prime and r is a nonnegative integer. We prove this by induction on r. If $r=0$, then it is just the Euler's theorem. Assume the congruence is true up to $r-1$ for some r and a fixed prime p. Then we have $2^{p^{r-1}(p-1)}=1+\alpha p^{r}$ for some integer α. Hence

$$
\begin{aligned}
2^{p^{r}(p-1)} & =\left(1+\alpha p^{r}\right)^{p} \\
& =1+\binom{p}{1} \alpha p^{r}+\binom{p}{2} \alpha^{2} p^{2 r}+\cdots+\binom{p}{p} \alpha^{p} p^{r p} \\
& \equiv 1 \quad\left(\bmod p^{r+1}\right) .
\end{aligned}
$$

Thus the congruence holds for every nonnegative r. Now we turn to the calculation:

- $a \equiv 0(\bmod 1!) ; a \equiv 0(\bmod 2!)$.
- $a \equiv 4(\bmod 3!)$, where $3!=2 \times 3$.

Since $2^{2} \equiv 1(\bmod 3)$, we have $a \equiv 2^{a \bmod 2} \equiv 1(\bmod 3)$. Together with the fact that $a \equiv 0(\bmod 2)$, the result follows.

- $a \equiv 16(\bmod 4!)$, where $4!=2^{3} \times 3$.

This follows from $a \equiv 0\left(\bmod 2^{3}\right)$ and $a \equiv 1(\bmod 3)$.

- $a \equiv 16(\bmod 5!)$, where $5!=2^{3} \times 3 \times 5$.

Since $2^{4} \equiv 1(\bmod 5)$, we have $a \equiv 2^{a \bmod 4} \equiv 1(\bmod 5)$. Then combining with $a \equiv 16(\bmod 4!)$ we get the result.

- $a \equiv 16(\bmod 6!)$, where $6!=2^{4} \times 3^{2} \times 5$.

Since $2^{3 \times 2}=2^{6} \equiv 1\left(\bmod 3^{2}\right)$, we have $a \equiv 2^{a \bmod 6} \equiv 2^{4} \equiv 7(\bmod 9)$. Also, we have $a \equiv 0\left(\bmod 2^{4}\right)$ and $a \equiv 16(\bmod 5!)$. Combining the conditions together gives us the result.

- $a \equiv 16(\bmod 7!)$, where $7!=2^{4} \times 3^{2} \times 5 \times 7$.

Since $2^{6} \equiv 1(\bmod 7)$, we have $a \equiv 2^{a \bmod 6} \equiv 2^{4} \equiv 2(\bmod 7)$. And by $a \equiv 16$ $(\bmod 6!)$ we get the result.

- $a \equiv 25,216(\bmod 8!)$, where $8!=2^{7} \times 3^{2} \times 5 \times 7$.

This follows from $a \equiv 0\left(\bmod 2^{7}\right)$ and $a \equiv 16(\bmod 7!)$.

- $a \equiv 186,496(\bmod 9!)$, where $9!=2^{7} \times 3^{4} \times 5 \times 7$.

Since $2^{3^{3} \times 2}=2^{54} \equiv 1\left(\bmod 3^{4}\right)$, we have $a \equiv 2^{a \bmod 54}\left(\bmod 3^{4}\right)$. To find $a \bmod 54$, first note that $2^{3^{2} \times 2}=2^{18} \equiv 1\left(\bmod 3^{3}\right)$, and that $a \equiv 16(\bmod 18)$ because $a \equiv 7(\bmod 9)$ and $a \equiv 0(\bmod 2)$. It follows that $a \equiv 2^{a \bmod 18} \equiv 2^{16} \equiv 7$ $\left(\bmod 3^{3}\right)$. Together with $a \equiv 0(\bmod 2)$ we obtain $a \equiv 34(\bmod 54)$. Therefore $a \equiv 2^{a \bmod 54} \equiv 2^{34} \equiv 34\left(\bmod 3^{4}\right)$. Combining this with $a \equiv 25,216(\bmod 8!)$ leads us to the result.

- $a \equiv 1,275,136(\bmod 10!)$, where $10!=2^{8} \times 3^{4} \times 5^{2} \times 7$.

Since $2^{5 \times 4}=2^{20}\left(\bmod 5^{2}\right)$, we have $a \equiv 2^{a \bmod 20}\left(\bmod 5^{2}\right)$. Note that $a \equiv 16$ $(\bmod 20)$ because $a \equiv 0(\bmod 4)$ and $a \equiv 1(\bmod 5)$. Hence $a \equiv 2^{16} \equiv 11$ $\left(\bmod 5^{2}\right)$. Together with $a \equiv 0\left(\bmod 2^{8}\right)$ and $a \equiv 186,496(\bmod 9!)$ we get the result.

- $a \equiv 26,676,736(\bmod 11!)$, where $11!=2^{8} \times 3^{4} \times 5^{2} \times 7 \times 11$.

Since $2^{10} \equiv 1(\bmod 11)$, we have $a \equiv 2^{a \bmod 10}(\bmod 11)$. But $a \equiv 6(\bmod 10)$ since $a \equiv 0(\bmod 2)$ and $a \equiv 1(\bmod 5)$, so $a \equiv 2^{6} \equiv 9(\bmod 11)$. Together with $a \equiv 1,275,136(\bmod 10!)$ the result follows.

Then, set $b_{m}:=a \bmod m!$ so that $a=\left(b_{m}(\bmod m!)\right)_{m>0}$. While converting $\left(b_{m}\right.$ $(\bmod m!))_{m>0}$ into the form $\sum_{n=1}^{\infty} c_{n} n$!, we have been aware from part (a) that $c_{n}=$ $\left(b_{n+1}-b_{n}\right) / n$!. Applying this formula, we know c_{1}, \cdots, c_{10} are $0,2,2,0,0,0,5,4,3,7$, respectively.
1.17 A subset J of a partially ordered set I is called cofinal if $\forall i \in I: \exists j \in J$ such that $j \geq i$.
(a) Prove: if J is a cofinal subset of a direct partially ordered set, then J is directed.
(b) Let the notation be as in 1.7, and let $J \subset I$ be a cofinal subset. Prove that there is a canonical bijection $\lim _{j}{ }_{j \in J} S_{j} \cong \lim _{\varlimsup_{i \in I}} S_{i}$.
(c) Prove: $\hat{\mathbb{Z}} \cong \varliminf_{n} \lim _{n} \mathbb{Z} / n!\mathbb{Z}$.

For (a), let $i, j \in J \subset I . I$ is direct implies $\exists k \in I$ such that $k \geq i$ and $k \geq j$. By cofinality, there exists an $l \in J$ so that $l \geq k$. Hence $l \geq i$ and $l \geq j$. This proves J is also a direct set.

It now makes sense to talk about the inverse limit $\lim _{j \in J} S_{j}$. There are canonical projections $\lim _{i \in I} S_{i} \rightarrow S_{j}$ for all $j \in J$. The morphisms clearly commute with the morphisms in the projective system $\left\{S_{j}: j \in J\right\}$. The universal property says that there exists a morphism $\theta: \lim _{\leftarrow}^{\leftarrow}{ }_{i \in I} S_{i} \rightarrow \lim _{\hookleftarrow j \in J} S_{j}$.

Firstly, this map is canonical by construction. For the surjectivity, let $x=\left(s_{j}\right)_{j \in J} \in$ $\lim _{j \in J} S_{j}$. For each $i \in I$, we choose $j \geq i$ by cofinality and define $s_{i}:=f_{j i}\left(s_{j}\right)$. This is well-defined. Indeed, if there exists another $k \in J$ with $k \geq i$. Pick $l \in J$ so that l dominates j and k.

$$
f_{j i}\left(s_{j}\right)=f_{j i} \circ f_{l j}\left(s_{l}\right)=f_{k i} \circ f_{l k}\left(s_{l}\right)=f_{k i}\left(s_{k}\right)
$$

By construction, $\left(s_{i}\right)_{i \in I} \in \varliminf_{i \in I} S_{I}$ and $\theta\left(\left(s_{i}\right)_{i \in I}\right)=x$. The injectivity is obvious. These prove (b).

For the last one, put $J=\{n!: n \in \mathbb{N}\}$ and $I=\mathbb{N}$ with the usual ordering. Using (b), we obtain (c).
1.19 Let π be a profinite group acting on a set E. Prove that the action is continuous if and only if for each $e \in E$ the stabilizer $\pi_{e}=\{\sigma \in \pi: \sigma e=e\}$ is open in π, and for finite E if and only if the kernel $\pi^{\prime}=\{\sigma \in \pi: \sigma e=e, \quad \forall e \in E\}$ of the action is open in π.

Let $\theta: \pi \times E \rightarrow E$ be the action. For each $e \in E$, consider the composition $\pi \times\{e\} \rightarrow$ $\pi \times E \rightarrow E$. Suppose the later one is continuous. Then the pre-image of $\{e\}$, which is equal to π_{e}, is clearly an open set. Conversely, it suffices to show that for any $e \in E$ the pre-image of $\{e\}$ is an open set in $\pi \times E$. Now $\theta^{-1}(\{e\})=\{(\sigma, x) \in \pi \times E: \sigma x=e\}$. Let $\mathcal{O}(e)$ be the set of G-orbit of e. For any $m \in E$, there exists a g_{m} so that $g_{m} m=e$. We may write

$$
\theta^{-1}(\{e\})=\coprod_{m \in \mathcal{O}(e)}\left(g_{m} \pi_{m} \times\{m\}\right)
$$

Hence it is open.
From now on suppose E is finite. Note that we have $\pi^{\prime}=\bigcap_{e \in E} \pi_{e}$. Being an intersection of finitely many open sets, π^{\prime} is clearly open. Conversely, assume that π^{\prime} is open. $\pi^{\prime} \leq \pi_{e}$ for any $e \in E . \pi_{e}$ is open in π.
1.20 Let G be a group with profinite completion \hat{G}. Prove that the category finite G-sets is equivalence to the category of \hat{G}-sets.

Let \mathcal{C} be the category of finite G-sets. Let X be an object in \hat{G}-sets. This means that X is a finite set with a continuous \hat{G}-action. There exists a natural group homomorphism $G \rightarrow \hat{G}$. Hence X can be viewed as a finite G-set. And \hat{G}-morphism also can be regarded as a G-morphism in this way. So we have defined a functor F from \hat{G}-sets to \mathcal{C}. It suffices to show that F is essentially surjective and fully faithful.

Let Y be an object in \mathcal{C}, i.e., there is an action of G on Y. Now consider the stabilizer of Y, denoted by H. Then H is normal and $[G: H]<\infty$. Let $\hat{G} \rightarrow G / H$ be the natural projection. This induces an action of \hat{G} on Y. And by construction, the action is continuous. This proves F is essentially surjective.

We are going to show that F is fully faithful. Given two objects X and Y in \hat{G}, F induces a set-theoretic map

$$
\operatorname{Hom}_{\hat{G}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(F(X), F(Y))
$$

This map is injective by our construction. Given $f \in \operatorname{Hom}_{\mathcal{C}}(F(X), F(Y)) . f$ is a G equivariant map from X to Y. By construction, the map f can also be viewed as a \hat{G} equivariant map, say f^{\prime}. Then we have $F\left(f^{\prime}\right)=f$. This shows F is fully faithful.
1.21 (a) Prove that the cateogry $\hat{\mathbb{Z}}$-sets is equivalent to the category whose objects are pairs (E, σ), with E a finite set and σ a permutation of E, a morphism from (E, σ) to $\left(E^{\prime}, \sigma^{\prime}\right)$ being a map $f: E \rightarrow E^{\prime}$ satisfying $f \sigma=\sigma^{\prime} f$.
(b) Construct a profinite group π containing $\hat{\mathbb{Z}}$ as a closed normal subgroup of index 2 , such that the category π-sets is equivalent to the category whose objects are triples (E, σ, τ), with E a finite set and σ and τ permutations of E for which $\sigma^{2}=\tau^{2}=\operatorname{id}_{E}$, a morphism from (E, σ, τ) to $\left(E^{\prime}, \sigma^{\prime}, \tau^{\prime}\right)$ being a map $f: E \rightarrow E^{\prime}$ satisfying $f \sigma=\sigma^{\prime} f$ and $f \tau=\tau^{\prime} f$.
(a) By Exercise 1.20 , the category of $\hat{\mathbb{Z}}$-sets is equivalent to the category of finite \mathbb{Z}-sets. Since \mathbb{Z} is generated by 1 , it suffices to consider how 1 acts on E, which should be a one-to-one map since (-1) acts reversely, and thus bijective as E is a finite set. So, 1 corresponds to some permutation $\sigma \in S^{n}$ if $|E|=n$. And the condition for morphisms is exactly the same condition for morphisms on finite \mathbb{Z}-sets.
(b) Construct π as follows: consider the category S consisting of objects (E, σ, τ), where E is a finite set and $\sigma^{2}=\tau^{2}=1$. Also any morphism $f(E)=E^{\prime}$ should satisfy $f \sigma=\sigma^{\prime} f, f \tau=\tau^{\prime} f$. Then, S can be regarded as the category finite P-sets, where P is a noncommutative group generating by s and t with $s^{2}=t^{2}=1$. Suppose $\psi: S \rightarrow \hat{\mathbb{Z}}$-sets defined by $\psi(E, \sigma, \tau)=(E, \sigma \tau)$. We should check ψ is surjective to claim $s t$ is of infinite order. If it is the case, then by Exercise 1.20, the category finite P-sets is equivalent to π-sets, where $\pi=\hat{P} . \pi$ hence contains $\hat{\mathbb{Z}}$, which is of index 2 since $\mathbb{Z} \cong\langle s t\rangle$ is a normal subgroup of P of index 2 . And $\hat{\mathbb{Z}}$ is necessary closed followed from Exercise 1.11 (b).
To show all permutations can be the product of two order 2 permutations, simply notice that

$$
(12 \cdots m)=\left(\prod_{p<q}^{p+q=m+2}(p q)\right)\left(\prod_{p<q}^{p+q=m+1}(p q)\right)
$$

and the two factors satisfy the equation $x^{2}=1$ in the permutation group.
1.24 Let it given that under the equivalence of categories in 1.14 finite coverings and finite sets correspond to each other. Deduce from this and Exercise 1.20 that the
profinite group $\hat{\pi}(X)$ occuring in 1.15 is the profinite completion of the group $\pi(X)$ occuring in 1.14, if X is as in 1.14.

By 1.14 and finite correspondence mentioned above, given X satisfying the conditions in 1.14, category of finite coverings of X is equivalent to the category of finite $\pi(X)$ sets. And by Exercise 1.20, thus equivalent to the category of $\widehat{\pi(X)}$-sets. Since $\hat{\pi}(X)$ is determined uniquely up to isomorphism, $\widehat{\pi(X)} \cong \hat{\pi}(X)$.
1.25 Let X be the topological space $\{0,1,2,3\}$, the open sets being $\emptyset,\{0\},\{2\},\{0,2\}$, $\{0,1,2\},\{0,3,2\}, X$. Prove: $\hat{\pi}(X) \cong \hat{\mathbb{Z}}$.
1.26 (a) Let π be a profinite group such that $x^{2}=1$ for all $x \in \pi$. Prove that π is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbf{n}}$ for a uniquely determined cardinal number \mathbf{n}, which is equal to the $\mathbb{Z} / 2 \mathbb{Z}$-dimension of the group of continuous group homomorphisms $\pi \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.
(b) Let G be the additive group of a $\mathbb{Z} / 2 \mathbb{Z}$-vector space of dimension \mathbf{k}, where \mathbf{k} is an infinite cardinal. Prove: $\hat{G} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2^{k}}$ as profinite groups.
(c) Construct a profinite group that is not isomorphic to the profintie completion of any abstract group
(a) G consists only of involutions and thus G is Abelian. Given any open normal subgroup $N, G / N \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$ for some positive integer n. Let $N_{1} \cdots N_{n}$ be open normal subgroups with index 2 such that $G / N \cong G / N_{1} \times \cdots \times G / N_{n}$ and $N=\bigcap_{i=1}^{n} N_{i}$. Consider the group of all continuous group homomorphism in the form $G \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, and this group naturally has $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure. Fix a basis of the vector space, call it Σ. Then the canonical homomorphisms $\pi_{i}: G \rightarrow G / N_{i} \cong \mathbb{Z} / 2 \mathbb{Z}$ have decompositions: $\pi_{i}=\sum_{j=1}^{m_{i}} f_{i j}$ where $f_{i j} \in \Sigma$. Then $\bigcap_{i, j} \operatorname{ker} f_{i j} \subset \bigcap_{i=1}^{n} N_{i}=N$. So, finite intersections of $\operatorname{ker}\left(f_{i}\right)$ where $f_{i} \in \Sigma$ form a cofinal subset of all open normal subgroups of G. On the other-hand, we have canonical projections $p_{f}:(\mathbb{Z} / 2 \mathbb{Z})^{\Sigma} \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z}$ (f denoted as an element of Σ), and similarly the finite intersections of kernel of p_{f} also form a cofinal subset of all open normal subgroups of $(\mathbb{Z} / 2 \mathbb{Z})^{\Sigma}$. Given $f_{1} \cdots f_{n} \in \Sigma,(\mathbb{Z} / 2 \mathbb{Z})^{\Sigma} / \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$ and $\left[G: \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)\right]=2^{m}$ (where $m \leq n)$. Let us verify that $m=n$. Suppose not, let $v_{1} \cdots v_{m}$ be a basis of $G / \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)$. Define $A \in M_{m \times n}(\mathbb{Z} / 2 \mathbb{Z})$ by $A_{i, j}=f_{j}\left(v_{i}\right)$. Because $m<n$, there exists a nonzero vector $x \in \mathbb{Z} / 2 \mathbb{Z}^{n}$ such that $A \cdot x=(0)_{m \times 1}$. But $f_{1} \cdots f_{n}$ are $\mathbb{Z} / 2 \mathbb{Z}$-linearly independent, there exists $g \in G$ such that $\sum_{i=1}^{n} x_{i} f_{i}(g)=1$, where $x=\left(x_{1}, \cdots, x_{n}\right)^{t}$. Say $g=\sum_{i=1}^{m} a_{i} v_{i}$ in $G / \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)$. This then implies $\left(a_{1}, \cdots, a_{m}\right) \cdot A \cdot x=1$, contradiction. Also we have a canonical injective group homomorphism $G / \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right) \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{n}$ by $g \mapsto\left(f_{1}(g), \cdots, f_{n}(g)\right)$. But as $\mathbb{Z} / 2 \mathbb{Z}$-vector space, they have same dimension; therefore, above mapping is actually isomorphic. Such isomorphisms are compatible with restriction maps; therefore, $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{\Sigma}$.
(b) Let us estimate the dimension of Γ, the $\mathbb{Z} / 2 \mathbb{Z}$ vector space of all continuous group homomorphism $\hat{G} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, and then apply (a).

Since the image of the canonical injective group homomorphism $G \rightarrow \hat{G}$ is dense in \hat{G}, a continuous group homomorphism $\hat{G} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ is determined by a group homomorphism $G \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. Thus the case is reduced to compute the dimension of the dual space of G, which is 2^{k}. This means $\hat{G} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2^{k}}$.
(c) From (b), the cardinality of completions of such abstract groups are either finite or greater than or equal to the cardinality of \mathbb{R}. Therefore, $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Q}}$ is not completion of any abstract group.
1.27 Let X be an infinite topological space whose closed sets are exactly the finite subsets and X itself.
(a) Prove that every covering of X is trivial (see the Introduction), that X is connected, and that the group $\hat{\pi}(X)$ from 1.15 is trivial.
(b) Suppose that X is countable. Prove that X is not pathwise connected.
(c) Suppose that $\# X \geq \# \mathbb{R}$. Prove that X is locally pathwise connected and semilocally simply connected, and that $\pi(X)$ is trivial.
(a) Since obviously X is irreducible, use [1.28].
(b) Suppose not. Then given any two distinct points p, q, there exists continuous function $f:[0,1] \rightarrow X$ such that $f(0)=p, f(1)=q$. Then $\operatorname{im}(f)$ is a finite subset or a countably infinite subset of X. It suffices to consider that $\operatorname{im}(f)$ is of countably infinite. Say $\operatorname{im}(f)=\bigcup_{i=1}^{\infty} p_{i}$. Then $[0,1]=\bigcup_{i=1}^{\infty} f^{-1}\left(p_{i}\right)$, which is a countably infinite union of closed disjoint intervals, which is disconnected. Contradiction.
(c) Assume the axiom of choice is true. Recall the definition of locally path connected and semi-locally simply connected:
Locally path connected: for every point p and open set U containing p, there exist open path connected V such that $p \in V \subset U$.
Semi-locally simply connected: Every point in X has a neighborhood U with the property that every loop in U can be contracted to a single point.
Proof of locally path connected: Since cardinality of X is greater than \mathbb{R}, there exists a surjective map $F: X \rightarrow \mathbb{R}$. Let open subset U containing p, since $X \backslash U$ is a finite set, $\Sigma:=\mathbb{R} \backslash F(U)$ is a set of finitely many points. Because cardinality of U is greater than $\mathbb{R},\left.F\right|_{U}$ is not injective. We can always manually adjust $\left.F\right|_{U}$ so that $\left.F\right|_{U}: U \rightarrow \mathbb{R}$ is surjective. Now, we may assume $F: U \rightarrow \mathbb{R}$ is surjective. Let p, q be distinct points in U, and $F(p)<F(q)$. By axiom of choice, we can define a function $f:[F(p), F(q)] \rightarrow U$ by defining $f(F(p)):=p$, and $f(F(q)):=q$ and for $y \in(F(p), F(q))$, let $f(y)$ be an element of $F^{-1}(y)$. Given any closed subset of $\operatorname{im}(f)$, that is, a finite subset of $\operatorname{im}(f)$, the pre-image is a set of finitely points in $[F(p), F(q)]$, which is closed. Therefore, f is continuous. Suppose $F(p)=F(q)$. Then adjust F by: picking any $x \in \mathbb{R}$ such that $x \neq F(q)$ and redefine the value of $q, F(q):=x$. Then we can apply similar argument. Therefore, U is path connected, and actually X is a path connected space.

Proof of semi-locally simply connected: Let $f:[0,1] \rightarrow X$ be a loop, \ldots
1.28 Let X be an irreducible topological space. Prove that the $\operatorname{group} \hat{\pi}(X)$ from 1.15 is trivial.

Let $f: Y \rightarrow X$ be any covering where Y is a connected topological space. Then construct a function by sub-covering $g: Z \subset Y \rightarrow X$ by: Pick any point $p \in X$ and an open neighborhood N of p such that $\left.f\right|_{f^{-1}(N)}$ is a trivial covering. Fix a piece of $f^{-1}(N), \hat{N}$. Then for any other points of $X, z \notin N$, and any trivial neighborhood N_{z}, $N_{z} \cap N \neq \emptyset$ and $N_{z} \cap N \neq \emptyset$ is also a trivial neighborhood. Then there exists exactly one piece of $f^{-1}\left(N_{z}\right)$ whose intersection with \hat{N} is nonempty. Let $Z:=\bigcup_{z \notin N} \hat{N}_{z} \cup N$. Then f restricted to Z is a homeomorphism to X, but Y is connected. This implies $Y=Z$ and Y is a trivial covering.
1.29 Put $A=\mathbb{Z}[\sqrt{-3}], B=\mathbb{Z}[X] /\left(X^{4}+X^{2}+1\right)$ and $\beta=\left(X \bmod X^{4}+X^{2}+1\right) \in B$. View B as an A-algebra via the ring homomorphism $A \rightarrow B$ mapping $\sqrt{-3}$ to $\beta-\beta^{-1}$. Prove that B is a free separable A-algebra.

First, we check that B is a free A-module with a basis $\{1, \beta\}$. Note that the inverse of β is $-\beta\left(\beta^{2}+1\right)$. Clearly, the A-module B is generated by $1, \beta, \beta^{2}, \beta^{3}$. By a direct computation, we have $\beta^{2}=1+\sqrt{-3} \beta, \beta^{3}=\sqrt{-3}-2 \beta$ and $\beta^{4}=-2+\sqrt{-3} \beta$. Also, $1, \beta$ are linearly independent over A by comparing the degree in $\mathbb{Z}[X]$. Hence B is a free A-module of rank 2 .

Under the basis $\{1, \beta\}$, we have

$$
\left[m_{\beta}\right]=\left(\begin{array}{cc}
0 & 1 \\
1 & \sqrt{-3}
\end{array}\right),\left[m_{\beta^{2}}\right]=\left(\begin{array}{cc}
1 & \sqrt{-3} \\
\sqrt{-3} & -2
\end{array}\right) .
$$

Then

$$
\operatorname{det}\left(\begin{array}{cc}
\operatorname{Tr}(1) & \operatorname{Tr}(\beta) \\
\operatorname{Tr}(\beta) & \operatorname{Tr}\left(\beta^{2}\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & \sqrt{-3} \\
\sqrt{-3} & -1
\end{array}\right)=1 .
$$

By the exercise $1.3, B$ is a free separable A-algebra.

2 Exercises for Section 2

2.2 Let $K \subset L$ be a Galois extension of fields, and I any directed set of subfields $E \subset L$ with $K \subset E$ Galois for which $\bigcup_{E \in I} E=L$. Prove that there is an isomorphism of profinite groups $\operatorname{Gal}(L / K) \cong \lim _{E \in I} \operatorname{Gal}(E / K)$. (N.B.: the groups $\operatorname{Gal}(\mathrm{E} / \mathrm{K})$ need not be finite here, they are merely profinite.)

