
January 16, 2014

1 Exercises for Section 1

1.1 Let A be a ring, A 6= 0, and M an A-module with basis (wi)i∈I .

(a) Prove that there is a ring homomorphism from A to a field k, and that #I =
dimk(M ⊗A k).

(b) Suppose that M is a finitely generated A-module. Prove that #I is finite.

(a) Let m be a maximal ideal of A. Then k := A/m is a field, and the canonical map
A −→ k is a ring homomorphism, which gives rise to an A-action on k.

Note that M =
⊕

i∈I Awi. Define a map

f : M × k −→ k⊕I

by setting

f

(∑
finite

aiwi , x

)
=
∑
finite

(aix)ei,

where (ei)i∈I is a basis for k⊕I . It is clear that f is A-bilinear. Hence f induces an
A-homomorphism

f̃ : M ⊗A k −→ k⊕I .

Indeed, f̃ is k-linear as f(m, ·) is a k-linear map for each m ∈ M . Now consider the
k-linear map

g : k⊕I −→M ⊗A k

given by

g

(∑
finite

xiei

)
=
∑
finite

ei ⊗ xi.

It is easy to check that g is the inverse of f̃ , which implies f̃ is a k-isomorphism. Therefore,

dimk(M ⊗A k) = dimk(k
⊕I) = #I.

(b) Suppose (un)Nn=1 is a set of A-generators of M . Since (wi)i∈I is an A-basis of M ,
each un can be uniquely represented as

un =

ln∑
r=1

αnrwnr

with αnr ∈ A − {0}, wnr ∈ (wi)i∈I . Let W be the collection of all such wrn. Then W is
finite and forms a basis of M , and M ⊗A k is of dimension #W . But the dimension is
also equal to #I. So #I coincides with #W and is thereby a finite number.
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