The natural map $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}(E / K)$ is given by $\left.\sigma \mapsto \sigma\right|_{E}$. This is well-defined since E is Galois over K. So we obtained a morphism

$$
\theta: \operatorname{Gal}(L / K) \rightarrow \varliminf_{\succeq}{ }_{E \in I} \operatorname{Gal}(E / K) .
$$

θ is injective, since if $\left.\sigma\right|_{E}=\operatorname{id}_{E}$ for all such E, then $\sigma=\operatorname{id}_{L}$. For the surjectivity, let $\left(\sigma_{E}\right)_{E \in I} \in \lim _{E \in I} \operatorname{Gal}(E / K)$. Construct an element $\epsilon \in \operatorname{Gal}(L / K)$ as follow: If $\alpha \in L$, then $\alpha \in E$ for some E since $L=\bigcup_{E \in I} E$. Then define $\epsilon(\alpha):=\sigma_{E}(\alpha)$. This is again well-defined by our assumption $\left(\sigma_{E}\right)_{E \in I} \in{\underset{\longleftarrow}{幺}}_{E \in I} \operatorname{Gal}(E / K)$. And $\epsilon \mapsto\left(\sigma_{E}\right)_{E \in I}$.
2.3 (a) Let $K \subset L$ be a Galois extension of fields, with Galois group G. View G as a subset of the set L^{L} of all functions $L \rightarrow L$. Let L be given the discrete topology and L^{L} the product topology. Prove that the topology of the profinite group G coincides with the relative topology inside L^{L}.
(b) Conversely, let L be any field and $G \subset \operatorname{Aut}(L)$ a subgroup that is compact when viewed as a subset of L^{L} (topologized as in (a)). Prove that $L^{G} \subset L$ is Galois with Galois group G.
(c) Prove that any profinite group is isomorphic to the Galois group of a suitably chosen Galois extension of fields.

For (a), if U is an open set in L^{L}, we may assume that $U=\prod_{l \in L} U_{l}$ with $U_{k}=\left\{s_{k}\right\}$ for finitely many $k \in L$ and $U_{l}=L$ for the remaining. The intersection $U \cap G$ is the set of all automorphisms σ such that $\sigma(k)=s_{k}$ for those k. Let $X \subset L$ be a finite Galois extension over K ontaining all such k. Let $\tau \in \operatorname{Gal}(X / K)$ with $\tau(k)=s_{k}$. Such τ exists provided that $U \cap G$ is non-empty.

Let I be the direct set given by finite Galois extensions with the usual inclusion maps. Define $V=\prod_{E \in I} V_{E} \subset \prod_{E \in I} \operatorname{Gal}(E / K)$ with $V_{X}=\{\tau\}$ and $V_{E}=\operatorname{Gal}(E / K)$ for $E \neq X$. V is open in $\prod_{E \in I} \operatorname{Gal}(E / K)$ and $V \cap G=U \cap G$.

So for any open set U in $L^{L}, G \cap U$ is open in G.
For the opposite direction, any open set in G is of the form $G \cap V$ with V open in $\prod_{E \in I} \operatorname{Gal}(E / K)$. We may assume $V=\prod_{E \in I} V_{E}$ with $V_{E}=\left\{\sigma_{E}\right\}$ for finitely many E and $V_{F}=\operatorname{Gal}(F / K)$ for the remaining. Since an automorphism is completely determined by its behavior on generators. Hence it is an intersection of G with some open set in L^{L}.

To prove (b), it suffices to show that L over L^{G} is algebraic. Take any $l \in L . G \cdot l$ is compact in L. Hence it is a finite set. Let $\left\{l_{1}, \cdots, l_{N}\right\}$ be the image. Then

$$
f(x):=\prod_{i=1}^{N}\left(x-l_{i}\right) \in L^{G}[x] .
$$

So $L^{G} \subset L$ is an algebraic extension.
Finally, let G be any profinite group. $G=\varliminf_{i \in I} G_{i}$ for some finite groups $G_{i} . G_{i}$ can be embedded into $S_{n_{i}}$ for some n_{i}. Let X_{i} be the set of n_{i} indeterminantes. $S_{n_{i}}$ acts on X_{i} by permutation. This induces an action $G_{i} \times X_{i} \rightarrow X_{i}$. Let $X=\coprod_{i \in I} X_{i}$ and $L=\mathbb{C}(X)$. Then G acts on $L . G$ is profinite $\Rightarrow G$ is compact, and hence by (a), the hypothesis of (b) holds. Therefore, L is a Galois extension of L^{G} with Galois group G.
2.6 Let $K \subset L$ be a Galois extension of fields, and $H^{\prime} \subset H \subset \operatorname{Gal}(L / K)$ closed subgroups with index $\left[H: H^{\prime}\right]<\infty$. Prove that $L^{H} \subset L^{H^{\prime}}$ is finite, and that $\left[L^{H^{\prime}}: L^{H}\right]=\operatorname{index}\left[H: H^{\prime}\right]$. Which part of the conclusion is still true if H, H^{\prime} are not necessarily closed?

Firstly, we prove that $\left[L^{H^{\prime}}: L^{H}\right] \leq\left[H: H^{\prime}\right]$ and hence it is finite. Let $n=\left[H: H^{\prime}\right]$. Suppose the contrary that there exist $n+1$ elements which are linearly independent over
L^{H}, say u_{1}, \cdots, u_{n+1}. Let $\left\{\tau_{i}\right\}_{i=1}^{n}$ be a complete representative of left coset of H^{\prime} in H. Let us consider the following linear equations.

$$
\begin{array}{cc}
\tau_{1}\left(u_{1}\right) x_{1}+\tau_{1}\left(u_{2}\right) x_{2}+ & \cdots+\tau_{1}\left(u_{n+1}\right) x_{n+1}=0 \\
\tau_{2}\left(u_{1}\right) x_{1}+\tau_{2}\left(u_{2}\right) x_{2}+ & \cdots+\tau_{2}\left(u_{n+1}\right) x_{n+1}=0 \\
\vdots \\
\tau_{n}\left(u_{1}\right) x_{1}+\tau_{n}\left(u_{2}\right) x_{2}+ & \cdots+\tau_{n}\left(u_{n+1}\right) x_{n+1}=0
\end{array}
$$

There exists a non-zero solution to this system. Choose one, say $x_{i}=a_{i}$, so that the number of non-zero elements in the a_{i} 's are minimum. Then I will try to construct another solution with more zeros in the a_{i} 's.

Firstly, after multiplying by a non-zero constant and rearrange the variables, we may assume that $a_{1}=1, a_{2} \neq 0, \cdots, a_{k} \neq 0$, and $a_{k+1}=\cdots a_{n+1}=0$. Also, I may assume $\tau_{1}=\operatorname{id}_{H^{\prime}}$. The first equation reads

$$
u_{1} x_{1}+\cdots+u_{n+1} x_{n+1}=0 .
$$

Since u_{i}^{\prime} 's are linearly independent over L^{H}, there exists at least one a_{i}, say a_{2}, such that $a_{2} \in L^{H^{\prime}}-L^{H}$. Choose an automorphism $\sigma \in H$ such that $\sigma\left(a_{2}\right) \neq a_{2}$. Now I consider the system equations

$$
\begin{array}{cc}
\sigma \tau_{1}\left(u_{1}\right) x_{1}+\sigma \tau_{1}\left(u_{2}\right) x_{2}+ & \cdots+\sigma \tau_{1}\left(u_{n+1}\right) x_{n+1}=0 \\
\sigma \tau_{2}\left(u_{1}\right) x_{1}+\sigma \tau_{2}\left(u_{2}\right) x_{2}+ & \cdots+\sigma \tau_{2}\left(u_{n+1}\right) x_{n+1}=0 \\
\vdots \\
\sigma \tau_{n}\left(u_{1}\right) x_{1}+\sigma \tau_{n}\left(u_{2}\right) x_{2}+ & \cdots+\sigma \tau_{n}\left(u_{n+1}\right) x_{n+1}=0
\end{array}
$$

$\sigma\left(a_{1}\right)=\sigma(1)=1, \sigma\left(a_{2}\right) \neq a_{2}, \cdots \sigma\left(a_{n+1}\right)$ is a solution to this system. But since $\sigma \tau_{i}$ are a complete representatives of left cosets of H^{\prime} in H, we have $\sigma \tau_{i}\left(u_{s}\right)=\tau_{j}\left(u_{s}\right)$ for some j, i.e., the new system is identically equal to the original one. Now $a_{1}-\sigma\left(a_{1}\right)=0$, $a_{2}-\sigma\left(a_{2}\right) \neq 0, \cdots, a_{n+1}-\sigma\left(a_{n+1}\right)$ is a non-zero solution to the system with more zeros than a_{i} 's.

This proves $\left[L^{H^{\prime}}: L^{H}\right] \leq\left[H: H^{\prime}\right]$.
Let $K \subset E \subset F \subset L$ be fields. I claim that $\left[E^{\prime}: F^{\prime}\right] \leq[F: E]$ if $[F: E]<\infty$, where E^{\prime} means the automorphism groups of L fixing E.

Use induction on $n:=[F: E]$. The case $n=1$ is obvious. Suppose $n>1$. Choose an element $u \in F-E$. Consider $E(u)$. If $[E(u): E]<[F: E]$. Then by induction, we have $\left[E^{\prime}: E(u)^{\prime}\right] \leq[E(u): E]$ and $\left[E(u)^{\prime}: F^{\prime}\right] \leq[F: E(u)]$. So the result follows.

We may assume $E(u)=F$. Let f be the minimal polynomial of u over E. We will construct an injection from the coset space E^{\prime} / F^{\prime} to the set of roots of f in L, say S.

Let τF^{\prime} be a coset. $\tau \in \operatorname{Aut}(L / E)$. Consider $\tau(u)$. This defines a map $T: E^{\prime} / F^{\prime} \rightarrow S$. It is not hard to check it is well-defined. Suppose $\tau(u)=\tau^{\prime}(u)$. Then $\tau^{-1} \tau^{\prime}(u)=u$. Hence $\tau^{-1} \tau^{\prime}$ fixed F. So T is injective.

Now by Galois theory, since the groups are closed, $\left(L^{H}\right)^{\prime}=H$ and $\left(L^{H^{\prime}}\right)^{\prime}=H^{\prime}$. So we have

$$
\left[H: H^{\prime}\right] \leq\left[L^{H^{\prime}}: L^{H}\right] \leq\left[H: H^{\prime}\right]
$$

We remark that the closeness of H and H^{\prime} are only used in the last step. Without assuming H, H^{\prime} are closed, we still can show that

$$
\left[L^{H^{\prime}}: L^{H}\right] \leq\left[H: H^{\prime}\right] .
$$

2.7 Let K, L, F be subfields of a field Ω, and suppose that $K \subset L$ is Galois and that $K \subset F$. Prove that $F \subset L \cdot F$ is Galois, and that $\operatorname{Gal}(L \cdot F / F) \cong \operatorname{Gal}(L / L \cap F)$ (as topological groups).

Define

$$
I:=\{K \subset E \subset L:[E: K] \text { is finite and } E / K \text { is Galois extension }\} .
$$

Then L / K is Galois implies $L=\bigcup_{E \in I} E$. Also we have $L \cdot F=\bigcup_{E \in I} E \cdot F$ and

$$
\operatorname{Gal}(E \cdot F / F)=\operatorname{Gal}(E / E \cap F)=\operatorname{Gal}(E \cdot(L \cap F) / L \cap F)
$$

On the other hand, $E \cdot(L \cap F)$ is a Galois extension over $L \cap F$ and $L=\bigcup_{E \in I} E \cdot(L \cap F)$. Therefore, $L / L \cap F$ is a Galois extension. Moreover,

$$
\operatorname{Gal}(L \cdot F / F)=\lim _{\overleftarrow{E \in I}} \operatorname{Gal}(E \cdot F / F)=\lim _{\overleftarrow{E \in I}} \operatorname{Gal}(E \cdot(L \cap F) / L \cap F)=\operatorname{Gal}(L / L \cap F) .
$$

2.8 Let K be a field. Prove that for every Galois extension $K \subset L$ the $\operatorname{group} \operatorname{Gal}(L / K)$ is isomorphic to a quotient of the absolute Galois group of K.

Every Galois extension of K is a subfield of K_{s} containing K and corresponds to a closed normal subgroup of $\operatorname{Gal}\left(K_{s} / K\right)$. By (Thm2.3), done.
2.9 (a) Suppose that H is a finite subgroup of the absolute Galois group of a field K. Prove that $\# H \leq 2$ and $\# H=1$ if $\operatorname{char}(K)>0$. [Hint: [15, Theorem 56].]
(b) Let K be a field with separable closure K_{s}, and $\alpha \in K_{s}, \alpha \notin K$. Let E be a subfield of K_{s}, containing K that is maximal with respect to the property of not containing α. Prove that $\operatorname{Gal}\left(K_{s} / E\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ or $\operatorname{Gal}\left(K_{s} / K\right) \cong \mathbb{Z}_{p}$ for some prime number p.
(a) Let Σ be the set of all open normal subgroups of G with finite index. Because G is compact, elements of Σ are automatically closed subsets of G. Besides, $\bigcap_{N \in \Sigma} N=e$ (where e is identity element); therefore, e is closed in G. Let $g \in H$. Then the canonical translation map $g: G \rightarrow G$ is a homeomorphism implies that $g(e)=g$ is closed in G. Therefore, as a finite union of closed subsets, H is closed. Then by Main theorem of Galois theory, K_{s} / K_{s}^{H} is Galois with $\operatorname{Gal}\left(K_{s} / K_{s}^{H}\right)=H$. So K_{s} / K_{s}^{H} is a finite extension. Quote a theorem on this situation:

Theorem 56 (Fields and Rings, by Irving Kaplansky (1969; 2nd ed. 1972))
Theorem 1. Let K be a field, not algebraically closed. If K has a finite extension L, which is algebraically closed. Then K is an ordered field and $L=K(i)$.

If $\operatorname{char} K=0$, then $K_{s}=K_{s}^{H}(i)$, so $\# H=2$. If $\operatorname{char} K>0$, then $H=\{e\}$; otherwise, K_{s}^{H} is an ordered field.
(b) There are two cases: K_{s} / E is a finite extension or not. By $2.9(\mathrm{a})$, if K_{s} / E is finite, then $\operatorname{Gal}\left(K_{s} / E\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. In the following proof, assume K_{s} / E is infinite extension. The condition that E is maximal with respect to the property not containing α implies that for any proper extension $H / E, E(\alpha) \subset H$.

Step 1: $E(\alpha) / E$ is Galois extension of degree p, for prime number p.
Suppose $E(\alpha) / E$ is not Galois. Let $E(\alpha) \subset L$ be a Galois closure of E_{α}. Then $\operatorname{Gal}(L / E(\alpha))$ is not a normal subgroup in $\operatorname{Gal}(L / K)$. So there exists a distinct subgroup with same index as $\operatorname{Gal}(L / E(\alpha))$, but this implies L has a nontrivial subfield not containing $E(\alpha)$. Contradiction.

Also, $\operatorname{Gal}(E(\alpha) / E)$ has no proper subgroups. So $\operatorname{Gal}(E(\alpha) / E)=\mathbb{Z} / p \mathbb{Z}$.
Step 2: Any finite Galois extension H / E is of degree p^{n} for some positive integer n.
Suppose not. Let $\# \operatorname{Gal}(H / E)=p^{n} m$ where $(m, p)=1$. Consider the p-Sylow subgroup Γ of $\operatorname{Gal}(H / E)$. Then $\left[H^{\Gamma}: E\right]=m$, which is impossible to contain $E(\alpha)$. Contradicition.

Step 3: For any positive integer n, there exists a unique finite Galois extension H / E such that $[H: E]=p^{n} . \ldots$
2.10 A Steinitz number or supernatural number is a formal expression $a=\prod_{p} p^{a(p)}$, where $a(p) \in\{0,1,2, \ldots, \infty\}$ for each prime number p. If $a=\prod_{p} p^{a(p)}$ is a Steinitz number, we denote $a \hat{\mathbb{Z}}$ the subgroup of $\hat{\mathbb{Z}}$ corresponding to $\prod_{p} p^{a(p)} \mathbb{Z}_{p}$ (with $p^{\infty} \mathbb{Z}_{p}=\{0\}$) under the isomorphism $\hat{\mathbb{Z}} \cong \prod_{p} \mathbb{Z}_{p}$ (Exercise 1.14).
(a) Prove that the map $a \mapsto a \hat{\mathbb{Z}}$ from the set of Steinitz number to the set of closed subgroups of $\hat{\mathbb{Z}}$ is bijective. Prove also that $a \hat{\mathbb{Z}}$ is open if and only if a is finite (i.e., $\sum_{p} a(p)<\infty$).
(b) Let \mathbb{F}_{q} be a finite field, with algebraic closure $\overline{\mathbb{F}}_{q}$. For a Steinitz number a, let $\mathbb{F}_{q^{a}}$ be the set of all $x \in \overline{\mathbb{F}}_{q}$ for which $\left[\mathbb{F}_{q}(x): \mathbb{F}_{q}\right]$ divides a (in an obvious sense). Prove that the map $a \rightarrow \mathbb{F}_{q^{a}}$ is a bijection from the set of Steinitz numbers to the set of intermediate fields of $\mathbb{F}_{q} \subset \overline{\mathbb{F}}_{q}$. [Ernst Steinitz, German mathematician, 1871-1928.]
(a) Injectivity of such map is obvious. For subjectivity: Recall (ex1.11). A closed subgroup of $\prod_{p} \mathbb{Z}_{p}$ is of the form $\prod_{p} \pi_{p}$ where π_{p} is a closed subgroup of \mathbb{Z}_{p}, and closed subgroups of \mathbb{Z}_{p} is of the form $p^{a(p)} \mathbb{Z} p$ for some $a(p) \in \mathbb{N}$. Recall that an subgroup is open if and only if it is closed with finite index. The index of $[\hat{\mathbb{Z}}: a \hat{\mathbb{Z}}]=\left[\prod_{p} \mathbb{Z}_{p}: \prod_{p} p^{a(p)} \mathbb{Z}_{p}\right]=\prod_{p} p^{a(p)}$. Therefore, $a \hat{\mathbb{Z}}$ is open if and only if a is finite.
(b) Discard the original notation.

Define ϕ : Steinitz numbers \rightarrow collection of subsets of $\overline{\mathbb{F}}_{q}$ by

$$
\phi(a):=\left\{x \in \overline{\mathbb{F}}_{q} \mid\left[\mathbb{F}_{q}(x): \mathbb{F}_{q}\right] \text { divides } a\right\}
$$

Step 1. For any Steinitz number $a, \phi(a)$ is a field containing \mathbb{F}_{q}.
Let $x \in \phi(a) \backslash\{0\}$. Then x^{-1} is in the subfield of $\mathbb{F}_{q}(x) / \mathbb{F}_{q}$. Therefore $\left[\mathbb{F}_{q}\left(x^{-1}\right): \mathbb{F}_{q}\right]$ divides a. Let $y \in \phi(a)$. Because \mathbb{F}_{q} is a finite field, there exists a unique extension of \mathbb{F}_{q} with degree n, for any $n \in \mathbb{N}$, and every finite extension is Galois whose Galois group is cyclic. Therefore

$$
\left[\mathbb{F}_{q}(x, y): \mathbb{F}_{q}\right]=\operatorname{l.c.m}\left(\left[\mathbb{F}_{q}(x): \mathbb{F}_{q}\right],\left[\mathbb{F}_{q}(y): \mathbb{F}_{q}\right]\right)
$$

which also divides a. Therefore, $\phi(a)$ is closed in addition and multiplication. So $\phi(a)$ is a field containing \mathbb{F}_{q}.
Step 2. If a is finite, set $a \in \mathbb{N}$, then $\phi(a)=\mathbb{F}_{q^{a}}$.
The reason is already stated in Step 1, it comes from the properties of a finite field.
Step 3. $\phi:$ Steinitz numbers \rightarrow collection of intermediated fields of $\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}$ is a bijective map. $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)=\hat{\mathbb{Z}}$. By $2.10(\mathrm{a})$, the closed subgroups has a $1-1$ correspondence with Steinitz number. By Main theorem of Galois theory, there is a correspondence between intermediate field and closed subgroups; therefore, every intermediate field is of the form $\overline{\mathbb{F}}_{q}^{a \hat{\mathbb{Z}}}$. In the following, b is regarded to be a finite number dividing a.

$$
\overline{\mathbb{F}}_{q}^{a \hat{\mathbb{Z}}}=\overline{\mathbb{F}}_{q}^{\bigcap_{b} b \hat{\mathbb{Z}}}=\bigcup_{b} \overline{\mathbb{F}}_{q}^{b \hat{\mathbb{Z}}}=\bigcup_{b} \mathbb{F}_{q^{b}}=\bigcup_{b} \phi(b)=\phi(a) .
$$

2.11 Let G be a profinite group. We call G procyclic if there exists $\sigma \in G$ such that the subgroup generated by σ is dense in G. Prove that the following assertions are equivalent:
(i) G is procyclic;
(ii) G is the projective limit of a projective system of finite cyclic groups;
(iii) $G \cong \hat{\mathbb{Z}} / a \hat{\mathbb{Z}}$ for some Steinitz number a (Exercise 2.10);
(iv) for any pair of open subgroups $H, H^{\prime} \subset G$ with index $[G: H]=\operatorname{index}\left[G: H^{\prime}\right]$ we have $H=H^{\prime}$.

Prove also that the Steinitz number a in (iii) is unique if exists.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$ Given a direct system I with restriction maps $f_{j i}: G_{j} \rightarrow G_{i}$ where $j \geq i$ and G_{i} are cyclic. Let $G=\lim G_{i}$. Without loss of generality, assume for every $j \geq i$, $f_{j i}: G_{j} \rightarrow G_{i}$ is surjective. Let S_{i} be the set of generators of G_{i}. Then S_{i} form a projective system because $f_{i, j}$ are surjective. Because S_{i} are finite and nonempty, their inverse limit is not empty. Now there exists an element $\sigma \in G$ given by $\sigma=\lim _{i} \sigma_{i}$ where each σ_{i} is a generator of G_{i}. Now it is obvious to see that every open subset of G has non trivial intersection with $\langle\sigma\rangle$.
(a) \Rightarrow (c) Consider the group homomorphism $\phi: \hat{\mathbb{Z}} \rightarrow G$ which sends 1 to sigma. It is obvious that ϕ is continuous. Because $\hat{\mathbb{Z}}$ is compact and G is Hausdorff, $\phi(\hat{\mathbb{Z}})$ is closed in G and containing $\langle\sigma\rangle$. Therefore, ϕ is surjective. Since $\operatorname{ker} \phi$ is closed in $\hat{\mathbb{Z}}$, $\operatorname{ker} \phi=a \hat{\mathbb{Z}}$ for some Steinitz number a. So $G \cong \hat{\mathbb{Z}} / a \hat{\mathbb{Z}}$.
(c) \Rightarrow (d) From (c), $G \cong \prod_{p} \mathbb{Z}_{p} / p^{a(p)} \mathbb{Z}_{p}$. Then (d) is obvious.
$(\mathrm{d}) \Rightarrow(\mathrm{b})$ Step 1: Every subgroup of G with finite index is a normal subgroup.
Given a subgroup N, and any $g \in G, g N g^{-1}$ is also subgroup having the same index with N. Therefore, $g N g^{-1}=N$ for every $g \in G$.
Step 2: Let N be a subgroup with finite index. Then G / N is cyclic. Let

$$
n:=\# G / N=\prod_{i=1}^{n} p_{i}^{s_{i}} .
$$

If n is prime, then G / N is cyclic. Assume n is not prime. From condition (d), every cyclic subgroup of G / N is unique. So the collection of all cyclic subgroups of G / N can be endowed a partial order by the order of cyclic subgroups.
Suppose G / N is not cyclic. Then there does not exist an element with order n. But since G / N is a finite group, every element has a finite order. ...
2.12 Let K be a field with separable closure K_{s}. Prove that the absolute Galois group of K is procyclic (see Exercise 2.11) if and only if K has, for any positive integer n, at most one extension of degree n within K_{s}; and that it is isomorphic to $\hat{\mathbb{Z}}$ if and only if K has, for any positive integer n, exactly one extension of degree n within K_{s}.

The first statement is equivalent to $(2.11(\mathrm{~d}))$. If $\operatorname{Gal}\left(K_{s} / K\right)=\hat{\mathbb{Z}}$, then $\operatorname{Gal}\left(K_{s} / K\right)=$ $\hat{\mathbb{Z}}$ is pro-cyclic (2.11(c)).

Let

$$
\Gamma=\left\{n \in \mathbb{N} \mid K \text { has a finite extension with degree } n \text { within } K_{s}\right\} .
$$

Then $\operatorname{Gal}\left(K_{s} / K\right)=\varliminf_{\hookleftarrow}{ }_{n \in \Gamma} \operatorname{Gal}\left(K_{n} / K\right)=\varliminf_{n \in \Gamma} \mathbb{Z} / n \mathbb{Z}=\hat{\mathbb{Z}}$ implies $\Gamma=\mathbb{N}$. Conversely, if K has for any positive integer n, exactly ${ }_{n} n \in \mathrm{I}$ e extension with degree n within K_{s}. Then $\operatorname{Gal}\left(K_{s} / K\right)$ satisfies $(2.11(\mathrm{~d}))$. So $\operatorname{Gal}\left(K_{s} / K\right) \cong \hat{\mathbb{Z}} / a \hat{\mathbb{Z}}$ for some Steinitz number a. Suppose $a \neq \prod_{p} p^{\infty}$, and let $a(p)<\infty$. Then K does not have a finite separable extension with degree $p^{a(p)+1}$, contradiction. So $\operatorname{Gal}\left(K_{s} / K\right) \cong \hat{\mathbb{Z}}$.
2.17 (Kummer theory.) Let K be a field with algebraic closure \bar{K}, and m a positive integer. Suppose that K contains a primitive m-th root of unity ζ_{m}, and let $E_{m} \subset$ K^{*} be the subgroup generated by ζ_{m}. Prove that there is a bijective correspondence between the collection of subfields $L \subset \bar{K}$ for which

$$
L / K \text { is Galois, } \operatorname{Gal}(L / K) \text { is abelian, } \forall \sigma \in \operatorname{Gal}(L / K): \sigma^{m}=\operatorname{id}_{L}
$$

and the collection of subgroups $W \subset K^{*}$ for which $K^{* m} \subset W$; this correspondence maps L to $L^{* m} \cap K^{*}$ and W to $K\left(W^{1 / m}\right)$. Prove also that if L corresponds to W, there is an isomorphism of topological groups $\operatorname{Gal}(L / K) \xrightarrow{\sim} \operatorname{Hom}\left(W / K^{* m}, E_{m}\right)$ mapping σ to $\left(\alpha K^{* m} \mapsto \sigma\left(\alpha^{1 / m}\right) / \alpha^{1 / m}\right)$; here $\operatorname{Hom}\left(W / K^{* m}, E_{m}\right)$ has the relative topology in $\left(E_{m}\right)^{W / K^{* m}}$, where each E_{m} is discrete.

Let W be a subgroup of K^{*} containing $K^{* m}$ and let $L=K\left(W^{1 / m}\right)$. Note that L / K is Galois because L is the splitting field of separable polynomials $X^{m}-\alpha, \alpha \in W$ (here we use assumptions that m primes to $\operatorname{char}(K)$ and K contains $\left.\zeta_{m}\right)$.

First, we shall construct a bijection between $\operatorname{Hom}\left(W / K^{* m}, E_{m}\right)$ and the Galois group $G:=\operatorname{Gal}(L / K)$. Define a pairing

$$
G \times W \rightarrow E_{m}
$$

by mapping (σ, α) to $\sigma\left(\alpha^{1 / m}\right) / \alpha^{1 / m}$, denoted it by $\langle\sigma, \alpha\rangle$. Clearly, $\langle\sigma, \alpha\rangle$ is independent of the choice of an m-th root $\alpha^{1 / m}$ of α, and the map is bilinear i.e.

$$
\sigma\left((\alpha \beta)^{1 / m}\right) /(\alpha \beta)^{1 / m}=\left(\sigma\left(\alpha^{1 / m}\right) / \alpha^{1 / m}\right)\left(\sigma\left(\beta^{1 / m}\right) / \beta^{1 / m}\right)
$$

Suppose that $\langle\sigma, \alpha\rangle=1$ for all $\alpha \in W$. Then σ induces the identity on $W^{1 / m}$ and thus on L. Hence the kernel on the left is 1 . Let $\alpha \in W$ and suppose that $\langle\sigma, \alpha\rangle=1$ for all $\sigma \in G$. If $\alpha^{1 / m}$ is not in K, there is an automorphism of the subfield $K\left(\alpha^{1 / m}\right)$ over K which is not identity. Extend this automorphism to L, and call it σ. Then clearly $\langle\sigma, \alpha\rangle \neq 1$. Hence the kernel on the right is $K^{* m}$. Therefore the bilinear paring induces the bijection

$$
G \xrightarrow{\sim} \operatorname{Hom}\left(W / K^{* m}, E_{m}\right)
$$

which maps σ to $\left(\alpha K^{* m} \mapsto \sigma\left(\alpha^{1 / m}\right) / \alpha^{1 / m}\right)$. Note that the extension L / K is finite if and only if $W / K^{* m}$ is finite and in particular we have the equality $[L: K]=\left[W: K^{* m}\right]$.

We shall prove that the correspondence between subfields $L \subset \bar{K}$ and subgroups $W \subset K^{*}$ is injective. Let W_{1}, W_{2} be subgroups of K^{*} containing $K^{* m}$. If $W_{1} \subseteq W_{2}$, then $K\left(W_{1}^{1 / m}\right) \subseteq K\left(W_{2}^{1 / m}\right)$. Conversely, if $K\left(W_{1}^{1 / m}\right) \subseteq K\left(W_{2}^{1 / m}\right)$ we wish to prove $W_{1} \subseteq W_{2}$. For each $\alpha \in W_{1}$, we have

$$
\alpha^{1 / m} \in K\left(\alpha^{1 / m}\right) \subseteq K\left(W_{2}^{1 / m}\right) .
$$

Then $\alpha^{1 / m}$ is contained in a finitely generated subextension of $K\left(W_{2}^{1 / m}\right)$ and thus we may assume that $W_{2} / K^{* m}$ is finite. Let W_{3} be the subgroup of K^{*} generated by W_{2} and α. Then $K\left(W_{2}^{1 / m}\right)=K\left(W_{3}^{1 / m}\right)$ and from what we saw above, we get the equality $\left[W_{2}: K^{* m}\right]=\left[W_{3}: K^{* m}\right]$ and thus $W_{2}=W_{3}$. This proves that $W_{1} \subseteq W_{2}$.

In order to prove the surjectivity, let L / K be an abelian (Galois) extension of exponent m. Any finite subextension is a composite of cyclic extensions of exponent m because any finite abelian group is a product of cyclic groups. Notice that m is a multiple of the degree of a finite cyclic extension. Since m is prime to $\operatorname{char}(K)$ and $\zeta_{m} \in K$, by a theorem of finite cyclic extension fields (cf. Hilbert 90), any finite cyclic extension of exponent dividing m equals $K\left(\alpha^{1 / m}\right)$ for some $\alpha \in K^{*}$. Hence L can be obtained by adjoining a collection of m-th roots $\left\{\alpha_{\lambda}^{1 / m}\right\}_{\lambda \in \Lambda}$ with $\alpha_{\lambda} \in K^{*}$. Let W be the subgroup of K^{*} generated by $K^{* m}$ and $\left\{\alpha_{\lambda}\right\}_{\lambda \in \Lambda}$. Hence $K\left(W^{1 / m}\right)=K\left(\left\{\alpha_{\lambda}^{1 / m}\right\}_{\lambda \in \Lambda}\right)=L$.

Finally, since each continuous bijection from a compact space to a Hausdorff space is a homeomorphism, the continuous bijection $G \xrightarrow{\sim} \operatorname{Hom}\left(W / K^{* m}, E_{m}\right)$ is an isomorphism of topological groups. We remark that this also can be proved by the following isomorphisms
of profinite groups:

$$
\begin{aligned}
G & \simeq \lim _{E \in I} \operatorname{Gal}(E / K) \\
& \simeq \lim _{W^{\prime} \in J} \operatorname{Hom}\left(W^{\prime} / K^{* m}, E_{m}\right) \\
& \simeq \operatorname{Hom}\left(\lim _{W^{\prime} \in J} W^{\prime} / K^{* m}, E_{m}\right) \simeq \operatorname{Hom}\left(W / K^{* m}, E_{m}\right)
\end{aligned}
$$

where I is the set of subfields E of L for which E / K is finite Galois and J is the set of subgroups W^{\prime} of W for which $K^{* m} \subseteq W^{\prime}$ and $W^{\prime} / K^{* m}$ is finite.
2.18 (Artin-Schreier theory.) Let K be a field with algebraic closure \bar{K}, let $p=$ $\operatorname{char}(K)>0$. Prove that there is a bijective correspondence between the collection of subfields $L \subseteq \bar{K}$ for which

$$
K \subseteq L \text { is Galois, } \forall \sigma \in \operatorname{Gal}(L / K): \sigma^{p}=\operatorname{id}_{L}
$$

and the collection of additive subgroups $W \subseteq K$ for which $\wp[K] \subseteq W$, where $\wp: \bar{K} \rightarrow \bar{K}$ is defined by $\wp(x)=x^{p}-x$; this correspondence maps L to $\wp[L] \cap K$ and W to $K\left(\wp^{-1}[W]\right)$. Prove also that if L corresponds to W, there is an isomorphism of topological groups $\operatorname{Gal}(L / K) \xrightarrow{\sim} \operatorname{Hom}\left(W / \wp[K], \mathbb{F}_{p}\right)$ mapping σ to $(\alpha+\wp[K] \mapsto$ $\sigma(\beta)-\beta$, where $\wp(\beta)=\alpha)$.

Let W be a subgroup of K containing $\wp[K]$ and let $L=K\left(\wp^{-1}[W]\right)$. Note that L / K is Galois because L is the splitting field of separable polynomials $X^{p}-X-\alpha, \alpha \in W$.

First, we shall construct a bijection between $\operatorname{Hom}\left(W / \wp[K], \mathbb{F}_{p}\right)$ and the Galois group $G:=\operatorname{Gal}(L / K)$. Define a pairing

$$
G \times W \rightarrow \mathbb{F}_{p}
$$

by mapping (σ, α) to $\sigma(\beta)-\beta$ where $\wp(\beta)=\alpha$, denoted it by $\langle\sigma, \alpha\rangle$. Clearly, $\langle\sigma, \alpha\rangle$ is independent of the choice of a β which satisfies $\wp(\beta)=\alpha$, and the map is bilinear since $\operatorname{char}(K)=p$.

Suppose that $\langle\sigma, \alpha\rangle=0$ for all $\alpha \in W$. Then σ induces the identity on $\wp^{-1}(W)$ and thus on L. Hence the kernel on the left is 1 . Let $\alpha \in W$ and suppose that $\langle\sigma, \alpha\rangle=0$ for all $\sigma \in G$. If $\wp^{-1} \alpha$ is not contained in K, there is an automorphism of the subfield $K\left(\wp^{-1} \alpha\right)$ over K which is not identity. Extend this automorphism to L, and call it σ. Then clearly $\langle\sigma, \alpha\rangle \neq 0$. Hence the kernel on the right is $\wp[K]$. Therefore the bilinear paring induces the bijection

$$
G \xrightarrow{\sim} \operatorname{Hom}\left(W / \wp[K], \mathbb{F}_{p}\right)
$$

which maps σ to $(\alpha+\wp[K] \mapsto \sigma(\beta)-\beta)$, where $\wp(\beta)=\alpha$. Note that the extension L / K is finite if and only if $W / \wp[K]$ is finite and in particular we have the equality $[L: K]=[W: \wp[K]]$.

We shall prove that the correspondence between such subfields $L \subset \bar{K}$ and subgroups $\wp[K] \subseteq W \subseteq K$ is injective. Let W_{1}, W_{2} be subgroups of K containing $\wp[K]$. If $W_{1} \subseteq W_{2}$,
then $K\left(\wp^{-1}\left[W_{1}\right]\right) \subseteq K\left(\wp^{-1}\left[W_{2}\right]\right)$. Conversely, if $K\left(\wp^{-1}\left[W_{1}\right]\right) \subseteq K\left(\wp^{-1}\left[W_{2}\right]\right)$ we wish to prove $W_{1} \subseteq W_{2}$. For each $\alpha \in W_{1}$, we have

$$
\wp^{-1} \alpha \subseteq K\left(\wp^{-1} \alpha\right) \subseteq K\left(\wp^{-1}\left[W_{2}\right]\right) .
$$

Then $\wp^{-1} \alpha$ is contained in a finitely generated subextension of $K\left(\wp^{-1}\left[W_{2}\right]\right)$ and thus we may assume that $W_{2} / \wp_{\delta}[K]$ is finite. Let W_{3} be the subgroup of K generated by W_{2} and $\wp^{-1} \alpha$. Then $K\left(\wp^{-1}\left[W_{2}\right]\right)=K\left(\wp^{-1}\left[W_{3}\right]\right)$ and from what we saw above, we get the equality $\left[W_{2}: \wp[K]\right]=\left[W_{3}: \wp[K]\right]$ and thus $W_{2}=W_{3}$. This proves that $W_{1} \subseteq W_{2}$.

In order to prove the surjectivity, let L / K be an abelian (Galois) extension of exponent p. Any finite subextension is a composite of cyclic extensions of exponent p because any finite abelian group is a product of cyclic groups. Notice that p is the degree of a finite cyclic extensions of exponent p. Since $\operatorname{char}(K)=p$, by a theorem of finite cyclic extension fields of degree p (cf. additive Hilbert 90), any finite cyclic extension of exponent p equals $K\left(\wp^{-1} \alpha\right)$ for some $\alpha \in K$. Hence L can be obtained by adjoining a collection of " \wp-th roots" $\left\{\wp^{-1} \alpha_{\lambda}\right\}_{\lambda \in \Lambda}$ with $\alpha_{\lambda} \in K$. Let W be the subgroup of K generated by $\wp[K]$ and $\left\{\alpha_{\lambda}\right\}_{\lambda \in \Lambda}$. Hence $K\left(\wp^{-1} W\right)=K\left(\cup_{\lambda \in \Lambda} \wp^{-1} \alpha_{\lambda}\right)=L$.

Finally, since each continuous bijection from a compact space to a Hausdorff space is a homeomorphism, the continuous bijection

$$
G \xrightarrow{\sim} \operatorname{Hom}\left(W / \wp[K], \mathbb{F}_{p}\right)
$$

is an isomorphism of topological groups. We remark that this also can be proved by the following isomorphisms of profinite groups:

$$
\begin{aligned}
G & \simeq \lim _{\leftarrow \in I} \operatorname{Gal}(E / K) \\
& \simeq \lim _{\omega^{\prime} \in J} \operatorname{Hom}\left(W^{\prime} / \wp[K], \mathbb{F}_{p}\right) \\
& \simeq \operatorname{Hom}\left(\lim _{W^{\prime} \in J} W^{\prime} / \wp[K], \mathbb{F}_{p}\right) \simeq \operatorname{Hom}\left(W / \wp[K], \mathbb{F}_{p}\right),
\end{aligned}
$$

where I is the set of subfields E of L for which E / K is finite Galois and J is the set of subgroups W^{\prime} of W for which $\wp[K] \subseteq W^{\prime}$ and $W^{\prime} / \wp[K]$ is finite.
2.23 (a) Let A be a local ring and $x \in A$ such that $x^{2}=x$. Prove that $x=1$ or $x=0$.
(b) Prove that any ring isomorphism $\prod_{i=1}^{s} A_{i} \xrightarrow{\sim} \prod_{i=1}^{t} B_{j}$, where the A_{i} and B_{j} are local rings and $s, t<\infty$, is induced by a bijection $\sigma:\{1,2, \cdots, s\} \xrightarrow{\sim}$ $\{1,2, \cdots, t\}$ and isomorphisms $A_{i} \xrightarrow{\sim} B_{\sigma(i)}, 1 \leq i \leq s$.

For (a), $x(1-x)=0$. In a local ring, at least one of x and $1-x$ is a unit. Indeed, if $x \in \mathfrak{m}$ (resp. $1-x \in \mathfrak{m}$), the unique maximal ideal, then $1-x \notin \mathfrak{m}$ (resp. $x \notin \mathfrak{m}$). So $1-x$ (resp. x) is a unit. $\Rightarrow 1-x=0$ or $x=0$.

To prove (b), since A_{i}, B_{j} 's are local, the number of maximal ideals of $A:=\prod_{i=1}^{s} A_{i}$ (resp. $B:=\prod_{j=1}^{t} B_{j}$) is exactly s (resp. t). $A \cong B$ implies $s=t$. Further, A_{i} is an ideal in A. So its image in B under the isomorphism $\phi: A \cong B$ is also an ideal of B. Hence it is isomorphic to a direct product of ideals in $B_{j}, 1 \leq j \leq t$. Write $A_{i} \cong J_{1} \times \cdots \times J_{t}$ for $J_{k} \triangleleft B_{k}$. Let $\phi_{i}: A_{i} \rightarrow A \rightarrow B$. $\phi_{i}(1)$ is a unit in B. It is of the form $\left(u_{1}, \cdots, u_{t}\right)$ with u_{i} 's being units in B_{i}. So either $J_{k}=B_{k}$ or $J_{k}=0$. It is impossible that there are more than one $J_{k} \neq 0$ since A_{i} contains no idempotent other than 0 and 1 . Hence $A_{i} \cong B_{j}$ for some j. Induction on $s=t$ proves the result.

3 Exercises for Section 3

3.1 (Left limits and right limits [12].) A directed graph D consists of a set $V=V_{D}$ of vertices, a set $E=E_{D}$ of edges, a source map $s=s_{D}: E \rightarrow V$ and a target map $t=t_{D}: E \rightarrow V$; each $e \in E$ is to be thought of as an arrow from $s(e)$ to $t(e)$. Let D be a directed graph and \mathbf{C} a category. A D-diagram in \mathbf{C} is a map that assigns to each $v \in V$ an object X_{v} of \mathbf{C} and to each $e \in E$ a morphism f_{e} from $X_{s(e)}$ to $X_{t(e)}$ in C. A morphism from a D-diagram $\left(\left(X_{v}\right)_{v \in V},\left(f_{e}\right)_{e \in E}\right)$ to a D-diagram $\left(\left(Y_{v}\right)_{v \in V},\left(g_{e}\right)_{e \in E}\right)$ is a collection of morphisms $\left(h_{v}: X_{v} \rightarrow Y_{v}\right)_{v \in V}$ in \mathbf{C} such that $h_{t(e)} f_{e}=g_{e} h_{s(e)}$ for all $e \in E$.
(a) Show that the D-diagrams in \mathbf{C} form a category. We denote this category by \mathbf{C}^{D}.
(b) Show that there exists a functor $\Gamma: \mathbf{C} \rightarrow \mathbf{C}^{D}$ mapping an object X to the constant D-diagram with $X_{v}=X$ for all $v \in V$ and $f_{e}=\operatorname{id}_{X}$ for all $e \in E$, and mapping a morphism $h: X \rightarrow Y$ to the morphism $\left(h_{v}\right)_{v \in V}$ with all $h_{v}=h$.
(c) A left limit of a D-diagram A in \mathbf{C} is an object $\lim _{\rightleftarrows} A$ of \mathbf{C} such that

$$
\operatorname{Hom}_{\mathbf{C}}\left(-, \lim _{\leftrightarrows} A\right) \cong \operatorname{Hom}_{\mathbf{C}^{D}}(\Gamma(-), A)
$$

as functors on C. Prove that $\lim _{\mathrm{C}} A$ is unique up to isomorphism if it exists, and that the notion of a left limit generalizes that of a projective limit (see 1.7 and Exercise 1.8).
(d) Show that \mathbf{C} admits left limits of all D-diagrams in \mathbf{C} if and only if the functor $\Gamma: \mathbf{C} \rightarrow \mathbf{C}^{D}$ has a right adjoint $\varliminf_{\rightleftarrows}: C^{D} \rightarrow C$, i.e.,

$$
\operatorname{Hom}_{\mathbf{C}}\left(-, \lim _{幺}(-)\right) \cong \operatorname{Hom}_{\mathbf{C}^{D}}(\Gamma(-),-) .
$$

If this right adjoint exists, we say that \mathbf{C} admits left limits over D.
(e) A right limit of a D-diagram A in \mathbf{C} is an object $\underset{\longrightarrow}{\lim } A$ of \mathbf{C} such that

$$
\operatorname{Hom}_{\mathbf{C}}(\underset{\longrightarrow}{\lim } A,-) \cong \operatorname{Hom}_{\mathbf{C}^{D}}(A, \Gamma(-))
$$

Formulate and prove the analogues of the assertions in (c) and (d). If Γ has a left adjoint $\underset{\longrightarrow}{\lim }: \mathbf{C}^{D} \rightarrow \mathbf{C}$ we say that C admits right limits over D.
(a) Let D-diagrams be class of objects, and class of morphisms be defined in the statement. We have to check three conditions:
(i) Composition of morphisms: Let a, b, c be objects and $f \in \operatorname{Hom}(a, b) g \in$ $\operatorname{Hom}(b, c)$, the canonical composition $g \circ f \in \operatorname{Hom}(a, c)$.
(ii) identity morphism $\operatorname{id}_{X}: X \rightarrow X$. Canonically, a collection of morphisms $\left(\mathrm{id}_{v}: X_{v} \rightarrow X_{v}\right)$. Associativity is obvious.
(b) This is a covariant functor.
(c) Let L_{1}, L_{2} be two left limits for $A \in C^{D}$ and $f_{i}: \Gamma\left(L_{i}\right) \rightarrow A$ be the canonical morphisms, $i=1,2$. ..
Let (I, \leq) be a directed poset and G_{i} be objects in the set category and restriction maps $f_{i, j}: G_{j} \rightarrow G_{i}$ with $j \geq i$ satisfying
(1) $f_{i i}=\operatorname{id}_{G_{i}}$
(2) $f_{i k}=f_{i j} \circ f_{j k}$ for all $k \geq j \geq i$.

Then (I, \leq) can be thought of as a directed graph D and the projective system as a D-diagram. Then the universal property of $\varliminf_{幺} \lim _{i \in I} G_{i}$ is the definition of the left limit of the D-diagram.
(d) This follows directly from the definition of left limits.
(e) Prove that $\underset{\longrightarrow}{\lim } A$ is unique up to isomorphism if exists, and that the notion of a right limit generalizes that of a injective limit.
Let R_{1}, R_{2} be two right limits for $A \in C^{D}$, and $g_{i}: A \rightarrow \Gamma\left(R_{i}\right)$ be the canonical morphisms, $i=1,2$. \ldots
3.2 (Left limits in axiom G1.) Let \mathbf{C} be a category.
(a) Prove that \mathbf{C} admits left limits over the empty directed graph (with $V=E=$ $\emptyset)$ if and only if \mathbf{C} has a terminal object.
(b) Prove that \mathbf{C} admits left limits over the directed graph $\cdot \longrightarrow \cdot \leftarrow$. if and only if the fibres product of any two objects over a third one exists in \mathbf{C}.
(a) Suppose C^{D} has a left limit over empty graph A. For every $K \in \mathrm{Ob}(C)$, The set $\operatorname{Hom}_{C^{D}}(\Gamma(K), A)=\{\emptyset\}$ has a unique element. Then $\operatorname{Hom}_{C}(K, \lim A)$ also has an unique element, which implies $\lim A$ is the terminal object of C. Conversely, let T be the terminal object of C. Both $\operatorname{Hom}_{C D}(\Gamma(K), A)$ and $\operatorname{Hom}_{C}(K, T)$ has unique element for every $K \in \mathrm{Ob}(C)$.
Therefore, $\operatorname{Hom}_{C}(K, T) \cong \operatorname{Hom}_{C^{D}}(\Gamma(K), A)$, so T is the left limit over empty graph.
(b) The universal property of the product of any two objects over a third one coincides with that of the left limit of \qquad . \leftarrow.
3.3 (Equalizers and finite left limits.) Let \mathbf{C} be a category. An equalizer of two morphisms $f, g: X \rightarrow Y$ in \mathbf{C} is a left limit of the D-diagram $f, g: X \rightrightarrows Y$ with $D=\bullet \bullet$. We say that \mathbf{C} has equalizers if it admits left limits over $D=\bullet \bullet$. We say that \mathbf{C} has finite products if it admits left limits over any D with V finite and $E=\emptyset$. We say that \mathbf{C} has finite left limits if it admits left limits over any finite D (i.e., with both V and E finite).
(a) Suppose \mathbf{C} satisfies G1 (see 3.1), and let $f, g: X \rightarrow Y$ be morphisms in C. Let $X \times_{Y} X$ be formed with respect to f and g. Prove that there exists a natural morphism $X \times_{Y} X \rightarrow X \times X$ and a diagonal morphism $X \rightarrow X \times X$ such that $X \times_{X \times X}\left(X \times_{Y} X\right)$ is an equalizer of f, g.
(b) Prove that \mathbf{C} satisfies G1 if and only if it has equalizers and finite products, and if and only if it has finite left limits.
3.4 (Right limits in axiom G2.) Let \mathbf{C} be a category.
(a) Prove that \mathbf{C} admits right limits over the empty directed graph if and only if \mathbf{C} has an initial object.
(b) Prove that the following three assertions are equivalent.
(i) finite sums exists in \mathbf{C};
(ii) any two objects X, Y of \mathbf{C} have a sum $X \amalg Y$ in \mathbf{C}, and \mathbf{C} has an initial object;
(iii) \mathbf{C} admits right limits over any directed graph D with V finite and E empty.
(c) Show how the quotient X / G of an object X by a finite subgroup $G \subset \operatorname{Aut}(X)$ can be interpreted as a right objects.
(a) Similar to (3.2(a)).
(b)
(i) \Rightarrow (ii) Uses (a).
(ii) \Rightarrow (iii) Do this by induction. Assume C has right limits over any directed graph D with $\# V(D)=n$ and $E(D)=\emptyset$. Let $X_{1} \cdots X_{n+1}$ be objects of C. Let B be the right limits over X_{1}, \cdots, X_{n}. Let us verify that $A:=B \sqcup X_{n+1}$ with morphisms $v_{i}: X_{i} \rightarrow A$ is the right limit of X_{1}, \cdots, X_{n+1}.
Given an object K with morphisms $k_{i}: X_{i} \rightarrow K, i=1, \ldots, n . k_{i}$ induce a morphism $b_{1}: B \rightarrow K$, which further induces $b_{2}: A \rightarrow K$ such that $b_{2} \circ v_{i}=k_{i}$ for any i. So A with morphisms v_{i} implies that $\operatorname{Hom}_{C}(A, \cdot) \cong \operatorname{Hom}_{C^{D}}(D, \Gamma(\cdot))$. So A is the right limit over X_{1}, \cdots, X_{n+1}.
(iii) \Rightarrow (i) Definition of finite sums.
(c) Let G be a finite subgroups of $\operatorname{Aut}(X)$, and $G=\left\{\operatorname{id}_{X}, \sigma_{1} \cdots \sigma_{n}\right\}$. Let A be the right limit of the graph $X \quad \cdots \quad X$ and let $p: X \rightarrow A$ be the canonical

morphism such that $p=p \circ \sigma_{i}$, and let Y with morphism $f: X \rightarrow Y$ satisfying $f=f \circ \sigma_{i}$ where $i=1 \cdots n$.

Then f induces a morphism $g: X / G \rightarrow Y$ such that $f=g \circ p$. So A satisfies the definition of the quotient X / G.
3.5 Let $f: X \rightarrow Y$ be a morphism in a category C. Prove that f is an epimorphism if and only if Y, together with $\operatorname{id}_{Y}: Y \rightarrow Y$ and $f: X \rightarrow Y$, is a right limit of the diagram $Y \longleftarrow X \longrightarrow Y$ in which both arrows equal f.

Assume Y, together with id_{Y} and $f: X \rightarrow Y$ is the right limit of $Y<{ }^{f} X \xrightarrow{f} Y$. Then given an object Z with morphisms $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ such that $g \circ f=h \circ f$. Then it induces a morphism $p: Y \rightarrow Z$ such that $g=p \circ \mathrm{id}_{Y}=h$.

Therefore, f is epimorphism. Now reverse the argument and assume f is epimorphism. Then it can be easily seen that Y, together with id_{Y} and $f: X \rightarrow Y$ is the right limit of $Y \stackrel{f}{\leftarrow} X \xrightarrow{f} Y$.
3.6 Let \mathbf{C} be a category satisfying G1, and F a covariant functor from \mathbf{C} to the category of sets
(a) Prove that F satisfies G4 if and only if it commutes with equalizers and with finite products, and if and only if it commutes with arbitrary finite left limits.
(b) Suppose that F satisfies G4 and G6, and let $f, g: X \rightarrow Y$ be morphisms in C with $F(f)=F(g)$. Prove that $f=g$.
(a) Restatement of (ex3.3(b)).
(b) Let A with morphism $u: A \rightarrow X$ be the equalizer over $X \xrightarrow[g]{\xrightarrow{f}} Y$. Since $F(f)=$ $F(g)$ and F commutes with finite left limits, $F(A) \simeq F(u) F(X)$. So u is an isomorphism. So u is epimorphism. Then $f \circ u=g \circ u$ implies $f=g$.
3.7 Let \mathbf{C} be a category and F a covariant functor from \mathbf{C} to the category of sets. Suppose that F commutes with finite right limits. Prove that F satisfies G4. [Hint: Exercises 3.4 and 3.5.]

This is just the restatement of (ex3.4, ex3.5)
3.18 (Injective limits.) An injective system of sets consists of a directed partially ordered set I, a collection of sets $\left(S_{i}\right)_{i \in I}$ and a collection of maps $\left(f_{i j}: S_{i} \rightarrow\right.$ $\left.S_{j}\right)_{i . j \in I, i \leq j}$ satisfying the conditions

$$
f_{i i}=\left(\text { identity on } S_{i}\right) \quad \text { for each } I \in I
$$

$$
f_{i k}=f_{j k} \circ f_{i j} \quad \text { for all } i, j, k \in I \text { with } i \leq j \leq k .
$$

Call $x \in S_{i}$ equivalent to $y \in S_{j}$ if there exists $k \in I$ with $k \geq i, k \geq j$ and $f_{i k}(x)=f_{j k}(y)$ in S_{k}
(a) Prove that this is an equivalence relation on disjoint union of the sets S_{i}. The set of equivalence classes is called the injective limit of the system, notation: $\xrightarrow{\lim } S_{i}$ or $\underline{l i m}_{i \in I} S_{i}$.
(b) Prove that injective limit can be expressed as a right limit (Exercise 3.1).
(c) Suppose $I \neq \emptyset$, that all S_{i} are groups and that all $f_{i j}$ are group homomorphisms. Show that $\underset{\longrightarrow}{\lim } S_{i}$ has a natural group structure.
(d) Let I be the set of positive integers, ordered by divisibility. For $n, m \in I, n$ dividing m, let $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ be the group homomorphism by mapping (1 $\bmod n)$ to $(m / n \bmod m)$. Prove that $\underset{\longrightarrow}{\lim } \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Q} / \mathbb{Z}$.
(a) $f_{i i}=$ id is clear, so $x \sim x . x \sim y$ implies $y \sim x$ is trivial. For $x \sim y$ and $y \sim z$, we have $f_{i k}(x)=f_{j k}(y)$ and $f_{j l}(y)=f_{h l}(z)$ for some $k, l \in I$. Choose $t \geq k, l$. Then

$$
f_{i t}(x)=f_{k t} f_{i k}(x)=f_{k t} f_{j k}(y)=f_{j t}(y)=f_{l t} f_{j l}(y)=f_{l t} f_{h l}(z)=f_{h t}(z) .
$$

So $x \sim z$.
(b) We have a commutative

for all i, j. Denote $S=\underset{\longrightarrow}{\lim } S_{i}$. Then S satisfies the universal property: Let T be an object such that

for all i, j. Then there exist an unique $u: S \rightarrow T$ such that $u \circ \phi_{i}=\psi_{i}$ for all i, i.e., if $\left[x \in S_{i}\right] \in S$, then $u([x]):=\psi_{i}\left(x_{i}\right)$. Conversely, given an $u: S \rightarrow T$, let $u \circ \phi_{i}=$ ψ_{i}, we recover the morphisms above. So we have a bijection $\operatorname{Hom}_{(S E T)}(S, T)=$ $\operatorname{Hom}_{(S E T)^{D}}\left(\left(S_{i}, I, f_{i j}\right), \Gamma(T)\right)$. This map is functorial, so $\underset{\longrightarrow}{\lim } S_{i}$ is a right limit.
(c) Define an operation " + " on $S=\underset{\longrightarrow}{\lim } S_{i}$: Let $[x],[y] \in S$, so $x \in S_{i}, y \in S_{j}$ for some i, j. Pick $k \geq i, j$. Then we define $[x]+[y] \equiv\left[f_{i k}(x)+f_{j k}(y)\right] \in S$. This is well defined. Since if $[x]=\left[x^{\prime}\right]$, i.e., $x^{\prime} \in S_{i^{\prime}}$. So $\exists i^{\prime \prime} \geq i, i^{\prime}$ such that $f_{i i^{\prime \prime}}(x)=f_{i^{\prime} i^{\prime \prime}}\left(x^{\prime}\right)$. We have two kinds result of $[x]+[y]$:

$$
\left[f_{i k}(x)+f_{j k}(y)\right],\left[f_{i^{\prime} k^{\prime}}\left(x^{\prime}\right)+f_{j k^{\prime}}(y)\right],
$$

for $k \geq i, j$ and $k^{\prime} \geq i^{\prime}, j$. Choose $l \geq k, k^{\prime}$. Then

$$
\begin{aligned}
{[x]+[y]=\left[f_{i k}(x)+f_{j k}(y)\right] } & =\left[f_{k l} f_{i k}(x)+f_{k l} f_{j k}(y)\right] \\
& =\left[f_{i l}(x)+f_{j l}(y)\right] \\
& =\left[f_{i l}(x)\right]+\left[f_{f_{j l}(y)}\right] \\
& =\left[f_{i^{\prime \prime}} j_{i i^{\prime \prime}}(x)\right]+\left[f_{k^{\prime} l} f_{j k^{\prime}}(y)\right] \\
& =\left[f_{i^{\prime \prime} l} f_{i^{\prime} i^{\prime \prime}}\left(x^{\prime}\right)\right]+\left[f_{k^{\prime} l} f_{j k^{\prime}}(y)\right] \\
& =\left[f_{i^{\prime} l}\left(x^{\prime}\right)\right]+\left[f_{j l}(y)\right] \\
& =\left[x^{\prime}\right]+[y]
\end{aligned}
$$

so this is independent of choice of x, similar argument holds to y. The identity element is $\left[e_{S_{i}}\right]$, and the inverse element of $[x]$ is $[-x]$.
(d) We have a diagram

where $\psi_{n}(1):=\frac{1}{n}=\frac{1}{m} \frac{m}{n}=\psi_{m}\left(\frac{m}{n}\right)$, so the diagram commutes. This induces an unique map $\lim \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ by $[a \in \mathbb{Z} / m \mathbb{Z}] \mapsto[a / m]$. The map is 1-1 since $[a / m]=0$ in $\overrightarrow{\mathbb{Q}} / \mathbb{Z}$ implies $a \equiv 0(\bmod \mathrm{~m})$. The map is onto since for all $\frac{n}{m}$ is mapped from $n \in \mathbb{Z} / m \mathbb{Z}$.

4 Exercises for Section 4

4.6 Let K be a field and G a finite abelian group of order not divisible by char (K). Prove that $K[G]$ is isomorphic to the product of a finite number of fields, and deduce that every $K[G]$-module is projective.

Use $\operatorname{Thm}(2.6)$. There is a ring isomorphism $K[G] \cong \prod_{i=1}^{m} B_{i}$. Here B_{i} 's are K algebra that are local with nilpotent maximal ideals. It suffices to show that $K[G]$ is reduced. Then by theorem (2.7), B_{i} 's are finite separable field extension of K. Let $G=\left\{g_{1}, \cdots, g_{n}\right\}$. Since $g_{i}^{n}=1, g_{i}$ are diagonalizable over some algebraical closure of K, say \bar{K}, as a linear map $\bar{K}[G] \rightarrow \bar{K}[G]$. Since g_{i} 's commute to each other, they can be diagonalized simultaneously. So are g for all elements in $\bar{K}[G]$. Now $\forall g \in K[G]$, we may assume g is diagonal. $g^{n}=0$ implies $g=0$. Hence $K[G]$ is reduced. Hence each B_{i} is a field.

For the second statement, if R is a finite direct product of fields, then any R module M is projective. Indeed, the localization of R at any prime ideal must be a field. So the localization of M is free, and hence projective. The result follows from the fact that projectivity is a local property.
4.7 Let A be a ring and G a finite abelian group for which $\# G \cdot 1 \in A^{*}$.
(a) Suppose that $f: M \rightarrow N$ is a homomorphism of $A[G]$-modules, and $g: N \rightarrow M$ an A-linear map with $f g=\operatorname{id}_{N}$. Define $g^{\prime}: N \rightarrow M$ by $g^{\prime}(x):=(\# G \cdot 1)^{-1}$. $\sum_{\sigma \in G} \sigma \cdot g\left(\sigma^{-1} \cdot x\right)$. Prove that g^{\prime} is a homomorphism of $A[G]$-modules and that $f g^{\prime}=\mathrm{id}_{N}$.
(b) Let P be an $A[G]$-module. Prove that P is projective as an $A[G]$-module if and only if P is projective when considered as an A-module. (See the following exercise for a converse.)

For (a), let $\tau \in G$.

$$
\begin{equation*}
g^{\prime}(\tau x)=\frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot g\left(\sigma^{-1} \tau x\right)=\frac{1}{|G|} \sum_{h \in G} \tau h \cdot g(h x)=\tau g^{\prime}(x) . \tag{1}
\end{equation*}
$$

And note that f is already an $A[G]$-linear map. f commutes with G-actions. So

$$
f g^{\prime}(x)=\frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot f g\left(\sigma^{-1} x\right)=\frac{1}{|G|} \cdot|G| x=x
$$

For (b), note $A[G]$ is a free A-module. So if P is a projective $A[G]$-module, it is a direct summand of a free $A[G]$-module. Therefore, it is a direct summand of a free A-module, i.e., P is projective A-module.

Suppose P is a projective A-module. Assume P can be fitted into a split exact sequence of $A[G]$-modules

$$
0 \longrightarrow K \longrightarrow F \xrightarrow{f} P \longrightarrow 0,
$$

with F a free $A[G]$-module. Now regard this sequence as an A-module exact sequence. Then there exists a A-linear splitting $g: P \rightarrow F$. (a) says we can modify g into an $A[G]$-linear map g^{\prime} with $f g^{\prime}=\operatorname{id}_{P}$. We obtain a $A[G]$ splitting, i.e., P is a projective $A[G]$-module.
4.8 Let A be a ring and G a finite abelian group. Consider A as an $A[G]$-module by letting every $\sigma \in G$ act as the identity on A. Prove that A is projective as an $A[G]$-module if and only if $\# G \cdot 1 \in A^{*}$.

If $|G| \cdot 1 \in A^{*}$, consider $A[G] \rightarrow A$ by

$$
\left(a_{\sigma}\right)_{\sigma \in G} \mapsto \sum_{\sigma \in G} a_{\sigma} \in A .
$$

The map has a splitting $A \rightarrow A[G]$ by $a \mapsto(a /|G|)_{\sigma \in G}$. Note that these maps are $A[G]$-linear. Hence A is a direct summand of a free $A[G]$-module. So A is a projective $A[G]$-module.

Conversely, assume that A is a projective $A[G]$-module. Define $f: A[G] \rightarrow A$ by

$$
\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} .
$$

It is surjective and $A[G]$-linear. By projectivity, there exists a splitting $g: A \rightarrow A[G]$ so that $f g=\mathrm{id}_{A}$. Then splitting must be of the form

$$
g(x)=\sum_{k \in G} h(x) k
$$

by $A[G]$-linearity. $f g=\operatorname{id}_{A} \Rightarrow 1=|G| h(1)$. Therefore, $|G| \in A^{*}$.
4.12 Let A be a Dedekind domain and $\left(I_{n}\right)_{n=0}^{\infty}$ a sequence of fractional A-ideals. Prove that $\oplus_{n=0}^{\infty} I_{n} \cong \oplus_{n=0}^{\infty} A$ as A-modules, and deduce that every projective A-module that is not finitely generated is free.

Let $\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set of generators of $\oplus_{n=0}^{\infty} I_{n}$ (Generators may have relations, but the construction below still work). Try to build a sequences of submodules $\left\{K_{j}\right\}_{j=1}^{\infty}$ of $\oplus_{n=0}^{\infty} I_{n}$ such that
(i) $K_{1} \subset K_{2} \subset \ldots$
(ii) K_{j} is free for all j
(iii) K_{j+1} is the direct sum of K_{j} and a free module
(iv) $\oplus_{n=0}^{\infty} I_{n}$ is the direct sum of K_{j} and a module L_{j} which is an infinite direct sum of finitely generated module of rank one
(v) $\cup_{n=1}^{\infty} K_{n}=\oplus_{n=0}^{\infty} I_{n}$
(i) $\sim(\mathrm{v})$ implies that $\oplus_{n=0}^{\infty} I_{n}$ is free.

Take $K_{1}=(0)$, and suppose K_{r} has been constructed. Let y denote the first of the x_{i} 's which is not in K_{r}, and z is the L_{r} component of y with respect to $K_{r} \oplus L_{r}=\oplus_{n=0}^{\infty} I_{n}$. By assumption, $L_{r} \simeq \oplus_{t=0}^{\infty} P_{t}$, where $P_{t} \triangleleft A$ is an invertible ideal. Suppose $z \in P_{1} \oplus \ldots \oplus P_{s}$ and write $I:=P_{1} P_{2} \ldots P_{s}$.

By A is Dedekind,

$$
P_{s+1} \oplus P_{s+2} \simeq A \oplus P_{s+1} P_{s+2} \simeq I^{-1} \oplus I P_{s+1} P_{s+2}=: G \oplus H,
$$

where $G:=I^{-1}$ and $H:=I P_{s+1} P_{s+2}$, respectively. Then the module $P_{1} \oplus \ldots \oplus P_{s} \oplus G \simeq$ $P_{1} \oplus \ldots \oplus P_{s} \oplus P_{1}^{-1} \ldots P_{s}^{-1} \simeq A \oplus \ldots \oplus A$ is a free A-module, and we set $K_{r+1}:=P_{1} \oplus \ldots \oplus$ $P_{s} \oplus G \oplus K_{r}$, and $L_{r+1}:=H \oplus P_{s+3} \oplus \ldots$. Hence K_{r+1} and L_{r+1} satisfying $(i) \sim(i v)$, the final (v) is trivial, hence we are done.
(The construction can be found in I.Kaplansky's paper: "Modules over Dedekind Rings and Valuation Rings".)

Let P be a projective module over a Dedekind ring A which is not finitely generated. Then $P \oplus Q=F$ for some module Q and free module F. By A is Dedekind, A is hereditary, so $P \simeq \oplus_{k=0}^{\infty} I_{k}$ for I_{k} be ideals in A (ex.4.9(a)). So P is free by above argument.
4.13 Let A be a domain with field of fractions K and $I \subset K$ an A-module.
(a) Prove that I is projective if and only if it is invertible, and that it is free if and only if it is principal. [Hint: map a free module onto I.]
(b) Prove that invertible ideals are finitely generated.
(c) Prove that A is a Dedekind domain if and only if all ideals of A are projective.

For (a), suppose I is invertible, $I^{-1} I=A, 1=\sum_{i=1}^{m} c_{i} b_{i}$ for some $c_{i} \in I^{-1}:=\{x \in$ $Q(A) \mid x I \subset A\}$ and $b_{i} \in I$. Define maps $f_{i}: a \in I \mapsto a c_{i} \in A$, so $f_{i} \in \operatorname{Hom}_{A}(I, A)$. Hence for all $a \in A, a=\sum_{i}\left(a c_{i}\right) b_{i}=\sum_{i} f_{i}(a) b_{i}$, so by dual basis lemma, I is projective. (Recall the dual basis lemma: A module M is projective if and only if $\exists\left\{x_{\alpha}\right\}_{\alpha \in I} \subset M$ and $\left\{x_{\alpha}^{*}\right\}_{\alpha \in I} \subset M^{*}$ such that $\forall x \in M, x_{\alpha}^{*}(x)=0$ for all but finitely many α and $\left.x=\sum_{\alpha} x_{\alpha}^{*}(x) x_{\alpha}.\right)$

Conversely, suppose $I \triangleleft A$ is projective, the dual basis lemma asserts that $\exists\left\{b_{\alpha}\right\}_{\alpha \in \Lambda}$ generators of $I, \exists\left\{f_{\alpha}\right\}_{\alpha \in \Lambda} \subset \operatorname{Hom}_{A}(I, A)$, such that for each $a \in I, f_{\alpha}(a)=0$ for all but finitely many α and $a=\sum_{\alpha} f_{\alpha}(a) b_{\alpha}$. Note that if $f \in \operatorname{Hom}_{A}(I, A)$ and $I \triangleleft A$ be fractional, then $f: a \mapsto b^{-1} f(b) a$ for all $b \in I \backslash\{0\}$. Fix $b \in I \backslash\{0\}$, since $f_{\alpha}(b)=0$ for almost all α except some $\alpha=1,2, \ldots, m$ and $a=\sum_{\alpha \in \Lambda} f_{\alpha}(a) b_{\alpha}=\sum_{\alpha=1}^{m} b^{-1} f_{\alpha}(b) a b_{\alpha}$, so $1=\sum_{\alpha=1}^{m} b^{-1} f_{\alpha}(b) b_{\alpha}$. Since $b^{-1} f_{\alpha}(b) a \in A$ for all $a \in I$, so define $c_{\alpha}:=b^{-1} f_{\alpha}(b) \in I^{-1}$. Hence $1=\sum_{\alpha=1}^{m} c_{\alpha} b_{\alpha}, c_{\alpha} \in I^{-1}$ and $b_{\alpha} \in I$, so I is invertible.

If the fractional ideal is principle, then it is clearly free. Conversely, if $I \subset K=Q(A)$ is free, choose $x_{\alpha}=\frac{a_{\alpha}}{b_{\alpha}}$ and $x_{\beta}=\frac{a_{\beta}}{b_{\beta}}$ be A-linearly independent for some $a_{\alpha}, a_{\beta}, b_{\alpha}$, and b_{β} in $A \backslash\{0\}$. Then

$$
\left(-a_{\beta} b_{\alpha}\right) x_{\alpha}+\left(a_{\alpha} b_{\beta}\right) x_{\beta}=\left(-a_{\beta} b_{\alpha}\right) \frac{a_{\alpha}}{b_{\alpha}}+\left(a_{\alpha} b_{\beta}\right) \frac{a_{\beta}}{b_{\beta}}=0 .
$$

So by A-linearly independence, $-a_{\beta} b_{\alpha}=a_{\alpha} b_{\beta}=0$, means A has zero divisors, a contradiction. So I has at most one (free) generator.
(b) Let $I^{-1} I=A$, so $\exists c_{i} \in I^{-1}$ and $b_{i} \in I$ such that $\sum_{i=1}^{n} c_{i} b_{i}=1$. So for all $b \in I$,

$$
b=b \cdot 1=b \sum_{i=1}^{n} c_{i} b_{i}=\sum_{i=1}^{n}\left(b c_{i}\right) b_{i} \in I
$$

where $b c_{i} \in A$ since $c_{i} \in I^{-1}$.
(c) The definition of A to be Dedekind is that every fractional ideals in $Q(A)$ is invertible. So by (a), all ideals in A are projective.
4.14 Let A be a local ring with residue field k.
(a) Suppose $a_{1}, a_{2}, \ldots, a_{n} \in A$ are such that none of the a_{i} belongs to the ideal generated by the others, and let $a=\left(a_{i}\right)_{i=1}^{n} \in A^{n}$. Let $f: A^{n} \rightarrow A^{n}$ be an A-linear map with $f(a)=a$. Prove that $f \otimes \operatorname{id}_{k}$ is the identity mapping on k^{n}, and f is invertible.
(b) Let F be a free A-module, P a direct summand of F, and $a \in P$. Prove that there exists a free direct summand of P containing a. [Hint: Choose a basis of F on which a has the smallest possible number of non-zero coordinates, say $a_{1}, a_{2}, \ldots, a_{n}$, and apply (a) to a suitable map $A^{n} \rightarrow P \rightarrow A^{n}$.]
(c) Prove that countably generated projective A-module is free.
(a) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be standard basis of A^{n} and $f\left(e_{i}\right)=\sum_{j=1}^{n} b_{i j} e_{j}$ for all $i=1, \ldots, n$. I need to show that $\left(b_{i j}\right)$ is invertible. By $f(a)=a, \sum_{i=1}^{n} a_{i} e_{i}=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} b_{i j} e_{j}=$ $\sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{i} b_{i j}\right) e_{j}$. So I get $a_{j}=\sum_{i=1}^{n} a_{i} b_{i j}$ for all j, hence

$$
\left(1-b_{j j}\right) a_{j}=a_{1} b_{1 j}+\ldots+a_{j} \hat{b}_{j j}+\ldots+a_{n} b_{n j}
$$

for all $j=1, \ldots, n$. By a_{j} not lies in $\left(a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}\right),\left(1-b_{j j}\right)$ and $b_{i j}$ are nonunits. $\left(1-b_{j j}\right)$ is nonunit means that it lies in the Jacobson radical of A, so $b_{j j}=1-\left(1-b_{j j}\right)$ is an unit in A. So the determinant of $\left(b_{i j}\right)$ is $\operatorname{det}\left(b_{i j}\right)=\prod_{j=1}^{n} b_{j j}+$ (nonunits) is an unit in A. Hence $\left(b_{i j}\right)$ is invertible.
$f \otimes \mathrm{id}_{k}=\mathrm{id} . \ldots$
(b) Let $\mathbf{B}=\left\{e_{i}\right\}_{i \in I}$ be a free base of F such that $a=\sum_{i=1}^{n} a_{i} e_{i}$ and the number n is the smallest. This implies that a_{i} not lies in the ideal $\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$, for if $a_{j}=\sum_{i \neq j}^{n} a_{i} b_{i}$ for some $b_{i} \in A$, then replace e_{i} by $e_{i}+b_{j} e_{j}, i=1, \ldots, n, i \neq j$, and other $e_{i}(i$ not in $\{1, \ldots, n\} \backslash\{j\})$ unchanged. Then we get a new base with shorter expression in a.

Let $e_{i}=y_{i}+z_{i}, y_{i} \in P$ and $z_{i} \in Q, i=1, \ldots, n$. Then I get $a=\sum_{i=1}^{n} a_{i} y_{i}+$ $\sum_{i=1}^{n} a_{i} z_{i} \in P$, so $\sum_{i=1}^{n} a_{i} z_{i}=0 \in P \cap Q=\{0\}$. Define $N:=\operatorname{span}_{A}\left(y_{1}, \ldots, y_{n}\right) \subseteq P$. Then $a=\sum_{i=1}^{n} a_{i} y_{i} \in N$.

I show that N is free, the strategy is to show $\left\{y_{1}, \ldots, y_{n}\right\} \cup\left(\mathbf{B} \backslash\left\{e_{1}, \ldots, e_{n}\right\}\right)$ is a free base. Write $y_{i}=\sum_{j=1}^{n} h_{i j} e_{j}+t_{i}, i=1, \ldots, n$, where t_{i} are combinations of $\left\{e_{j}\right\}_{j \geq n+1}$. Plug y_{i} into $a=\sum_{j=1}^{n} a_{j} e_{j}=\sum_{i=1}^{n} a_{i} y_{i}=a$, so

$$
\sum_{j=1}^{n} a_{j} e_{j}=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n} h_{i j} e_{j}+t_{i}\right)=\sum_{i, j=1}^{n} a_{i} h_{i j} e_{j}+\sum_{i=1}^{n} a_{i} t_{i} .
$$

By $\left\{e_{j}\right\}$ are free basis, we get $a_{j}=\sum_{i=1}^{n} a_{i} h_{i j}$. From our choice of a_{j} 's and similar arguments in $(a),\left(h_{i j}\right)$ is invertible, so the map $F \rightarrow F$ via $e_{i} \mapsto y_{i}$ for $i=1, \ldots, n$, and $e_{i} \mapsto e_{i}$ for $i \geq n+1$ is invertible, \ldots
(c) Let P be countably generated and projective. Then $P \oplus Q=F$ for some A-module Q and free A-module F. Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be generators (not free) of P. I construct a sequence of free submodules of P_{i} (which are all free and $\oplus_{i=1}^{\infty} P_{i} \simeq P$) as follows: By (b), let P_{1} be a free direct summand of P contains x_{1}, so we furnish P_{1}. Suppose we have constructed P_{1}, \cdots, P_{s} such that $\oplus_{i=1}^{s} P_{i}$ contains x_{1}, \cdots, x_{s} and $\oplus_{i=1}^{s} P_{i}$ is free, by (b), let P_{s+1} be a free direct summand of $P / \oplus_{i=1}^{s} P_{i}$ such that P_{s+1} contains the element $\pi_{s}\left(x_{s+1}\right)$, where $\pi_{s}: P \rightarrow P / \oplus_{i=1}^{s} P_{i}$ is the canonical projection. So we construct all P_{i} 's by induction.

By our construction, $\oplus_{i=1}^{\infty} P_{i}$ is free and it contains $\left\{x_{i}\right\}_{i=1}^{\infty}$, so $P=\oplus_{i=1}^{\infty} P_{i}$.
4.16 Deduce from 4.14 and 4.15 that any projective module over a local ring is free.

Let P be projective, so $P \oplus Q=F$ for some free F and Q. By F is free, we can write $F=\oplus_{\lambda \in \Lambda} F_{\lambda}$ where F_{λ} is countably generated for all λ. Then by ex.4.15(c), $P=\oplus_{\lambda} P_{\lambda}$ where P_{λ} is countably generated for all λ (and P_{λ} is also projective). So by ex.4.14(c), P_{λ} is free for all λ. So P is free.
4.17 Let an ideal \mathfrak{a} of a ring A called almost nilpotent if for every sequence $\left(a_{i}\right)_{i=0}^{\infty}$ of elements of \mathfrak{a} there exists n with $\prod_{i=0}^{n} a_{i}=0$.
(a) Prove that a nilpotent ideal is almost nilpotent.
(b) Prove that a finitely generated almost nilpotent ideal is nilpotent.
(c) Let $K\left[X_{1}, X_{2}, \ldots\right]$ be the polynomial ring in countably many variables over a field K, and I be the ideal generated by $\left\{X_{k} \cdot \prod_{i=1}^{n} X_{i}^{a(i)}: k, n \geq 1, a(i) \geq\right.$ $\left.0(0 \leq i \leq n), \sum_{i=1}^{n} a(i) \geq k\right\}$. Prove that $K\left[X_{1}, X_{2}, \ldots\right] / I$ is a local ring whose maximal ideal is almost nilpotent but not nilpotent.
(a) If \mathfrak{a} is nilpotent, then there exists $n \in \mathbb{N}$ such that $\mathfrak{a}^{n}=0$. Done.
(b) If \mathfrak{a} is almost nilpotent and finitely generated. Let a_{1}, \ldots, a_{n} generates \mathfrak{a}. Then it suffices to prove that every a_{i} is nilpotent. Consider sequences $a_{i}, a_{i}, a_{i} \cdots$. Then a_{i} is nilpotent.
(c) To prove that $K\left[X_{1}, X_{2}, \ldots\right] / I$ is a local ring, it suffices to prove that for any element $r \in K\left[X_{1}, X_{2}, \ldots\right] / I$ whether r or $1-r$ is unit. Furthermore, it suffices to prove that $1+g\left(X_{1}, \ldots X_{n}\right)$ is a unit where $g\left(X_{1}, \ldots, X_{n}\right)$ is any polynomial without constant term and n any positive integer. Let $g\left(X_{1}, \ldots, X_{n}\right)=\sum_{i_{1}, \ldots, i_{n}}^{n+1} k_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$. $g^{n}=0$, so $1+g$ is unit. $K\left[X_{1}, X_{2}, \ldots\right] / I$ is a local ring with the maximal ideals $\mathfrak{m}:=\left\{f \in K\left[X_{1}, X_{2}, \ldots\right] / I \mid f\right.$ has no constant term $\}$. Given a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$, $f_{i} \in \mathfrak{m}$, let $f_{1}=f_{1}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i_{1}, \ldots i_{n}}^{n+1} k_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$. Then $\prod_{i=1}^{n+1} f_{i}=0$ because each term of $\prod_{i=1}^{n+1}\left(f_{i}\right)$ has degree larger than $n+1$. So \mathfrak{m} is almost nilpotent. Suppose \mathfrak{m} is nilpotent. Let $\mathfrak{m}^{N}=0$. But $x_{N+1}^{N} \in \mathfrak{m}$ is nonzero. Contradiction.
4.18 Let A be a local ring whose maximal ideal \mathfrak{m} is almost nilpotent.
(a) Prove that any A-module M with $\mathfrak{m} M=M$ is zero.
(b) Let F be a free A-module. Prove that a subset of F is an A-basis if and only if it yields an A / \mathfrak{m}-basis for $F \otimes_{A} A / \mathfrak{m}$. Prove also that any generating set for F contains a basis.
(a) Suppose $\mathfrak{m} M=M \neq 0$. Let $J:=A n n_{A}(M)$. Then $\mathfrak{m} \backslash J \neq 0$ because $M \neq 0$. Choose any $a_{1} \in \mathfrak{m} \backslash J$. Then $a_{1} M=a_{1} \mathfrak{m} M \neq 0$. So $a_{1} \mathfrak{m} \backslash J \neq \emptyset$.

Then there exist $a_{2} \in \mathfrak{m} \backslash J$ such that $a_{1} a_{2} \in \mathfrak{m} \backslash J$. By induction, we can form an infinite sequence in \mathfrak{m}, but there exists finite integer n such that $\prod_{i=1}^{n} a_{i}=0 \in J$, contradiction.
(b) Let Ξ be a basis of F. Then obviously $\Xi \otimes_{A} 1$ generates $F \otimes_{A} A / \mathfrak{m}$. Given $\left\{m_{1} \ldots m_{n}\right\} \subset F$ and $\left\{a_{1} \ldots a_{n}\right\} \subset A / \mathfrak{m}$ such that $\sum_{i=1}^{n} a_{i} m_{i} \otimes_{A} 1=0$. Then $\sum_{i=1}^{n} a_{i} m_{i} \subset \mathfrak{m} F$, which implies $a_{i} \equiv 0 \bmod \mathfrak{m}$.
Conversely, if $\Xi \otimes_{A} 1$ is a basis of $F \otimes_{A} A / \mathfrak{m}, \ldots$
Let Ω be a generating set of F. Then $\Omega \otimes_{A} 1$ contains a basis for $F \otimes_{A} A / \mathfrak{m}$, because every generating set of a vector space contains a basis. By previous argument, such subset of Ω is actually a basis of F.
4.19 Let A be a local ring whose maximal ideal \mathfrak{m} is not almost nilpotent.
(a) Construct a countably generated nonzero A-module M with $M=\mathfrak{m} M$. [Hint: Consider a suitable injective limit $A \rightarrow A \rightarrow A \rightarrow \ldots$]
(b) Let $f: F \rightarrow M$ be A-linear, with F free and M as in (a). Prove that $\operatorname{ker}(f) \cup \mathfrak{m} F$ generates F but does not contain a basis.
(a) There exists a sequence $\left(a_{i}\right)_{i=1}^{\infty}, a_{i} \in \mathfrak{m}$ such that $\prod_{i=1}^{n} a_{i} \neq 0$ for any integer n. Consider the injective system $A \xrightarrow{a_{1}} A \xrightarrow{a_{2}} \cdots$ Let $M:=$ $\underline{\underline{\lim }} A=\oplus_{i=1}^{\infty} A /(\sim)$ be the injective limit with respect to above system where (\sim) is the submodule of $\oplus_{i=1}^{\infty} A$ generated by canonical relations. Then M is countably generated. Let $u_{i}: A \rightarrow M$ be the canonical homomorphism into the i-th component. Suppose $M=0$. Then $u_{1}(1)=0$ implies $\prod_{i=1}^{n} a_{i}=0$ for some integer n. Contradiction.
Let $m \in M$. Then $m=u_{i}\left(m_{i}\right)$ for some integer i. So $m=a_{i+1} u_{i+1}\left(m_{i}\right) \in$ $\mathfrak{m} M$. So $\mathfrak{m} M=M$.
(b) $M=\mathfrak{m} M$ implies that coker $f=\mathfrak{m} \operatorname{coker} f$. ...
4.20 Let M, N be modules over a ring A, with M finitely presented, and let $S \subset$ A be a multiplicative subset. Prove that the obvious map $S^{-1} \operatorname{Hom}_{A}(M, N) \rightarrow$ $\operatorname{Hom}_{S^{-1} A}\left(S^{-1} M, S^{-1} N\right)$ is an $S^{-1} A$-module isomorphism.

Since M is finitely presented, there exists an exact sequence

$$
A^{m} \longrightarrow A^{n} \longrightarrow M \longrightarrow 0
$$

Because $\operatorname{Hom}_{A}(\cdot, N)$ functor is right-exact, applying $\operatorname{Hom}_{A}(\cdot, N)$ to above sequence, we have

$$
0 \longrightarrow \operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{A}\left(A^{n}, N\right) \longrightarrow \operatorname{Hom}_{A}\left(A^{m}, N\right)
$$

and recognise $\operatorname{Hom}_{A}\left(A^{n}, N\right)=N^{n}$. Furthermore, S^{-1} localisation is an exact functor, apply to above sequence, we have:

$$
0 \longrightarrow S^{-1} \operatorname{Hom}_{A}(M, N) \longrightarrow S^{-1} N^{n} \longrightarrow S^{-1} N^{m} .
$$

On the other side, back to the original sequence, and apply S^{-1} functor first then $\operatorname{Hom}_{S^{-1} A\left(\cdot, S^{-1} N\right)}$

$$
\begin{gathered}
S^{-1} A^{m} \longrightarrow S^{-1} A^{n} \longrightarrow S^{-1} M \longrightarrow 0 \\
\left.0 \longrightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} M, S^{-1} N\right)\right) \longrightarrow S^{-1} N^{n} \longrightarrow S^{-1} N^{m} .
\end{gathered}
$$

Putting identity maps in vertical maps between the last two and check the commutativity

where $\left.\pi: S^{-1} \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} M, S^{-1} N\right)\right)$ is the canonical map. We conclude that π is isomorphism by five lemma.
4.21 Let A be a ring, $\left(f_{i}\right)_{i \in I}$ a collection of elements of A with $\sum_{i \in I} f_{i} A=A$, and M an A-module.
(a) Suppose that $M_{f_{i}}=0$ for all $i \in I$. Prove that $M=0$.
(b) Suppose that $M_{f_{i}}$ is a finitely generated $A_{f_{i}}$-module for each $i \in I$. Prove that M is finitely generated.
(a) Let $f_{1} \ldots f_{n} \in I$ such that $\sum_{i=1}^{n} a_{i} f_{i}=1$ for some $a_{1} \ldots a_{n} \in A$. Given $m \in$ M. Since $M_{f_{i}}=0$, there exists integers n_{i} such that $f_{i}^{n_{i}} m=0$. Then $m=$ $\left(\sum_{i=1}^{n} a_{i} f_{i}\right) m=\left(\sum_{i=1}^{n} a_{i} f_{i}\right)^{\sum_{i=1}^{n} n_{i}} m=0$.
(b) Same notation as above $\sum_{i=1}^{n} a_{i} f_{i}=1$. Let $\left\{\frac{m_{i, 1}}{f_{i}^{1}} \ldots, \frac{m_{i, i_{m}}}{f_{i}^{s m}}\right\}$ be a generating set of $M_{f_{i}}$. Then $\left\{\frac{m_{i, 1}}{1}, \ldots, \frac{m_{i, i_{m}}}{1}\right\}$ also generates $M_{f_{i}}$. Then there exists integer N_{i} such that

$$
f_{i}^{N_{i}} m \in A\left[m_{i_{1}} \ldots m_{i, i_{m}}\right]
$$

(where $A\left[m_{i_{1}} \ldots m_{i, i_{m}}\right]$ is a A-module generated by $\left\{m_{i 1} \ldots m_{i, i_{m}}\right\}$). Then choose an integer N large enough, we have $m=\left(\sum_{i=1}^{n} a_{i} f_{i}\right)^{N} m \in A\left[m_{11} \ldots m_{1,1_{m}} \ldots m_{n, n_{m}}\right]$.
4.22 Let $M=\{q \in \mathbb{Q}: q$ has a squarefree denominator $\}$, considered as a module over $A=\mathbb{Z}$. Prove that $M_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$-free module of rank 1 for every prime ideal \mathfrak{p} of A, but that M is not projective over A.

If $p>0$, observe that $M_{p}=\frac{1}{p} A_{p}$. If $p=0$, then $M_{p}=\mathbb{Q}$. Then M_{p} is a free A_{p} module of rank 1 for every prime ideal p. Since \mathbb{Z} is PID, a module over \mathbb{Z} is projective if and only if it is free. Let us prove that M is not a free \mathbb{Z} module.

Suppose $E \subset M$ is a basis of M, and E only contains one element, say $\frac{q}{p}$ generates M. But prime numbers are infinitely many, so there exists prime g such that $\frac{1}{g} \notin \mathbb{Z}-$ module generated by $\frac{q}{p}$.

So E contains more than one element. Let $\frac{a}{p}, \frac{b}{q} \in E$. But $p b \frac{a}{p}-q a \frac{b}{q}=0$. Contradiction. Therefore, M is not projective.
4.23 Let V be an infinite set and $A=\mathbb{F}_{2}^{V}$ be a ring.
(a) Prove that A has a maximal ideal \mathfrak{n} that is not principal.
(b) Let $M=A / \mathfrak{n}$, with \mathfrak{n} as in (a). Prove that M is finitely generated, that $M_{\mathfrak{m}}$ is $A_{\mathfrak{m}}$-free of rank ≤ 1 for all maximal ideal \mathfrak{m} of A , but that M is not projective.
(a) Let $\mathbf{n}:=\oplus_{v \in V} \mathbb{F}_{2} \triangleleft A \simeq \prod_{v \in V} \mathbb{F}_{2}$ be an ideal; it is not principle. This \mathbf{n} is maximal since every non-zero element $f+\mathbf{n}$ in A / \mathbf{n} is of the form $f+\mathbf{n}=I+(f-I)+\mathbf{n}$, where $f(x)=1$ for all but finitely many $x \in V$ and I denotes the function " $x \mapsto 1$ for all $x \in V^{\prime \prime}$. By definition, $(f-I) \in \mathbf{n}$, so A / \mathbf{n} has only two elements: $0+\mathbf{n}$ and $I+\mathbf{n}$. So it is isomorphic to a field \mathbb{F}_{2}. So \mathbf{n} is maximal.
(b) Let \mathbf{n} as in (a). Then the A-module A / \mathbf{n} is finitely generated (in fact, it has only two elements). By A is a Boolean ring, localization of A / \mathbf{n} at any maximal ideal $m \triangleleft A$ gives an \mathbb{F}_{2}-module, hence a vector space (of dimension ≤ 1), hence free. ...

Suppose $M:=A / \mathbf{n}$ is projective. The the exact sequence $0 \rightarrow \mathbf{n} \rightarrow A \rightarrow A / \mathbf{n}$ splits, so we get $A \simeq A / \mathbf{n} \oplus \mathbf{n}$ as A-module. ...
4.24 Let A be a ring and P a finitely generated projective A-module. Prove that A can be written as the product of finitely many rings, $A=A_{1} \times \cdots \times A_{n}$, such that $P=P_{1} \times \cdots \times P_{n}$ where each P_{j} is a finite generated projective A_{j}-module of constant rank.
(Reference: http://www.maths.ed.ac.uk/~aar/papers/kbook.pdf)
Let A be a ring and P a finitely generated projective A-module. The map $r=$ $\operatorname{rank}_{A}(P): \operatorname{Spec} A \longrightarrow \mathbb{Z}$ is locally constant and hence continuous. Since Spec \mathbb{Z} is quasicompact, the image of r is also quasi-compact, and so r takes on only finitely many values, namely m_{1}, \cdots, m_{n}. Now each $V_{j}:=r^{-1}\left(m_{j}\right)$ is closed and open due to the discrete topology on \mathbb{Z}. It follows that

$$
\operatorname{Spec} A=V_{1} \sqcup \cdots \sqcup V_{n} .
$$

We want to write each V_{j} as $\operatorname{Spec} A_{j}$ such that $A=A_{1} \times \cdots \times A_{n}$.
To do this we may assume that the ring A is reduced. In fact, if N is the nilradical (the ideal of all nilpotent elements in A), then A / N is reduced. Also, we have $\operatorname{Spec} A / N=$ $\operatorname{Spec} A$; and by idempotent lifting we know there is an equivalence between the category of finitely generated projective A-modules and the category of finitely generated projective A / N-modules.

Now, let $I_{j}=\bigcap_{\mathfrak{p} \in V_{j}} \mathfrak{p}$ be the ideal of V_{j} and write $A_{j}=A / I_{j}$. Then for any i, j with $i \neq j$, we have $V\left(I_{i}+I_{j}\right)=V\left(I_{i}\right) \cap V\left(I_{j}\right)=\emptyset$. It follows that $I_{i}+I_{j}=A$, and $I_{1} \cdots I_{n}=\bigcap_{j} I_{j}=0$. By the Chinese remainder theorem, we have

$$
A \simeq A_{1} \times \cdots \times A_{n}
$$

Pick $P_{j}:=P \otimes_{A} A_{j}$. Then we obtain the desired decomposition.
4.25 Let A be a ring and P a finitely generated projective A-module. Prove that the following four properties are equivalent:
(i) P is faithfully projective;
(ii) the map $A \rightarrow \operatorname{End}_{\mathbb{Z}}(P)$ giving the A-module structure is injective;
(iii) P is faithful, i.e., an A-module M is zero if and only if $M \otimes P=0$;
(iv) P is faithfully flat, i.e., a sequence $M_{0} \rightarrow M_{1} \rightarrow M_{2}$ of A-modules is exact if and only if the induced sequence $M_{0} \otimes P \rightarrow M_{1} \otimes P \rightarrow M_{2} \otimes P$ is exact.
(iv) \Rightarrow (iii) $0 \rightarrow M \rightarrow 0$ is exact $\Leftrightarrow 0 \rightarrow M \otimes P \rightarrow 0$ is exact.
(iii) \Rightarrow (ii) The map $A \rightarrow \operatorname{End}_{\mathbb{Z}}(P)$ is clearly defined by $a \mapsto[P \xrightarrow{a} P]$. Let $x \in A$ such that $x P=0$. Consider $A x$ as A-module. Then, $A x \otimes P=0$ implies $A x=0$ and $1 \in A$ gives $x=0$.
(ii) \Rightarrow (i) If not, $\exists \mathfrak{p} \in \operatorname{Spec} A$ such that $P_{\mathfrak{p}}=0$. Since P is finitely generated, let $\left\{p_{i}\right\}_{1}^{n}$ be generators. Then, $\frac{p_{i}}{1}=0$ implies $\exists x_{i} \in A-\mathfrak{p}$ such that $x_{i} p_{i}=0$. Thus, $x P=0$ for $x=\prod_{1}^{n} x_{i} \in A-\mathfrak{p}(\Rightarrow x \neq 0)$, contradiction.
(i) \Rightarrow (iv) Using the facts that localization is an exact functor (and $\forall \mathfrak{p}$ localization of the sequence is exact implies exact) and it commutes with tensor product and also $P_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$-module, we obtain:

$$
\begin{aligned}
& M_{0} \otimes P \longrightarrow M_{1} \otimes P \longrightarrow M_{2} \otimes P \text { is exact } \\
& \Leftrightarrow\left(M_{0}\right)_{\mathfrak{p}} \otimes\left(A_{\mathfrak{p}}\right)^{n} \longrightarrow\left(M_{1}\right)_{\mathfrak{p}} \otimes\left(A_{\mathfrak{p}}\right)^{n} \longrightarrow\left(M_{2}\right)_{\mathfrak{p}} \otimes\left(A_{\mathfrak{p}}\right)^{n} \text { is exact } \forall \mathfrak{p} \\
& \Leftrightarrow\left(M_{0}\right)_{\mathfrak{p}}^{n} \longrightarrow\left(M_{1}\right)_{\mathfrak{p}}^{n} \longrightarrow\left(M_{2}\right)_{\mathfrak{p}}^{n} \text { is exact } \forall \mathfrak{p} \\
& \Leftrightarrow\left(M_{0}\right)_{\mathfrak{p}} \longrightarrow\left(M_{1}\right)_{\mathfrak{p}} \longrightarrow\left(M_{2}\right)_{\mathfrak{p}} \text { is exact } \forall \mathfrak{p} \\
& \Leftrightarrow M_{0} \longrightarrow M_{1} \longrightarrow M_{2} \text { is exact }
\end{aligned}
$$

4.26 Let P and P^{\prime} be finitely generated projective modules over a ring A, and $k \in \mathbb{Z}$, $k \geq 0$. Prove that the A-modules $P \oplus P^{\prime}, P \otimes P^{\prime}, \operatorname{Hom}_{A}\left(P, P^{\prime}\right), P^{*}=\operatorname{Hom}_{A}(P, A)$, $\bigwedge^{k} P, P^{\otimes k}$ are finitely generated projective, and the ranks of these modules are given by

$$
\begin{aligned}
& \operatorname{rank}\left(P \oplus P^{\prime}\right)=\operatorname{rank}(P)+\operatorname{rank}\left(P^{\prime}\right), \\
& \operatorname{rank}\left(P \otimes P^{\prime}\right)=\operatorname{rank}(P) \cdot \operatorname{rank}\left(P^{\prime}\right), \\
& \operatorname{rank}\left(\operatorname{Hom}_{A}\left(P, P^{\prime}\right)\right)=\operatorname{rank}(P) \cdot \operatorname{rank}\left(P^{\prime}\right), \\
& \operatorname{rank}\left(P^{*}\right)=\operatorname{rank}(P), \\
& \operatorname{rank}\left(\bigwedge^{k} P\right)=\binom{\operatorname{rank}(P)}{k}, \\
& \operatorname{rank}\left(P^{\otimes k}\right)=\operatorname{rank}(P)^{k}
\end{aligned}
$$

as functions on $\operatorname{Spec} A$.
Note that the ranks can be easily computed once we prove that they are finitely generated projective modules, since they are free $A_{\mathfrak{p}}$-modules for every prime \mathfrak{p}. We only need to prove for $P \oplus P^{\prime}, P \otimes P^{\prime}, P^{*}, \wedge^{k} P$, since $\operatorname{Hom}_{A}\left(P, P^{\prime}\right) \cong P^{*} \otimes P^{\prime}$.

To prove a module P is finitely generated projective, one only needs to find a module Q such that $P \oplus Q$ is free of finite rank (converse is also true). Now suppose P and P^{\prime} are finitely generated projective modules. Then there exists Q and Q^{\prime} such that $P \oplus Q$ and $P^{\prime} \oplus Q^{\prime}$ are free of finite ranks. Then $\left(P \oplus P^{\prime}\right) \oplus\left(Q \oplus Q^{\prime}\right)$ is free of finite rank.
$(P \oplus Q) \otimes\left(P^{\prime} \oplus Q^{\prime}\right)=\left(P \otimes P^{\prime}\right) \oplus\left[\left(Q \otimes P^{\prime}\right) \oplus\left(P^{\prime} \otimes Q\right) \oplus\left(Q \otimes Q^{\prime}\right)\right]$ is free of finite rank.
$(P \oplus Q)^{*}=P^{*} \oplus Q^{*}$ is free of finite rank.
$\bigwedge^{k}(P \oplus Q)=\bigwedge^{k} P \oplus\left[\oplus_{1 \leq l \leq k}\left(\bigwedge^{k-l} P \otimes \bigwedge^{l} Q\right)\right]$ is free of fintie rank.
4.27 Let P be a fintiely generated A-module such that for each $\mathfrak{p} \in \operatorname{Spec} A$ the $A_{\mathfrak{p}}$-module $P_{\mathfrak{p}}$ is free of finte rank $r(\mathfrak{p})$, where $r: \operatorname{Spec} A \rightarrow \mathbb{Z}$ is continuous. Prove that P is finitely generated projective.

We first try to prove the following statement: \forall maximal ideal \mathfrak{m} of $A, \exists f \in A-\mathfrak{m}$ such that P_{f} is a free A_{f}-module of finite rank. If this is true, consider the ideal I
generated by all such f. Then, $I \nsubseteq \mathfrak{m}, \forall \mathfrak{m}$ implies $I=A$ and therefore exists $f_{i} \in I$ and $a_{i} \in A$ such that $\sum_{i=1}^{n} a_{i} f_{i}=1$. By 4.6 (iii), we obtain the desired result.

To show this statement, consider a maximal ideal \mathfrak{m} of A. Suppose $r(\mathfrak{m})=n$ and let $\left\{y_{i}\right\}_{i=1}^{n}$ be the basis of $P_{\mathfrak{m}}$. We can then find $\left\{x_{i}\right\}_{i=1}^{n} \subset P$ such that $x_{i}=b_{i} y_{i}$ for some invertible element b_{i} in $A_{\mathfrak{m}}$. Let $\left\{e_{i}\right\}$ be the standard basis of A^{n} and $\eta: A^{n} \rightarrow P$ such that $\eta\left(e_{i}\right)=x_{i}$. Because P is finitely generated, so is $Q=\operatorname{cok}(\eta)$. Then, by $Q_{\mathfrak{m}}=0$ and Q is finitely generated, we are able to find $f \in A-\mathfrak{m}$ such that $f Q=0 \Rightarrow Q_{f}=0$. In other words, $\exists f$ makes the induced map η_{f} surjective. We conclude that $\eta_{f g}$ is also surjective for all $g \in A-\mathfrak{m}$ and by hypothesis, $\exists g \in A-\mathfrak{m}$ such that $r\left(A_{\mathfrak{p}^{\prime}}\right)=n, \forall \mathfrak{p}^{\prime} \in D(f g)$. Now, replace f by $f g$, we obtain $\left(\eta_{f}\right)_{\mathfrak{p}^{\prime}}:\left(A_{f}^{n}\right)_{\mathfrak{p}^{\prime}} \rightarrow\left(P_{f}\right)_{\mathfrak{p}^{\prime}}$ is a surjective homomorphism and $\left(A_{f}^{n}\right)_{\mathfrak{p}^{\prime}},\left(P_{f}\right)_{\mathfrak{p}^{\prime}}$ are free modules of the same rank n for all \mathfrak{p}^{\prime} in A_{f}. We then conclude $\left(\eta_{f}\right)_{\mathfrak{p}^{\prime}}$ is a bijective homomorphism for all \mathfrak{p}^{\prime} and hence so is η_{f}.
4.28 Let P be a fintiely generated module over a ring A. Prove that P is projective of rank 1 if and only if P is invertible, i.e., if and only if $P \otimes Q \cong A$ for some A-module Q. [Hint for the "only if" part: take $Q=P^{*}$.]

Suppose that P is finitely generated projective module of rank 1. Define $f: P \otimes P^{*} \rightarrow$ A by $(x \otimes f \mapsto f(x))$, where $x \in P, f \in P^{*}$. By Exercise $4.26, P^{*}$ is also a finitely generated projective module of rank 1 , so both $P_{\mathfrak{p}}$ and $P_{\mathfrak{p}}^{*}$ are free $A_{\mathfrak{p}}$-module of rank 1 for any $\mathfrak{p} \in \operatorname{Spec} A$, and thus $f_{\mathfrak{p}}$ is an isomorphism, which proves that P is invertible.

Conversely, suppose that $P \otimes Q \cong A$ for some A-module Q. Localizing this isomorphism to each prime ideals, then passing to the residue fields, we can see that $P_{\mathfrak{p}} / \mathfrak{p} P_{\mathfrak{p}}$ is a 1-dimensional $k(\mathfrak{p})$-vector space for any $\mathfrak{p} \in \operatorname{Spec} A$. By Nakayama lemma, $P_{\mathfrak{p}}$ can be generated by a single element. This element is not a torsion since we have $P_{\mathfrak{p}} \otimes Q_{\mathfrak{p}} \cong A_{\mathfrak{p}}$. Hence $P_{\mathfrak{p}}$ is free of rank 1 . And by Exercise $4.27, P$ is projective.
4.29 For a ring A, let $\operatorname{Pic}(A)$ be the set of isomorphism classes of finitely generated projective A-modules of rank 1. Prove that $\operatorname{Pic}(A)$ is an abelian group with operation \otimes_{A}, the Picard group of A. Express the function $\operatorname{Hom}_{A}(-,-): \operatorname{Pic}(A) \times \operatorname{Pic}(A) \rightarrow$ $\operatorname{Pic}(A)$ in terms of the group operation.

For any two finitely generated projective A-modules P, Q of rank $1, P \otimes Q$ is also finitely generated projective of rank 1 by Exercise 4.26 . The identity element in $\operatorname{Pic}(A)$ is A. The existence of an inverse element is followed by Exercise 4.28. And $\operatorname{Hom}_{A}(P, Q)=P^{-1} \otimes Q$ clearly.
4.30 Let A be a ring. The group $K_{0} A$ is defined by generators and relations. There is one generator $[P]$ for each finitely generated projective A-module P (up to isomorphism), and one relation $\left[P \oplus P^{\prime}\right]=[P]+\left[P^{\prime}\right]$ for each pair P, P^{\prime} of such modules.
(a) Prove that $[P]=\left[P^{\prime}\right]$ if and only if P and P^{\prime} are stably isomorphic, i.e., if and only if $P \oplus A^{n} \cong P^{\prime} \oplus A^{n}$ for some $n \geq 0$.
(b) Prove that \otimes_{A} induces a multiplication on $K_{0} A$ that makes $K_{0} A$ into a commutative ring with unit element $[A]$.
(c) Show that there are group homomorphisms $\phi: \operatorname{Pic}(A) \rightarrow\left(K_{0} A\right)^{*}$ and ψ : $K_{0} A \rightarrow \operatorname{Pic}(A)$ (the latter from an additive group to a multiplicative group) with $\psi \phi=\operatorname{id}_{\operatorname{Pic}(A)}$. [Hint: put $\psi([P])=\left[\Lambda^{\operatorname{rank}(P)} P\right]$, to be defined in a suitable way if $\operatorname{rank}(P)$ is non-constant.]
(a) If $[P]=\left[P^{\prime}\right]$, then there exists finitely generated projective A-modules Q_{1}, \ldots, Q_{m}, such that $P \oplus Q_{1} \oplus \cdots \oplus Q_{m} \cong P^{\prime} \oplus Q_{1} \oplus \cdots \oplus Q_{m}$. And there exists a finitely generated projective A-module Q such that $Q \oplus Q_{1} \oplus \cdots \oplus Q_{m} \cong A^{n}$ for some $n \geq 0$, which proves that P and P^{\prime} are stably isomorphic. The converse is obvious.
(b) Define $[P] \cdot[Q]:=[P \otimes Q]$. Firstly, we need to check that if $[P]=\left[P^{\prime}\right]$, then $[P \otimes Q]=\left[P^{\prime} \otimes Q\right]$. By (a), $P \oplus A^{n} \cong P^{\prime} \oplus A^{n}$ for some $n \geq 0$. Hence

$$
[P \otimes Q]=\left[\left(P \oplus A^{n}\right) \otimes Q\right]-\left[A^{n} \otimes Q\right]=\left[\left(P^{\prime} \oplus A^{n}\right) \otimes Q\right]-\left[A^{n} \otimes Q\right]=\left[P^{\prime} \otimes Q\right],
$$

so the map is well-defined. The fact that \otimes_{A} gives a commutative ring structure with unit element $[A]$ is easy to see.
(c) The map ϕ is defined to be the obvious one. Note that ϕ is in fact injective, i.e., stably isomorphic implies isomorphic in rank 1 case. This is a special case of a statement that will be proved later.

To define ψ, given a finitely generated projective module P, consider its rank function $\operatorname{Spec} A \rightarrow \mathbb{Z}$. Spec A will decompose into finitely many components, where the rank function is constant on each components. Every component is closed in $\operatorname{Spec} A$, so we may write down the decomposition as $\operatorname{Spec} A=\operatorname{Spec}\left(A / I_{1}\right) \amalg \cdots \amalg \operatorname{Spec}\left(A / I_{n}\right)$. Suppose that P has constant rank k_{j} on the component $\operatorname{Spec}\left(A / I_{j}\right)$. Then we define $\psi(P):=$ $\bigwedge^{k_{1}}\left(P / I_{1} P\right) \times \cdots \times \bigwedge^{k_{n}}\left(P / I_{n} P\right)$. (If $k_{j}=0$ for some j, put A / I_{j} at the j-th place.) Then $\psi(P)$ is finitely generated, and for any prime ideal \mathfrak{p} of A, suppose that \mathfrak{p} is in $\operatorname{Spec}\left(A / I_{j}\right)$. Then $\psi(p)_{\mathfrak{p}}=\bigwedge^{k_{j}}\left(P / I_{j} P\right)_{\mathfrak{p}}$ is a free $\left(A / I_{j}\right)_{\mathfrak{p}}=A_{\mathfrak{p}}$-module of rank 1 (since $\bigwedge^{k_{i}}\left(P / I_{i} P\right)_{\mathfrak{p}}=0=\left(A / I_{i}\right)_{\mathfrak{p}}$ for $\left.i \neq j\right)$. Hence $\psi(P) \in \operatorname{Pic}(A)$.

Firstly, we show that this definition is independent of the decomposition of $\operatorname{Spec} A$, i.e., if P has constant rank k on $\operatorname{Spec} A$, and we also have $A=\left(A / I_{1}\right) \times \cdots \times\left(A / I_{n}\right)$, then we show that $\bigwedge^{k}\left(P / I_{1} P\right) \times \cdots \times \bigwedge^{k}\left(P / I_{n} P\right) \cong \bigwedge^{k} P$.

Expand the right hand side, $\bigwedge^{k} P=\bigwedge^{k}\left(P / I_{1} P \times \cdots \times P / I_{n} P\right)$, so we have to show that the "mixed terms" like $\bigwedge^{k-1}\left(P / I_{1} P\right) \otimes \bigwedge^{1}\left(P / I_{2} P\right)$ are all zero. This follows from a simple observation: $I_{1}+I_{2}=A$. Suppose that this is false. Then $I_{1}+I_{2}$ is contained in some maximal ideal, which contradict to $\operatorname{Spec} A / I_{1}$ and $\operatorname{Spec} A / I_{2}$ are disjoint.

Now we show that ψ is well-defined on $K_{0} A$, i.e., if $P \oplus A^{n} \cong P^{\prime} \oplus A^{n}$, then $\psi(P)=$ $\psi\left(P^{\prime}\right)$. Note that P and P^{\prime} have the same rank, so it is suffices to check on each component. This reduces to the case that, if P and P^{\prime} are of constant rank k and $P \oplus A^{n} \cong P^{\prime} \oplus A^{n}$, we claim that $\bigwedge^{k} P \cong \bigwedge^{k} P^{\prime}$. Take the determinant line bundle, $\bigwedge^{k+n}\left(P \oplus A^{n}\right) \cong$ $\bigwedge^{k} P \otimes \bigwedge^{n} A^{n} \cong \bigwedge^{k} P$, which proves the claim.

Finally, we claim that ψ is a group homomorphism, i.e., $\psi(P \oplus Q) \cong \psi(P) \otimes \psi(Q)$. We can find I_{1}, \ldots, I_{n} such that both P and Q are of constant rank on each $\operatorname{Spec} A / I_{j}$, say the ranks are k_{j} and l_{j}. We have to prove that

$$
\bigwedge^{k_{1}+l_{1}}\left((P \oplus Q) / I_{1}(P \oplus Q)\right) \times \cdots \times \bigwedge^{k_{n}+l_{n}}\left((P \oplus Q) / I_{n}(P \oplus Q)\right)
$$

is isomorphic to

$$
\left(\bigwedge^{k_{1}}\left(P / I_{1} P\right) \times \cdots \times \bigwedge^{k_{n}}\left(P / I_{n} P\right)\right) \otimes\left(\bigwedge^{l_{1}}\left(Q / I_{1} Q\right) \times \cdots \times \bigwedge^{l_{n}}\left(Q / I_{n} Q\right)\right)
$$

Observe that $\bigwedge^{k_{1}+l_{1}}\left((P \oplus Q) / I_{1}(P \oplus Q)\right) \cong \bigwedge^{k_{1}}\left(P / I_{1} P\right) \otimes \bigwedge^{l_{1}}\left(Q / I_{1} Q\right)$, and the "mixed terms" $\bigwedge^{k_{1}}\left(P / I_{1} P\right) \otimes \bigwedge^{l_{2}}\left(Q / I_{2} Q\right)=0$ by $I_{1}+I_{2}=A$.

Note that $\psi \phi=\operatorname{id}_{\operatorname{Pic}(A)}$ by our construction.
4.31 Let A be a ring, and $H_{0} A$ the ring of continuous functions $\operatorname{Spec} A \rightarrow \mathbb{Z}$.
(a) Prove the rank: $K_{0} A \rightarrow H_{0} A$ is a ring homomorphism.
(b) Construct a ring homomorphism $\lambda: H_{0} A \rightarrow K_{0} A$ such that rank $\circ \lambda=\mathrm{id}_{H_{0} A}$.
(c) Let $\tilde{K}_{0} A=\operatorname{ker} \lambda 1^{1}$ Prove that $K_{0} A \cong H_{0} A \oplus \tilde{K}_{0} A$. Remark. It can be proved that $\tilde{K}_{0} A$ is the nilradical of $K_{0} A$; see [4, Proposition IX.4.6].
(a) This is a direct result followed by Exercise 4.26.
(b) Since $\operatorname{Spec} A$ is quasicompact for any commutative ring A, it has only finite connected components U_{i}. Because every element in $H_{0} A$ is a continuous function, each U_{i} corresponds to an integer d_{i}. Follow by Exercise 4.24, we know A has decomposition as $\prod_{i=1}^{n} A / I_{i}$ by Chinese Remainder Theorem, such that $U_{i} \cong \operatorname{Spec}\left(A / I_{i}\right)$. Now, consider λ defined by $\left[U_{i} \mapsto d_{i}\right] \mapsto \prod_{i=1}^{n}\left(A / I_{i}\right)^{d_{i}}$. Then, clearly, rank $\circ \lambda=\mathrm{id}_{H_{0} A}$.
(c) Since the exact sequence

$$
0 \rightarrow \tilde{K}_{0} A \rightarrow K_{0} A \rightarrow H_{0} A \rightarrow 0
$$

splits by (b), the claim holds.
4.32 (a) Prove that $\tilde{K}_{0} A=0$ if A is a field, or a local ring, or a principal ideal domain, or a semilocal ring (i.e., a ring with only finitely many maximal ideals).
(b) Prove that $\tilde{K}_{0} A \cong \operatorname{Pic}(A) \cong \mathrm{Cl}(A)$, the ideal class group of A, if A is a Dedekind domain.

Note that a general element in $\tilde{K}_{0} A$ can be written as $[P]-[Q]$, where P and Q are finitely generated projective modules with the same rank function.
(a) If A is a field, then the statement is obviously true since P and Q are simply vector spaces with the same finite dimension. If A is a local ring, then P and Q are free modules with the same finite rank, so we still have $\tilde{K}_{0} A=0$. If A is a PID, we have the structure theorem for finitely generated modules. Projectivity of the module implies that it does not have torsion part, so finitely generated projective modules over PID are free modules of finite rank, hence $\tilde{K}_{0} A=0$.

Let A be a semilocal ring, with maximal ideals $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{k}$. Then A can not be written as a direct product of more than k nonzero rings, so we may write $A=A_{1} \times \cdots \times A_{r}$,

[^0]where each A_{j} is an indecomposable ring (i.e., with only trivial idempotents). Then each A_{j} is still semilocal. We may write $P=P_{1} \times \cdots \times P_{r}$, where P_{j} is a finitely generated projective A_{j}-module of constant rank, and $A_{i} \cdot P_{j}=0$ for $i \neq j$ (c.f. the proof of Exercise 4.30).

Claim: Let A be a semilocal ring, P a finitely generated projective A-module of constant rank n. Then $P \cong A^{n}$.

Note that if this claim is true, then the isomorphic class of $P=P_{1} \times \cdots \times P_{r}$ only depends on the rank, which proves that $\tilde{K}_{0} A=0$ in the semilocal case. Now back to the claim. For any \mathfrak{m}_{i}, pick $x_{i 1}, \ldots, x_{i n} \in P$ such that they form a free basis of $P_{\mathfrak{m}_{i}}$. Then by Chinese Remainder Theorem, we can find x_{1}, \ldots, x_{n}, such that $x_{j} \equiv x_{i j}\left(\bmod \mathfrak{m}_{i} P\right)$. Hence x_{1}, \ldots, x_{n} form a basis of $P_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m}. Now we define $A^{n} \rightarrow P$ which sends the basis e_{i} to x_{i}. This map is an isomorphism on every maximal ideal, hence an isomorphism.
(b) By the structure theorem for finitely generated modules over Dedekind domains, P decomposes into torsion part and torsion-free part. The torsion part vanishes due to the projectivity, and the torsion-free part is precisely controlled by the class group, i.e., a finitely generated torsion-free module of rank n is isomorphic to $A^{n-1} \oplus I$, where I is a rank one projective module. (c.f. 4.4 Example (d)) The map $\tilde{K}_{0} A \rightarrow \operatorname{Pic}(A) \ldots$
4.33 Let A be a ring, B an A-algebra and P a projective A-module. Prove that $P \otimes_{A} B$ is a projective B-module, and that the diagram

commutes if P is finitely generated.
P is a projective A-module $\Rightarrow \exists Q$ an A-module such that $P \oplus Q$ is a free A-module $\Rightarrow(P \oplus Q) \otimes_{A} B=\left(P \otimes_{A} B\right) \oplus\left(Q \otimes_{A} B\right)$ is a free B-module $\Rightarrow P \otimes_{A} B$ is a projective B module. If P is finitely generated as an A-module, so is $P \otimes_{A} B$ as a B-module. Consider \mathfrak{p} is a prime ideal of B. We would like to prove that $\left(P \otimes_{A} B\right)_{\mathfrak{p}}$ is a free $B_{\mathfrak{p}}$-module of the same finite rank as the free $A_{\mathfrak{q}}$-module $P_{\mathfrak{q}}$, where \mathfrak{q} is the inverse of \mathfrak{p}. As in the proof of Exercise 4.27, we are able to find the basis $\left\{x_{i}\right\}_{i=1}^{n} \subset P$ for the $A_{\mathfrak{q}}$-module $P_{\mathfrak{q}}$. It is then natural to claim that $\left\{x_{i} \otimes 1\right\}_{i=1}^{n}$ is the basis for $\left(P \otimes_{A} B\right)_{\mathfrak{p}} \cong P_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} B_{\mathfrak{p}}$. However, this is certainly true because every element of $P_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} B_{\mathfrak{p}}$ has an unique representation in the form $\sum_{i=1}^{n} x_{i} \otimes b_{i}$. (This can be obtained by some elementary argument. See Keith.)
4.34 Prove that any ring homomorphism $f: A \rightarrow B$ induces a ring homomorphism $K_{0} A \rightarrow K_{0} B$ via $-\otimes_{A} B$, and that K_{0} is a functor.

Let P be a finitely generated projective A-module. First we claim that $P \otimes_{A} B$ is a finitely generated projective B-module. Note that there exists an A-module Q such that $P \oplus Q$ is a free A-module of finite rank. Hence $\left(P \otimes_{A} B\right) \oplus\left(Q \otimes_{A} B\right)$ is a free B-module of finite rank, which proves our claim. Since $-\otimes_{A} B$ commutes with direct sum, it gives a
well-defined map $K_{0} A \rightarrow K_{0} B$. We have $\left(P \otimes_{A} P^{\prime}\right) \otimes_{A} B \cong\left(P \otimes_{A} B\right) \otimes_{B}\left(P^{\prime} \otimes_{A} B\right)$, hence the map is a ring homomorphism. Also, given another ring homomophism $g: B \rightarrow C$, we have $K_{0}(g \circ f)=K_{0}(g) \circ K_{0}(f)$, since $\left(P \otimes_{A} B\right) \otimes_{B} C \cong P \otimes_{A} C$. Hence K_{0} is a functor.
4.35 Let P be a free A-module with basis $w_{1}, w_{2}, \ldots, w_{n}$, and define $w_{i}^{*} \in P^{*}=\operatorname{Hom}_{A}(P, A)$ by $w_{i}^{*}\left(w_{j}\right)=1$ if $i=j$ and $w_{i}^{*}\left(w_{j}\right)=0$ if $i \neq j$.
(a) Prove that P^{*} is a free A-module with basis $w_{1}^{*}, w_{2}^{*}, \ldots, w_{n}^{*}$.
(b) Let $f: P \rightarrow P$ be A-linear, $f\left(w_{i}\right)=\sum_{j=1}^{n} a_{i j} w_{j}$ with $a_{i j} \in A$. Prove that $\phi^{-1}(f)=\sum_{i, j} a_{i j} w_{i}^{*} \otimes w_{j}$, where $\phi: P^{*} \otimes_{A} P \rightarrow \operatorname{Hom}_{A}(P, P)$ is as in 4.8.
(c) Prove that the traces defined in 1.1 and 4.8 coincide.
(a) Consider any $T \in P^{*}$ such that $T\left(w_{i}\right)=a_{i}$. Then, it is clear that $T=\sum_{i=1}^{n} a_{i} w_{i}^{*}$. If $\sum_{i=1}^{n} b_{i} w_{i}^{*}=0$ for some $b_{i} \in A$, we have $0=0\left(w_{j}\right)=\sum_{i=1}^{n} b_{i} w_{i}^{*}\left(w_{j}\right)=b_{j}$ showing the linear independence.
(b) Since ϕ is an isomorphism, it suffices to show $\phi\left(\sum_{i, j} a_{i j} w_{i}^{*} \otimes w_{j}\right)=f$, which is clearly true by definition.
(c) Followed by 4.8, $\operatorname{Tr}(f)=\sum_{i, j} a_{i j} w_{i}^{*}\left(w_{j}\right)=\sum_{i=1}^{n} a_{i i}$.
4.36 Let A be a ring, B an A-algebra and P a finitely generated projective A-module. Prove that the diagram of natural maps

is commutative.
Note that $\operatorname{End}_{A}(P)=P^{*} \otimes P$. Given $f \in P^{*}, p \in P$,

4.37 Let A be a ring and P a finitely generated projective A-module.
(a) Suppose that P has constant rank n. Prove that $\operatorname{Tr}_{P / A}\left(\mathrm{id}_{P}\right)=n \cdot 1 \in A$.
(b) In the general case, prove that $\operatorname{Tr}_{P / A}\left(\mathrm{id}_{P}\right)$ is the image of $\operatorname{rank}(P)$ under the natural map $H_{0} A \rightarrow \Gamma(\operatorname{Spec} A, \mathcal{O}) \cong A$; here $H_{0} A$ is as in Exercise 4.31, the sheaf \mathcal{O} is the natural sheaf of rings on Spec A (see [10, Chapter II, Section 2]), the map $H_{0} A \rightarrow \Gamma(\operatorname{Spec} A, \mathcal{O})$ is induced by the ring homomorphisms $\mathbb{Z} \rightarrow A_{\mathfrak{p}}$, and $\Gamma(\operatorname{Spec} A, \mathcal{O}) \cong A$ is the isomorphism from [10, Chapter II, Proposition 2.2].

For (a), if P has constant rank n, then for any prime ideal \mathfrak{p}, we have $\operatorname{rank}\left(P_{\mathfrak{p}}\right)=n$. Note that now $P_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$-module of rank n. Using the previous exercise (Exercise 4.33) with $B=A_{\mathfrak{p}}$, we have that $\operatorname{Tr}_{P / A}\left(\operatorname{id}_{P}\right)$ equals to n in every localization $A_{\mathfrak{p}}$. So $\operatorname{Tr}_{P / A}\left(\mathrm{id}_{P}\right)=n \in A$.

Let $\Phi: H_{0} A \rightarrow \Gamma(\operatorname{Spec} A, \mathcal{O})$. Note that $\operatorname{Tr}_{P / A}\left(\operatorname{id}_{P}\right)$ and $\Phi(\operatorname{rank}(P))$ are elements in A. To prove they are equal, it suffices to show that they are equal under every localization $A_{\mathfrak{p}}$. Suppose P has constant rank. Then (b) follows from (a). If P does not have constant rank, then use Exercise 4.24. This completes the proof.
4.38 Let A be a ring, $0 \rightarrow P_{0} \rightarrow P_{1} \rightarrow P_{2} \rightarrow 0$ an exact sequence of A-modules in which P_{1} and P_{2} are finitely generated projective, and $g: P_{1} \rightarrow P_{1}$ an A-linear map with $g\left[P_{0}\right] \subset P_{0}$. Denote by h the induced map $P_{2} \rightarrow P_{2}$. Prove that P_{0} is finitely generated projective and $\operatorname{Tr}_{P_{1} / A}(g)=\operatorname{Tr}_{P_{0} / A}\left(g \mid P_{0}\right)+\operatorname{Tr}_{P_{2} / A}(h)$.

Since P_{2} is projective, the exact sequence splits. Hence there exists an exact sequence

$$
0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
$$

So P_{0} is finitely generated. It is projective since it is a direct summand of a projective module. For the trace formula, we firstly localized at \mathfrak{p}. We may assume P_{i} 's are free. Thus, the assertion follows from the standard fact from linear algebra.
4.39 Let P and Q be two finitely generated projective A-modules, and $f: P \rightarrow Q$, $g: Q \rightarrow P$ two A-linear maps. Prove that $\operatorname{Tr}_{Q / A}(f \circ g)=\operatorname{Tr}_{P / A}(g \circ f)$.

Since the trace map commutes with localization, we may prove this equality under localization at arbitrary prime ideal \mathfrak{p}. We may assume A is local. But then $P \cong A^{m}$ and $Q \cong A^{n}$. Now this is a consequence in linear algebra.
4.40 (a) Let P be a finitely generated projective A-module. Prove that the map ψ : $\operatorname{End}_{A}(P) \rightarrow \operatorname{End}_{A}\left(P^{*}\right)$ defined by $\psi(f)(g)=g \circ f$ is an anti-isomorphism of not necessarily commutative rings, and that $\operatorname{Tr}_{P^{*} / A}(\psi(f))=\operatorname{Tr}_{P / A}(f)$.
(b) Let $f: P \rightarrow P$ and $g: Q \rightarrow Q$ be endomorphisms of finitely generated projective A-modules P and Q. Prove that $\operatorname{Tr}_{P \otimes Q / A}(f \otimes g)=\operatorname{Tr}_{P / A}(f)$. $\operatorname{Tr}_{Q / A}(g)$.

As in the previous exercise, we may assume A is local, so P and P^{*} are free A-modules. Let $e_{1}, \cdots e_{n}$ be a basis of P and $e_{1}^{*}, \cdots, e_{n}^{*}$ be the dual basis of P^{*}. So under the matrix representation, f corresponds to a matrix M and $\psi(f)=M^{t}$. Now the result follows from a direct computation. This proves (a).

For the statement (b), let e_{1}, \cdots, e_{n} be a basis of P and d_{1}, \cdots, d_{m} be the one of Q. Under these bases, f has a matrix representation M and g has a matrix representation N. Then $f \otimes g$ has a matrix representation $M \otimes N$. Now the theorem follows from a basic fact from linear algebra.
4.41 Let $B_{1}, B_{2}, \ldots, B_{n}$ be algebras over a ring A. Prove that $\prod_{i=1}^{n} B_{i}$ is a finite projective A-algebra if and only if each B_{i} is a finite projective A-algebra.

It is clear that $\prod_{i=1}^{n} B_{i}$ is a finite A-algebra if and only if each B_{i} is. It remains to show that, when regarded as A-modules, $\prod_{i=1}^{n} B_{i}$ is projective if and only if so is each B_{i}.

Let B_{1}, \cdots, B_{n} be projective. For any A-epimorphism $f: M \longrightarrow N$ and any A-linear map $g: \prod_{i=1}^{n} B_{i} \longrightarrow N$, consider the map $\left.g\right|_{B_{i}}: B_{i} \longrightarrow N$ which is A-linear. By the projectiveness of B_{i} there is an A-linear map $h_{i}: B_{i} \longrightarrow M$ such that $\left.g\right|_{B_{i}}=f \circ h_{i}$. Setting $h=\prod_{i=1}^{n} h_{i}$, we have $g=f \circ h$. Hence $\prod_{i=1}^{n} B_{i}$ is projective.

Now we suppose that $\prod_{i=1}^{n} B_{i}$ is projective. Let $f: M \longrightarrow N$ be an A-epimorphism and $g_{j}: B_{j} \longrightarrow N$ an A-linear map. Define $g^{j}: \prod_{i=1}^{n} B_{i} \longrightarrow N$ as $g^{j}=g_{j} \circ p_{j}$, where $p_{j}: \prod_{i=1}^{n} B_{i} \longrightarrow B_{j}$ is the natural projection. Since $\prod_{i=1}^{n} B_{i}$ is projective, there exists an A-linear map $h^{j}: \prod_{i=1}^{n} B_{i} \longrightarrow M$ such that $g^{j}=f \circ h^{j}$. Note that in the category of A-modules, finite products coincide with finite sums. Let $\iota_{j}: B_{j} \longrightarrow \prod_{i=1}^{n} B_{i}$ be the inclusion. Choose $h_{j}=\iota_{j} \circ h^{j}$. Then we have $g_{j}=f \circ h_{j}$. This shows each B_{j} is projective.
4.42 Let A be a ring, B a finite projective A-algebra, and P a finitely generated projective B-module. Prove that P, when considered as an A-module, is finitely generated and projective. Prove also that the map $\operatorname{Hom}_{A}(B, A) \otimes_{B} \operatorname{Hom}_{B}(P, B) \rightarrow \operatorname{Hom}_{A}(P, A)$ sending $f \otimes g$ to $f \circ g$ is surjective.

Since P is a finitely generated projective B-module, by Exercise 4.3, there exists a finitely generated B-module Q such that $P \oplus Q \simeq B^{\oplus n}$ for some finite n. And since B is a finite projective A-algebra, there is a finitely generated A-module C such that $B \oplus C \simeq A^{\oplus m}$ for some finite m, when B is considered as an A-module. Then,

$$
P \oplus Q \oplus C^{\oplus n} \simeq B^{\oplus n} \oplus C^{\oplus n} \simeq\left(A^{\oplus m}\right)^{\oplus n}=A^{\oplus m n}
$$

where $Q \oplus C^{\oplus n}$ is a finitely generated A-module. Again by 4.3 we know P can be regarded as a finitely generated projective A-module.

For the second part, let

$$
\theta: \operatorname{Hom}_{A}(B, A) \otimes_{B} \operatorname{Hom}_{B}(P, B) \longrightarrow \operatorname{Hom}_{B}\left(P, \operatorname{Hom}_{A}(B, A)\right)
$$

be the map given by

$$
\theta(f \otimes g)(p)(b)=f(g(b p)),
$$

where $f \in \operatorname{Hom}_{A}(B, A), g \in \operatorname{Hom}_{B}(P, B), p \in P$ and $b \in B$. One can easily check that it is a well-defined B-linear map. We claim that θ is an isomorphism. Indeed, if $P=B$, then both sides of θ are isomorphic to $\operatorname{Hom}_{A}(B, A)$, and θ is clearly induced from the identity map. It can be generalized to the case in which $P=B^{\oplus n}$ for some finite n since finite direct sums commute with both tensor products and Hom functors. It follows that θ is an isomorphism for any finitely generated projective B-module P since P is a direct summand for some $B^{\oplus n}$ of finite rank.

Now we define

$$
\phi: \operatorname{Hom}_{B}\left(P, \operatorname{Hom}_{A}(B, A)\right) \longrightarrow \operatorname{Hom}_{A}(P, A)
$$

to be the map given by

$$
\phi(k)(p)=k(p)\left(1_{B}\right),
$$

where $k \in \operatorname{Hom}_{B}\left(P, \operatorname{Hom}_{A}(B, A)\right)$ and $p \in P$. Then $\psi=\phi \circ \theta$. Moreover, ϕ is a surjection since each $h \in \operatorname{Hom}_{A}(P, A)$ is the image of the B-linear map $k: P \longrightarrow \operatorname{Hom}_{A}(B, A)$ defined by $k(p)(b)=h(b p)$. Hence ψ is surjective.
4.45 Let $B_{1}, B_{2}, \ldots, B_{n}$ be algebras over a ring A. Prove that $\prod_{i=1}^{n} B_{i}$ is a projective separable A-algebra if and only if each B_{i} is a projective separable A-algebra.

In Exercise 4.41, we have seen that $\prod_{i=1}^{n} B_{i}$ is a finite projective A-algebra if and only if each B_{i} is a finite projective A-algebra. It remains to show that the map

$$
\phi: \prod_{i=1}^{n} B_{i} \longrightarrow \operatorname{Hom}_{A}\left(\prod_{i=1}^{n} B_{i}, A\right)
$$

given by $\phi\left(\left(b_{i}\right)_{1 \leq i \leq n}\right)\left(\left(b_{i}^{\prime}\right)_{1 \leq i \leq n}\right)=\operatorname{Tr}_{\Pi B_{i} / A}\left(\left(b_{i} b_{i}^{\prime}\right)_{1 \leq i \leq n}\right)$ is an isomorphism if and only if each

$$
\phi_{i}: B_{i} \longrightarrow \operatorname{Hom}_{A}\left(B_{i}, A\right)
$$

given by $\phi_{i}\left(b_{i}\right)\left(b_{i}^{\prime}\right)=\operatorname{Tr}_{B_{i} / A}\left(b_{i} b_{i}^{\prime}\right)$ is an isomorphism.
Considering each B_{i} as an A-module, we have the natural isomorphism $\prod_{i=1}^{n} B_{i}=$ $\coprod_{i=1}^{n} B_{i}$, and hence the canonical

$$
\operatorname{Hom}_{A}\left(\prod_{i=1}^{n} B_{i}, A\right) \simeq \prod_{i=1}^{n} \operatorname{Hom}_{A}\left(B_{i}, A\right)
$$

So it suffices to check that

$$
\operatorname{Tr}_{\prod_{i=1}^{n} B_{i} / A}\left(\left(b_{i} b_{i}^{\prime}\right)_{1 \leq i \leq n}\right)=\sum_{i=1}^{n} \operatorname{Tr}_{B_{i} / A}\left(b_{i} b_{i}^{\prime}\right) .
$$

In fact, for $n=2$, it is just the result of Exercise 4.38; by using an induction argument we can show that the identity holds for a general n.
4.46 Let A be a ring, B a projective separable A-algebra and C a projective separable B-algebra. Prove that C is a projective separable A-algebra. [Hint: use Exercises 4.42 and 4.44. In 5.12 we shall give a different proof.]

Since B and C are projective separable algebra over A and over B, respectively, we know they are finite over their base rings; and the maps

$$
\phi_{B / A}: B \longrightarrow \operatorname{Hom}_{A}(B, A) \text { and } \phi_{C / B}: C \longrightarrow \operatorname{Hom}_{B}(C, B)
$$

defined by $\phi_{B / A}(b)\left(b^{\prime}\right)=\operatorname{Tr}_{B / A}\left(b b^{\prime}\right)$ and $\phi_{C / B}(c)\left(c^{\prime}\right)=\operatorname{Tr}_{C / B}\left(c c^{\prime}\right)$ are isomorphisms over A and over B, respectively. By Exercise 4.43, C is then a finite projective A-algebra. It remains to show that the map

$$
\phi_{C / A}: C \longrightarrow \operatorname{Hom}_{A}(C, A)
$$

given by $\phi_{C / A}(c)\left(c^{\prime}\right)=\operatorname{Tr}_{C / A}\left(c c^{\prime}\right)$ is an A-linear isomorphism.

Note that $\phi_{C / A}$ can be factorized as the chain

$$
C=B \otimes_{B} C \xrightarrow{\phi_{B / A} \otimes \phi_{C / B}} \operatorname{Hom}_{A}(B, A) \otimes_{B} \operatorname{Hom}_{B}(C, B) \xrightarrow{\psi} \operatorname{Hom}_{A}(C, A),
$$

where ψ is map $f \otimes g \mapsto f \circ g$. In fact, for any $c, c^{\prime} \in C$, we have

$$
\psi\left(\phi_{B / A} \otimes \phi_{C / B}(1 \otimes c)\right)\left(c^{\prime}\right)=\operatorname{Tr}_{B / A}\left(\operatorname{Tr}_{C / B}\left(c c^{\prime}\right)\right)=\operatorname{Tr}_{C / A}\left(c c^{\prime}\right)=\phi_{C / A}(c)\left(c^{\prime}\right)
$$

by applying the result in Exercise 4.44. Also, we know that $\phi_{B / A} \otimes \phi_{C / B}$ is an isomorphism, and that ψ is a surjection from Exercise 4.42. It now suffices to show that $\phi_{C / A}$ is injective. Suppose that $\phi_{C / A}(c)=0$, or that $\operatorname{Tr}_{C / A}\left(c c^{\prime}\right)=0$ for all $c^{\prime} \in C \ldots$
4.47 Let A be a ring, B a projective separable A-algebra and C any A-algebra. Prove that $B \otimes_{A} C$ is a projective separable C-algebra.

It follows from the given condition that $B \otimes_{A} C$ is a finite projective C-algebra by Exercise 4.33. So now it suffices to check that the map

$$
\bar{\phi}: B \otimes_{A} C \longrightarrow \operatorname{Hom}_{C}\left(B \otimes_{A} C, C\right)
$$

given by $\bar{\phi}(b \otimes c)\left(b^{\prime} \otimes c^{\prime}\right)=\operatorname{Tr}_{B \otimes{ }_{A} C / C}\left(b b^{\prime} \otimes c c^{\prime}\right)$ is an isomorphism. Let

$$
\phi: B \longrightarrow \operatorname{Hom}_{A}(B, A)
$$

be the isomorphism given by the separability of B over A so that $\phi(b)\left(b^{\prime}\right)=\operatorname{Tr}_{B / A}\left(b b^{\prime}\right)$. Suppose

$$
\theta: \operatorname{Hom}_{A}(B, A) \otimes_{A} C \longrightarrow \operatorname{Hom}_{C}\left(B \otimes_{A} C, C\right)
$$

is the C-linear map such that $\theta(f \otimes c)\left(b \otimes c^{\prime}\right)=f(b) c c^{\prime}$. We claim that the following diagram commutes:

and that θ is an isomorphism. Indeed, we have

$$
\begin{aligned}
\theta\left(\left(\phi \otimes \operatorname{id}_{C}\right)(b \otimes c)\right)\left(b^{\prime} \otimes c^{\prime}\right) & =\theta(\phi(b) \otimes c)\left(b^{\prime} \otimes c^{\prime}\right) \\
& =\operatorname{Tr}_{B / A}\left(b b^{\prime}\right) c c^{\prime} \\
& =\operatorname{Tr}_{B \otimes_{A} C / C}\left(b b^{\prime} \otimes c c^{\prime}\right)
\end{aligned}
$$

where the third equality follows from Exercise 4.36 . This proved the commutativity of the diagram. ...

5 Exercises for Section 5

5.1 Let X be a scheme and $d: X \rightarrow \mathbb{Z}$ any continuous function that assumes only nonnegative values. Prove that there exists a finite and locally free morphism $Y \rightarrow X$ such that $d=[Y: X]$.

Decompose X into disjoint connected components $X=\amalg X_{i}$. Then the continuous function d is constant on each X_{i}, say d_{i}. We simply define $Y=\amalg\left(\amalg_{1 \leq k \leq d_{i}} X_{i}^{(k)}\right)$, where $X_{i}^{(k)}$ is a copy of X_{i}, and $Y \rightarrow X$ maps each $X_{i}^{(k)}$ to X_{i}.
5.2 Let $Y \rightarrow X$ be a finite and locally free morphism. Prove that the underlying map $\operatorname{sp}(Y) \rightarrow \operatorname{sp}(X)$ is open and closed.

It is suffice to check locally since $Y \rightarrow X$ is finite. Let B be a finitely generated projective A-algebra via $\phi: A \rightarrow B$, we want to show that $f: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is open and closed. We may assume that $\operatorname{Spec} A$ is connected, so B has constant rank on A, and assume that $B \neq 0$. Hence $\phi: A \rightarrow B$ is injective.

To show that f is closed, let I be an ideal in B, we claim that $f(V(I))=V(\phi(I))$. So, if $\phi^{-1} I \subset \mathfrak{p} \in \operatorname{Spec} A$, we want to show that there exists $I \subset \mathfrak{q} \in \operatorname{Spec} B$ such that $\phi^{-1} \mathfrak{q}=\mathfrak{p}$. Since B over A is finite, ϕ is in fact an integral extension. Hence $\bar{\phi}: A / \phi^{-1} I \rightarrow B / I$ is also an integral extension, and the closedness of f follows from the going-up property.

To show that f is open, we are going to use several facts.
Fact: A subset of $\operatorname{Spec} A$ is open if and only if it is constructible and stable under generalization.

Fact: (Chevalley's theorem) If $\phi: A \rightarrow B$ is finitely presented, then the image of a constructible subset of $\operatorname{Spec} B$ is a constructible subset of $\operatorname{Spec} A$.

Fact: Finitely generated projective implies finitely presented. (Theorem 4.6)
Combining these facts, in order show that f is open, it is suffice to show that for any distinguished open subset $D(g)$ of $\operatorname{Spec} B, f(D(g))$ is stable under generalization, i.e., if $\mathfrak{p} \in f(D(g))$ and $\mathfrak{p} \in\left\{\mathfrak{p}^{\prime}\right\}$ (equivalently, $\mathfrak{p}^{\prime} \subset \mathfrak{p}$), then $\mathfrak{p}^{\prime} \in f(D(g))$. So there exists $g \notin \mathfrak{q} \in \operatorname{Spec} B$ such that $\mathfrak{p}=\phi^{-1}(\mathfrak{q})$. Since $\phi: A \rightarrow B$ is a finite projective extension, it is in particular a flat extension. Hence $A_{\mathfrak{p}} \rightarrow B_{\mathfrak{q}}$ is also a flat extension. By going down, there exists $\mathfrak{q}^{\prime} \subset \mathfrak{q}$ such that $\mathfrak{p}^{\prime}=\phi^{-1}\left(\mathfrak{q}^{\prime}\right)$. Since $g \notin \mathfrak{q}^{\prime}$, this proves the openness.
5.3 Let $f_{i}: Y_{i} \rightarrow X$ be a morphism of schemes, for $1 \leq i \leq n$, and $f: Y=Y_{1} \amalg \cdots \amalg Y_{n} \rightarrow$ X the induced morphism. Prove that $Y \rightarrow X$ is finite and locally free if and only if each $Y_{i} \rightarrow X$ is finite and locally free. Prove also that $[Y: X]=\sum_{i=1}^{n}\left[Y_{i}: X\right]$ if $Y \rightarrow X$ is finite and locally free.

Note that if U is an open affine subset of $Y=Y_{1} \amalg \cdots \amalg Y_{n}$, then $U \cap Y_{i}$ is a closed subset of U for all i, hence is also affine. So by Prop. 5.2, the first statement is equivalent to: B_{i} is a finite projective A-algebra for all $1 \leq i \leq n$ if and only if $B_{1} \times \cdots \times B_{n}$ is a finite projective A-algebra, which is precisely Exercise 4.41.

For the second statement, suppose that $\operatorname{Spec} A$ is an connected open affine subset of X. Then its preimage is Spec $B_{1} \amalg \cdots \amalg \operatorname{Spec} B_{n}$, where B_{i} is a finite projective A-algebra of constant rank for all $1 \leq i \leq n$, and the rank of $B_{1} \times \cdots \times B_{n}$ is simply the sum of the ranks of all B_{i}.
5.4 Let $\left(X_{i}\right)_{i \in I}$ be a collection of schemes, and $Y_{i} \rightarrow X_{i}$ a finite and locally free morphism, for each $i \in I$. Prove that the induced morphism $\amalg_{i \in I} Y_{i} \rightarrow \amalg_{i \in I} X_{i}$ is finite and locally free, and that each finite and locally free morphism $Y \rightarrow \amalg_{i \in I} X_{i}$ is obtained in this way. Prove also that $\left[\amalg_{i \in I} Y_{i}: \amalg_{i \in I} X_{i}\right]$ equals $\left[Y_{j}: X_{j}\right]$ when restricted to $\operatorname{sp}\left(X_{j}\right)$, for each $j \in I$.

Only the statement "each finite and locally free morphism $Y \rightarrow \amalg_{i \in I} X_{i}$ is obtained in this way" is less obvious. Decompose Y into $\amalg Y_{i}$ according to its image, we want to show that each $Y_{i} \rightarrow X_{i}$ is finite and locally free. By Prop. 5.2, it is suffices to show that for any affine open subset $\operatorname{Spec} A$ of X_{i}, its preimage is also affine, say $\operatorname{Spec} B$, and B is a finite projective A-algebra. But this follows from $Y \rightarrow \amalg X_{i}$ is finite and locally free.
5.5 Let $f: Y \rightarrow X$ be a finite and locally free morphism of schemes, and let $W \rightarrow X$ be any morphism of schemes.
(a) Prove that $p: Y \times_{X} W \rightarrow W$ is finite and locally free.
(b) Prove the diagram

is commutative.
(c) Suppose that $Y \rightarrow X$ is surjective. Prove that $Y \times_{X} W \rightarrow W$ is surjective.
(a) There exists an open affine cover $\left\{U_{i}=\operatorname{Spec} A_{i}\right\}$ of X such that $f^{-1}\left(U_{i}\right)=\operatorname{Spec} B_{i}$ is affine and B_{i} is a free A_{i}-module of finite rank. And there is an affine open cover $\left\{V_{j}=\operatorname{Spec} C_{j}\right\}$ of W such that every $f\left(\operatorname{Spec} C_{j}\right)$ is contained in some $\operatorname{Spec} A_{i}$. So $p^{-1}\left(\operatorname{Spec} C_{j}\right)=\operatorname{Spec}\left(B_{i} \otimes_{A_{i}} C_{j}\right)$ is affine and $B_{i} \otimes_{A_{i}} C_{j}$ is a free C_{j}-module of finite rank, which is the rank of B_{i} over A_{i}.
(b) follows from the proof of (a).
(c) Surjectivity is stable under base change in general case. It is suffice to prove the following claim:

Claim: Given fiber product

we have $g^{-1}(f(Z))=p\left(q^{-1}(Z)\right)$ for any $Z \subset Y$.
By definition, $x \in g^{-1}(f(Z))$ if and only if there exists $y \in Z$ such that $g(x)=f(y)$. So it is suffice to prove the following claim:

Claim: If $x \in W, y \in Y$ satisfies $g(x)=f(y)=s$, then there exists $u \in Y \times_{X} W$ such that $p(u)=x, p(u)=y$.

We have the following diagram:

where \mathfrak{m} is any maximal ideal of $k(x) \otimes_{k(s)} k(y)$.
So this induces a morphism from $\operatorname{Spec}\left(k(x) \otimes_{k(s)} k(y) / \mathfrak{m}\right)$ to the fiber product $Y \times_{X} W$, and the image of this morphism gives the desired $u \in Y \times{ }_{X} W$.
5.7 Let $Y \rightarrow X$ and $Z \rightarrow X$ be finite and locally free morphisms of schemes.
(a) Prove that $Y \times_{X} Z \rightarrow X$ is finite and locally free.
(b) Prove that $\left[Y \times_{X} Z: X\right]=[Y: X] \cdot[Z: X]$.
(c) Prove that $Y \times_{X} Z \rightarrow X$ is surjective if $Y \rightarrow X$ and $Z \rightarrow X$ are surjective.
(a) follows from Exercises 5.5(a) and 5.6.
(b) $\left[Y \times_{X} Z: X\right]=\left[Y \times_{X} Z: Z\right] \cdot[Z: X]=[Y: X] \cdot[Z: X]$ by Exercises $5.5(\mathrm{~b})$ and 5.6.
(c) follows from Exercise 5.5(c).
5.8 Do Exercise 5.1-5.7 with everywhere "finite and locally free" replaced by"finite étale".

The construction of 5.1 is still valid. 5.2 is still true. In 5.3 , we should replace the usage of Prop. 5.2 by Prop. 5.8. Then it is suffices to show that B_{i} is a projective separable A-algebra for all $1 \leq i \leq n$ if and only if $B_{1} \times \cdots \times B_{n}$ is a projective separable A-algebra, which is precisely Exercise 4.45. The argument of 5.4 is still valid, after replacing Prop. 5.2 by Prop. 5.8. For 5.5 (a), we need to show that if B is a projective separable A-algebra, then $B \otimes_{A} C$ is a projective separable C-algebra, which is Exercise 4.47. And 5.5(b)(c) are still true. For 5.6, we have to show that if B is a projective separable A-algebra and C a projective separable B-algebra, then C is a projective separable A-algebra, which is Exercise 4.46. Finally, the argument of 5.7 is still valid.

6 Exercises for Section 6

6.1 A module M over a domain A is called torsionfree if for every non-zero $a \in A$ and every non-zero $x \in M$ one has $a x \neq 0$.
(a) Prove that a flat module over a domain is torsionfree.
(b) Let A be a Dedekind domain. Prove that any torsionfree A-module can be written as an injective limit of finitely generated projective A-modules, and that an A-module is flat if and only if it is torsionfree.
(a). Let M be flat, so the functor $M \otimes_{A}$ is exact. Let $a \neq 0, a \in A$, consider the module homomorphism $A \rightarrow A$ via $r \mapsto a r$. This is injective by A is a domain. Tensoring the functor, by M is flat, we have again an injection:

$$
M \otimes_{A} A \rightarrow M \otimes_{A} A
$$

via $m \mapsto a m$. So M is torsion free.
For (b), let A be Dedekind. We have to prove if M is a torsion free A-module, then M is flat. Since any element $x \in M$ is contained in a finitely generated submodule of M (e.g. $A x \leq M$), and $\left\{M_{i} \subseteq M \mid M_{i} \text { a finite generated submodule }\right\}_{i \in I}$ with respect to inclusion form an injective system, hence $M=\underline{\lim }_{i} M_{i}$. Now by A is Dedekind and M_{i} is finitely generated torsionfree for all $i \in I$. Hence $\vec{M} i$ are projective, hence flat. By taking direct limit is an exact functor in module theory, we get M is flat.
6.2 Prove Proposition 6.3: Let $f: Y \rightarrow X$ be a morphism of schemes. Then the following four assertions are equivalent:
(i) f is flat;
(ii) for any pair of open affine subsets $V=\operatorname{Spec} B \subset Y, U=\operatorname{Spec} A \subset X$ with $f[V] \subset U$ the induced ring homomorphism $A \rightarrow B$ is flat;
(iii) there is a covering of Y by open affine subsets $V_{i}=\operatorname{Spec} B_{i}$ such that for each i there is an open affine subset $U_{i}=\operatorname{Spec} A_{i} \subset X$ with $f\left[V_{i}\right] \subset U_{i}$ for which the induced ring homomorphism $A_{i} \rightarrow B_{i}$ is flat;
(iv) for every closed point $y \in Y$ the induced ring homomorphism $\mathcal{O}_{X, f(y)} \rightarrow \mathcal{O}_{Y, y}$ is flat.
(i) \Rightarrow (ii) $\left.\mathcal{O}_{Y}\right|_{V} \cong B$ and $\left.\mathcal{O}_{X}\right|_{U} \cong A$. Then, the statement is equivalent to Proposition 6.2 (iii) \Rightarrow (i).
(ii) \Rightarrow (iii) X is a scheme covered by open affine subsets $U_{i}=\operatorname{Spec} A_{i}$. Consider the open subset $f^{-1}\left(U_{i}\right)$, which can be also covered by affine subsets $V_{i j}$. Since the collection of $f^{-1}\left(U_{i}\right)$ covers Y, all $V_{i j}$ form an affine open covering of Y satisfying the condition $f\left[V_{i j}\right] \subset U_{i}$. Then, by (ii), the statement that the induced ring homomorphism is flat immediately follows.
(iii) \Rightarrow (iv) \Rightarrow (i) Equivalent to Proposition 6.2 (i) \Rightarrow (iv) \Rightarrow (ii).
6.3 Let $f: Y \rightarrow X$ be a morphism of schemes. Prove that f is finitely presented (as in 6.4) if and only if for every open affine subset $U=\operatorname{Spec} A \subset X$ the open subscheme $f^{-1}[U] \subset Y$ is affine, $f^{-1}[U]=\operatorname{Spec} B$, where B is an A-algebra that is finitely presented as an A-module.

The "if" part follows from definition. Now suppose that there exists a covering of X by open affine subsets $U_{i}=\operatorname{Spec} A_{i}$, such that for each i the open subscheme $f^{-1}\left(U_{i}\right)=$ Spec B_{i}, where B_{i} is an A_{i}-algebra that is finitely presented as an A_{i}-module.

Let $U=\operatorname{Spec} A \subset X$ be an affine open subset of X. For each $U_{i}, U \cap U_{i}$ can be covered by distinguished open sets $\left\{\operatorname{Spec}\left(A_{i}\right)_{f_{j}} \mid j \in J\right\}$ for some $f_{j} \in A_{i}$ and index set J. Observe that $f^{-1}\left(\operatorname{Spec}\left(A_{i}\right)_{f_{j}}\right)=\operatorname{Spec}\left(B_{i}\right)_{\phi\left(f_{j}\right)}$, where ϕ is the map from A_{i} to B_{i} induced
by f. Also observe that $\left(B_{i}\right)_{\phi\left(f_{j}\right)}$ is finitely presented $\left(A_{i}\right)_{f_{j}}$-module. So we have reduce to proving the statement for X is affine, say $X=\operatorname{Spec} A$.
$U_{i}=\operatorname{Spec} A_{i}$ can be covered by distinguished open subsets $\operatorname{Spec} A_{f}$, observe that if $\phi: A \rightarrow A_{i}$ is the map induced by the inclusion $U_{i} \rightarrow X$, then $A_{f} \cong\left(A_{i}\right)_{\phi(f)}$. Using the fact that the underlying topology of an affine scheme is quasi-compact, we have reduce to proving the following statement: Let $X=\operatorname{Spec} A, X=\cup_{1 \leq i \leq n} U_{i}$, where $U_{i}=\operatorname{Spec} A_{f_{i}}$ (so f_{1}, \cdots, f_{n} generates A), $f^{-1}\left(U_{i}\right)=\operatorname{Spec} B_{i}$, and B_{i} is a finitely presented $A_{f_{i}}$-module. Aim to show that Y is affine(say $\operatorname{Spec} B$), and B is a finitely presented A-module.

To show that Y is affine, we use the affineness criterion in [Hartshorne, Algebraic Geometry]: Let $B=\Gamma\left(Y, \mathcal{O}_{Y}\right)$. Then Y is affine if and only if there exists $g_{1}, \cdots, g_{m} \in B$ such that $Y_{g_{i}}:=\left\{y \in Y \mid\left(g_{i}\right)_{y} \notin m_{y}\right\}$ are affine for all $1 \leq i \leq m$, and g_{1}, \cdots, g_{m} generates B.

Let $\phi: A \rightarrow B$ be the map induced by $f: Y \rightarrow X$, we define $g_{i}=\phi\left(f_{i}\right)$.
Claim: $Y_{g_{i}}=\operatorname{Spec} B_{i}$.
$y \in \operatorname{Spec} B_{i}$ if and only if $f(y) \in \operatorname{Spec} A_{f_{i}}$ if and only if $f_{i} \notin f(y)$ if and only if $\left(f_{i}\right)_{f(y)} \notin m_{f(y)}$ if and only if $\left(g_{i}\right)_{y} \notin m_{y}$. The last "if and only if" is because the induced map between local rings is local homomorphism.

These g_{1}, \cdots, g_{n} generates B since f_{1}, \cdots, f_{n} generates A. Hence the affineness criterion is checked, so $Y=\operatorname{Spec} B$. Finally, we reduce to proving the following algebraic problem: Let f_{1}, \ldots, f_{n} genereates A, M a A-module. If $M_{f_{i}}$ is finitely presented for every i, then so is M.

Claim: If $M_{f_{i}}$ are finitely generated, then so is M.
Let $x_{i_{1}}, \ldots, x_{i_{k_{i}}} \in M$ generates $M_{f_{i}}$, we claim that these $x_{i_{j}}$ generates M. Given any $y \in M$, there exists N large enough such that $f_{i}^{N} y$ are generated by $x_{i_{j}}$ for all i. Observe that $f_{1}^{N}, \ldots, f_{n}^{N}$ also generates A, which proves the claim.

By simple diagram chasing, one can show that if N is finitely presented A-module, then for any $A^{\oplus n} \rightarrow N \rightarrow 0$, the kernel is finitely generated. Apply to our case, we already know that M is finitely generated, write $K \rightarrow A^{\oplus l} \rightarrow M \rightarrow 0$, we want to show that K is finitely generated. Localize to each f_{i}, by the diagram-chasing-fact that just mentioned, $K_{f_{i}}$ is finitely generated, hence by our claim again, K is finitely generated. Hence M is finitely presented.
6.8 Let $A=\prod_{i \in I} k_{i}$ be the product of an infinite collection $\left(k_{i}\right)_{i \in I}$ of fields, and $\mathfrak{a}=$ $\left\{\left(x_{i}\right)_{i \in I} \in A: x_{i}=0\right.$ for almost all $\left.i \in I\right\}$. Prove that the morphism $\operatorname{Spec} A / \mathfrak{a} \rightarrow$ $\operatorname{Spec} A$ is finite and étale, but not finite étale.

Certainly, A / \mathfrak{a} is a finitely generated A-module generated by $1+\mathfrak{a}$. However, the kernel \mathfrak{a} has infinitely many independent generators e_{j} with $x_{i}=\delta_{i}^{j}$, so there is no possibility for \mathfrak{a} to be finitely generated. Hence, A / \mathfrak{a} is NOT finitely presented and the morphism is NOT finite étale. It remains to show the morphism is flat and unramified. $(A / \mathfrak{a})_{\mathfrak{p} / \mathfrak{a}} \cong(A-\mathfrak{p})^{-1}(A / \mathfrak{a}) \cong A / \mathfrak{a} \otimes_{A} A_{\mathfrak{p}} \cong A_{\mathfrak{p}} / \mathfrak{a} A_{\mathfrak{p}}, \forall \mathfrak{p} \in \operatorname{Spec} A \Rightarrow$

$$
A_{\mathfrak{p}} / \mathfrak{p} \cong\left(A_{\mathfrak{p}} / \mathfrak{a} A_{\mathfrak{p}}\right) /\left(\mathfrak{p}\left(A_{\mathfrak{p}} / \mathfrak{a} A_{\mathfrak{p}}\right)\right)
$$

So, the morphism is certainly unramified. To show flatness, we need the following lemma from Stack]: (Equational criterion for flatness) A module M over A is flat if and only if every relation in M is trivial.

Given $\sum_{i=1}^{n} a_{i}\left(b_{i}+\mathfrak{a}\right)=\mathfrak{a}$, where $a_{i}, b_{i} \in A$. We have $\sum_{i=1}^{n} a_{i} b_{i}=\sum_{j=1}^{m} s_{j} e_{j} \in \mathfrak{a}$, where $s_{j} \in k_{j}$ and e_{j} as defined before. Let the j-th component of b_{i} be $\left(b_{i}\right)_{j} \in k_{j}$. Assume $b_{i}^{\prime}=b_{i}-\sum_{j=1}^{m}\left(b_{i}\right)_{j} e_{j} \in A$. Then, $b_{i}+\mathfrak{a}=b_{i}^{\prime}(e+\mathfrak{a})$, where e is the identity. And $\sum_{i=1}^{n} a_{i} b_{i}^{\prime}=0$. Therefore, the relation is trivial.
6.9 Let A be a ring, M and N two finitely generated free A-module, and $f: M \rightarrow N$ an A-linear map. Prove that f is an isomorphism if and only if for each $\mathfrak{p} \in \operatorname{Spec} A$ the induced map $M \otimes_{A} k(\mathfrak{p}) \rightarrow N \otimes_{A} k(\mathfrak{p})$ is an isomorphism.

Since isomorphism between modules is a local property, it is suffice to show the following statement: Let (A, \mathfrak{m}) be a local ring, M and N two finitely generated free A-modules. Then $f: M \rightarrow N$ is an isomorphism if and only if $\bar{f}: M / \mathfrak{m} M \rightarrow N / \mathfrak{m} N$ is an isomorphism.

The "only if" part is obvious since a free basis of $M($ resp. $N)$ over A gives a basis of $M / \mathfrak{m} M$ (resp. $N / \mathfrak{m} N$) over A / \mathfrak{m}. For the "if" part, we choose a free basis of M, by using \bar{f} is isomorphism and Nakayama lemma, the image of this basis under f generates N, i.e., f is surjective.

Note that \bar{f} is an isomorphism implies M and N have the same ranks, hence we can compose f with an isomorphism from N to M. So it is suffice to show that if an A-linear $\operatorname{map} g: M \rightarrow M$ is surjective, then it is an isomorphism.

We can view M as a finitely generated $A[X]$-module by setting $X \cdot m=g(m)$ for $m \in$ M. Then $X M=M$ since g is surjective. By Nakayama lemma, there exists $Y \in A[X]$ such that $(1+X Y) M=0$. Now if $u \in \operatorname{ker}(g)$, then $0=(1+X Y) u=u+Y f(u)=u$. Hence g is an isomorphism.
6.11 Let A be a ring, B a separable A-algebra (see 6.10), and C an A-algebra. Prove that $B \otimes_{A} C$ is a separable C-algebra.
B a separable A-algebra $\Rightarrow B$ is a projective $B \otimes_{A} B$-module. Given $\left(B \otimes_{A} B\right) \otimes_{A} C$ modules M, N with surjective homomorphism $M \longrightarrow N . M, N$ can be seen as $B \otimes_{A} B$ modules by the natural map $B \otimes_{A} B \rightarrow\left(B \otimes_{A} B\right) \otimes_{A} C$. Hence, we have

Similarly, C is a projective C-module and M, N can be viewed as C-modules. We obtain the following diagram by the universal property.

Therefore, $B \otimes_{A} C$ is a projective $\left(B \otimes_{A} B\right) \otimes_{A} C \cong\left(B \otimes_{A} B\right) \otimes_{A}\left(C \otimes_{C} C\right) \cong B \otimes_{A}$ $\left(B \otimes_{A} C\right) \otimes_{C} C \cong B \otimes_{A} C \otimes_{C}\left(B \otimes_{A} C\right)$-module $\Rightarrow B \otimes_{A} C$ is a separable C-algebra.
6.12 Let A be a ring and $B_{1}, B_{2}, \ldots, B_{n}$ algebras over A. Prove that $\prod_{i=1}^{n} B_{i}$ is a separable A-algebra if and only if each B_{i} is a separable A-algebra.

First prove the if part. Since B_{i} is projective $B_{i} \otimes_{A} B_{i}$-module for all i, we view any $\left(\oplus B_{i}\right) \otimes_{A}\left(\oplus B_{i}\right)$-module diagram

as $B_{i} \otimes_{A} B_{i}$-module diagram. Then, for each i we have

We can really find a map from $\oplus B_{i}$ to M by summing up f_{i}, which is a $\left(\oplus B_{i}\right) \otimes_{A}\left(\oplus B_{i}\right)$ module homomorphism. On the other hand, if $\oplus B_{i}$ is a separable A-algebra, we consider any $B_{i} \otimes_{A} B_{i}$-module diagram

as a $\left(\oplus B_{i}\right) \otimes_{A}\left(\oplus B_{i}\right)$-module by the natural map

$$
\left(\oplus B_{i}\right) \otimes_{A}\left(\oplus B_{i}\right) \rightarrow B_{i} \otimes_{A} B_{i}
$$

Then, we can choose the map from B_{i} to M be $\left.f\right|_{B_{i}}$ to make the diagram commute. So, B_{i} is a separable A-algebra.
6.13 Let K be an algebraically closed field and B a finite dimensional K-algebra that is a local ring. Prove that the residue class field of B is K, and that $B \otimes_{K} B$ is a local ring.

Assume B has the unique maximal ideal \mathfrak{m}. Then, B / \mathfrak{m} is a B-module and thus a K-module, which is necessarily a finite dimensional K-algebra. However, B / \mathfrak{m} is a field K^{\prime} and hence finite extension of K. By $K=\bar{K}, K^{\prime}=K$. Now consider $B \otimes_{K} B$. Follow by 2.6 , we know \mathfrak{m} is the unique prime ideal and hence equal to $\operatorname{nil}(B)$. So, $\mathfrak{m} \otimes_{K} B$ and $B \otimes_{K} \mathfrak{m}$ are also nil ideals. And thus they are lie in radical. To show $B \otimes_{K} B$ is local,
it then suffices to show $B \otimes_{K} B /\left(\mathfrak{m} \otimes_{K} B+B \otimes_{K} \mathfrak{m}\right)$ is local. However, the latter one is isomorphic to $K \otimes_{K} K \cong K$.

A more general discussion about whether tensor products of local rings are local or not can be referred to [Sweedler] and Lawrence].
6.14 Let X be a topological space that can be written as the union of open irreducible subsets. Prove that X can be written as the disjoint union of open irreducible subsets.

We first claim $X_{1} \cup X_{2}$ is open and irreducible if so are X_{1} and X_{2} and they are not disjoint. Open is clear. To show it is irreducible, we consider any two open subsets and assert they cannot have nonempty intersection. If U, V are two open subsets in $X_{1} \cup X_{2}$, then by irreducibility, $U \cap\left(X_{1} \cap X_{2}\right)$ and $V \cap\left(X_{1} \cap X_{2}\right)$ are nonempty. So, again by irreducibility, $U \cap V \cap\left(X_{1} \cap X_{2}\right) \neq \emptyset \Rightarrow U \cap V \neq \emptyset$.

Now, consider X is the union of open irreducible subsets $U_{\alpha}, \alpha \in \Lambda$. Consider

$$
P=\left\{V \mid V=\bigcup_{\beta \in \Xi \subset \Lambda} U_{\beta}, V \text { is connected and irreducible }\right\} .
$$

Then, P is a nonempty poset and every chain $\left\{V_{\gamma}\right\}_{\gamma \in \Gamma}$ in P has an upper bound, that is, $W=\bigcup_{\gamma \in \Gamma} V_{\gamma}$ will also be irreducible and connected: If X_{1}, X_{2} are open subsets of W, then there exists γ_{i} with $X_{i} \cap V_{\gamma_{i}} \neq \emptyset$. If, without lost of generality, say $V_{\gamma_{2}} \subset V_{\gamma_{1}}$, then $X_{1} \cap X_{2} \cap V_{\gamma_{1}} \neq \emptyset$ by the claim. So, W is also irreducible. Similar argument works for connectedness. Hence, by Zorn's lemma, $\forall U_{\alpha}$, it is contained in some $W_{\alpha}=\bigcup_{\beta \in \Xi \subset \Lambda} U_{\beta}$, which is connected, irreducible and maximal. That is, $\forall U_{\alpha^{\prime}}, \alpha^{\prime} \notin \Xi, W_{\alpha} \cup U_{\alpha^{\prime}}$ cannot be connected or irreducible. However, if it is connected, it needs to be irreducible by claim again. So, every two W_{α} are either disjoint or the same and $X=\amalg W_{\alpha}$.
6.15 Let A be noetherian ring for which $\operatorname{Spec} A$ is connected, and suppose that $A_{\mathfrak{p}}$ is a domain for all $p \in \operatorname{Spec} A$. Prove that A is a domain. [Hint: if $\mathfrak{a b}=0$ for all non-zero ideals $\mathfrak{a}, \mathfrak{b}$ of A, choose $\mathfrak{a}, \mathfrak{b}$ as large as possible and prove that $\mathfrak{a}+\mathfrak{b}=A$.]

Since A is noetherian, $\operatorname{Spec} A$ is a noetherian topological space. There are only finitely many irreducible components, say X_{1}, \ldots, X_{n}. Then, $X_{1} \cap X_{j} \neq \emptyset$ for some j because Spec A is connected. Consider $x \in X_{1} \cap X_{j}$. Since irreducible components correspond to the unique generic points, which are minimal prime ideals, say \mathfrak{p}_{1} and \mathfrak{p}_{j}, satisfying $x \supset \mathfrak{p}_{1}$ and $x \supset \mathfrak{p}_{j}$. Then, consider the corresponding prime ideals in A_{x} and denote them by $\mathfrak{p}_{1}^{\prime}$ and $\mathfrak{p}_{j}^{\prime}$, still minimal. The nilradical of A_{x} is contained in $\mathfrak{p}_{1}^{\prime} \cap \mathfrak{p}_{j}^{\prime}$, which is not a prime ideal unless $\mathfrak{p}_{1}^{\prime} \subset \mathfrak{p}_{j}^{\prime}$ or $\mathfrak{p}_{1}^{\prime} \supset \mathfrak{p}_{j}^{\prime}$. In other words, $\mathfrak{p}_{1} \subset \mathfrak{p}_{j}$ or $\mathfrak{p}_{1} \supset \mathfrak{p}_{j}$, implying X_{1} and X_{j} cannot be distinct irreducible components. So, nilradical of A_{x} is necessarily not prime, which contradicts the assumption A_{x} is a domain. On the other hand, reduceness is a local property. So, $\operatorname{Spec} A$ is irreducible and reduced, and thus integral ([Hartshorne, Proposition II.3.1]).
6.16 Let X be a locally noetherian scheme all of whose local rings are domains. Prove that X is the disjoint union of a collection of integral schemes. [Hint: use Exercises 6.14 and 6.15.]

Let X_{i} be connected components of X. Consider $X=\cup \operatorname{Spec} A_{\alpha}$ with A_{α} noetherian. Since $\operatorname{Spec}\left(A_{\alpha}\right)_{f_{\alpha \beta}}$ form the base of X and X_{i} is open, X_{i} is the union of some affine open subset, called Spec $A_{i_{j}}$, where $A_{i_{j}}$ is noetherian since localization of a noetherian ring is still noetherian. Then, by Exercise 6.15, $A_{i_{j}}$ is a domain, hence a reduced ring. Finally, any two open subsets $D(f), D(g)$ of Spec $A_{i_{j}}$ has intersection $D(f g)$ and this intersection is not empty unless $f g \in \operatorname{nil}\left(A_{i_{j}}\right)=\{0\} \Rightarrow f=0$ or $g=0 \Rightarrow D(f)=\emptyset$ or $D(g)=\emptyset$. So, every open subset is dense and $\operatorname{Spec} A_{i_{j}}$ is necessarily irreducible. By Exercise 6.14, we obtain what we want.
6.18 Let K be a field, L a finite extension field of K, and $x \in L$. Let $\sum_{i=0}^{n} a_{i} X^{i}$ be the irreducible polynomial of x over K, with $a_{n}=1$. Prove that $\operatorname{Tr}_{L / K}(x)=-[L:$ $K(x)] \cdot a_{n-1}$.

Let $\left\{v_{1}, \cdots, v_{k}\right\}$ be a basis of field extension L over $K(x)$. Then $\left\{x^{j} v_{i} \mid 0 \leq j \leq\right.$ $n-1,1 \leq i \leq k\}$ is a basis of L over K. For any $1 \leq i \leq k,<v_{i}, x v_{i}, \cdots, x^{n-1} v_{i}>$ is invariant under multiplying x, and its trace is given by $-a_{n-1}$ by direct computations. Hence $\operatorname{Tr}_{L / K}(x)=-k \cdot a_{n-1}=-[L: K(x)] \cdot a_{n-1}$.
6.19 Let K be a finite field and C the K-algebra $K^{\# K+1}$. Prove that there does not exist $\gamma \in C$ with $C=K[\gamma]$.

Suppose that $C=K^{|K|+1}=K[\gamma]$ for some $\gamma \in C$. Since K is a finite field, we have $\gamma^{|K|}=\gamma$. Hence $\operatorname{dim}_{K} K[\gamma] \leq|K|<|K|+1=\operatorname{dim}_{K} K^{|K|+1}$, contradiction.
6.20 Let A be a domain with field of fractions K, and L an algebraic field extension of K. Prove that for every $x \in L$, there exists $a \in A, a \neq 0$ such that $a x$ is integral over A.

By x is algebraic over $\mathrm{K}, x^{n}+\frac{a_{n-1}}{b_{n-1}} x^{n-1}+\cdots+\frac{a_{0}}{b_{0}}=0$ for some coefficients $a_{i}, b_{i} \in A$. Let $a:=\left(b_{n-1} b_{n-2} \cdots b_{0}\right)^{n}$. Then $a \frac{a_{i}}{b_{i}} \in A$ and hence the element $a x$ satisfying a monic polynomial with coefficient in A, so $a x$ is integral over A.
6.21 Let $f: Y \rightarrow X$ be a continuous surjective map from a topological space Y to a connected topological space X, and assume that every $x \in X$ has an open neighborhood U for which $f^{-1}(U)$ is connected. Prove that Y is connected.

Suppose that Y is not connected, write $Y=Y_{1} \amalg Y_{2}$, where Y_{1} and Y_{2} are disjoint nonempty open subsets of Y.

Claim: $f\left(Y_{1}\right)$ and $f\left(Y_{2}\right)$ are both disjoint.
If not, say $x \in f\left(Y_{1}\right) \cap f\left(Y_{2}\right)$. For any open neighborhood U of $x, f^{-1}(U)$ is not connected since it has nonempty intersections with both Y_{1} and Y_{2}, this proves the claim. So we have $X=f\left(Y_{1}\right) \amalg f\left(Y_{2}\right)$ since f is surjective.

Claim: $f\left(Y_{1}\right)$ and $f\left(Y_{2}\right)$ are both open.
Suppose that $f\left(Y_{1}\right)$ is not open. Then there exists $x \in f\left(Y_{1}\right)$ such that for any open neighborhood U of x, U has nonempty intersection with $f\left(Y_{2}\right)$, but this implies that $f^{-1}(U)$ is not connected, which proves the claim.

So X can be written as a disjoint union of two nonempty open subsets, contradiction.
6.23 Let A be a ring and B a finitely generated A-algebra that is integral over A. Prove that B is a finitely generated as an A-module.

By assumption, we may assume $B=A\left[u_{1}, \ldots, u_{m}\right]$, u_{i} 's may have relations. For each i, by integral assumption, there exists $n_{i} \in \mathbb{N}$ such that $u_{i}^{n_{i}} \in A+A u_{i}+\ldots+A u_{i}^{n_{i}-1} \subseteq B$.

So for any element $u \in B, u$ is an A-linear combination of the monomials $\prod_{i=1}^{m} u_{i}^{t_{i}}$ and $0 \leq t_{i} \leq n_{i}-1$, these monomials form a finite collection, say $\left\{w_{1}, \ldots, w_{k}\right\}$. So $B=\sum_{j=1}^{k} A w_{j}$.
6.26 Let X be a connected scheme. Prove the following properties are equivalent:
(a) X is locally noetherian, and every local ring of X is a discrete valuation ring or a field;
(b) there is a covering of X by open affine subsets $U_{i}=\operatorname{Spec} A_{i}$ where each A_{i} is a Dedekind domain or a field;
(c) for each open affine subset $U=\emptyset$ of X we have $U=\operatorname{Spec} A$, where A is a Dedekind domain or a field.
(c) implies (b) is clear. (b) implies (a) follows from the fact that the localization of a Dedekind domain at a prime is either a discrete valuation ring (localize at maximal ideals) or a field(localize at zero ideal). So it remains to prove (a) implies (c). Let $U=\operatorname{Spec} A$ be an open affine subset of X. By the conditions of (a), A is noetherian and $A_{\mathfrak{p}}$ is a DVR or a field for every prime \mathfrak{p}.

Observe that $U=\operatorname{Spec} A$ is connected, since X is connected. Assume that A is not a field, otherwise we are done. Suppose that A is an integral domain. Then A is a Dedekind domain if and only if the localization $A_{\mathfrak{m}}$ at every maximal ideal is DVR, which follows from the conditions of (a), since $A_{\mathfrak{m}}$ is not a field. So it remains to prove the following statement: Let A be a noetherian ring, such that $A_{\mathfrak{p}}$ is integral domain for every prime \mathfrak{p}, and $\operatorname{Spec} A$ is connected. Show that A is an integral domain.

Suppose that there exists $a, b \in A$ such that $a b=0, a \neq 0, b \neq 0$. Since $A_{\mathfrak{p}}$ is integral domain, $a_{\mathfrak{p}}$ or $b_{\mathfrak{p}}$ must be zero. Hence $\operatorname{Ann}(a)+\operatorname{Ann}(b)=A$ since the left hand side does not contained in any prime ideals. So there exists $u \in \operatorname{Ann}(a)$ and $a_{1} \in \operatorname{Ann}(b)$ such that $u+a_{1}=1$. Hence $a=a\left(u+a_{1}\right)=a a_{1}$. So we get an element $a_{1} \in A$ such that $a_{1} b=0, a_{1} \neq 0, b \neq 0$, with equation $a=a a_{1}$. We can use this process to produce the next a_{2}, a_{3}, and so on.

So we have $(a) \subset\left(a_{1}\right) \subset\left(a_{2}\right) \subset \cdots$. Since A is noetherian, there exists $\left(a_{n-1}\right)=\left(a_{n}\right)$, write $a_{n}=a_{n-1} c$ for some $c \in A$. Then $a_{n}^{2}=a_{n} a_{n-1} c=a_{n-1} c=a_{n}$, i.e., a_{n} is an idempotent element, which is not 0,1 . This contradicts to $\operatorname{Spec} A$ is connected, which proves that A is an integral domain.
6.32 Let B be a ring and $I \subset B$ a nilpotent ideal. Prove that the set of idempotents of B maps bijectively to the set of idempotents of B / I, under the natural map $B \rightarrow B / I$.

Let $e \in B$ be an idempotent. $(e+I)^{2}=e^{2}+I=e+I$ is also an idempotent. $e+I=e^{\prime}+I \Rightarrow e-e^{\prime} \in I \Rightarrow\left(e-e^{\prime}\right)^{n}=0, \forall n \geq N$ for some $N \in \mathbb{N}$. Pick $2 \nmid n$. Then,
by $e^{2}=e, e^{\prime 2}=e^{\prime}$ and the binomial theorem, $0=\left(e-e^{\prime}\right)^{n}=e^{n}-\left(e^{\prime}\right)^{n}=e-e^{\prime}$. Finally, if $x+I$ is an idempotent, $x^{2}-x \in I$. Let $x_{1}=x, x_{i+1}=3 x_{i}^{2}-2 x_{i}^{3}$. Then

$$
x_{i+1}^{2}-x_{i+1}=\left(x_{i}^{2}-x_{i}\right)^{2}\left(3-2 x_{i}\right)\left(2 x_{i}+1\right) \in I^{2^{i}} \subset I,
$$

which will be zero for sufficiently big i. Moreover, let $y_{i}=x_{i}^{2}-x_{i} \in I$. Then

$$
x_{i+1}-x_{i}=3\left(x_{i}+y_{i}\right)-2\left(x_{i} y_{i}+x_{i}+y_{i}\right)-x_{i}=y_{i}-2 x_{i} y_{i} \in I .
$$

Thus, $x_{i}+I=x+I$ for all i.
6.33 Let p be a prime number and $n \in \mathbb{Z}, n>0$. Prove that the ring homomorphism $\mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ induces an isomorphism $\pi\left(\operatorname{Spec} \mathbb{Z} / p^{n} \mathbb{Z}\right) \xrightarrow{\sim} \pi\left(\operatorname{Spec} \mathbb{Z}_{p}\right)$.
$\operatorname{Spec}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ contains one element thus must be connected. By 6.24 , consider \mathbb{F}_{p} be its residue class field, we have $\pi\left(\operatorname{Spec} \mathbb{F}_{p}\right) \xrightarrow{\sim} \pi\left(\operatorname{Spec} \mathbb{Z} / p^{n} \mathbb{Z}\right)$ induced by natural ring homomorphism $\mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{F}_{p}$. Finite extensions of \mathbb{F}_{p} are $\mathbb{F}_{p^{n}}$ and indeed they are all separable. By 6.18 (or [E. Weiss, Algebraic Number Theory, Section 3-2]), the ring homomorphism $\mathbb{Z}_{p} \rightarrow \mathbb{F}_{p}$, which is the composition of $\mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ and $\mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{F}_{p}$, is exactly the residue class map and induces the equivalence of category $\mathbf{F E t}_{\mathrm{Spec}^{\mathbb{F}_{p}}} \rightarrow \mathbf{F E t}_{\text {Spec }}^{\mathbb{Z}_{p}}$ and thus induces the isomorphism $\pi\left(\operatorname{Spec} \mathbb{F}_{p}\right) \xrightarrow{\sim} \pi\left(\operatorname{Spec} \mathbb{Z}_{p}\right)$. Thus, the ring homomorphism $\mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ induces an isomorphism $\pi\left(\operatorname{Spec} \mathbb{Z} / p^{n} \mathbb{Z}\right) \xrightarrow{\sim} \pi\left(\operatorname{Spec} \mathbb{Z}_{p}\right)$.
6.35 Prove that $\pi(\operatorname{Spec} \mathbb{Z}[i])$ and $\pi(\operatorname{Spec} \mathbb{Z}[(1+\sqrt{-3}) / 2])$ are trivial.

Observe that $\mathbb{Z}[i]$ and $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ are rings of integers of $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$, respectively. By Corollary 6.17, it is suffices to show that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$ have no unramified extensions, ...

[^0]: ${ }^{1} \tilde{K}_{0} A=\operatorname{ker}($ rank $)$.

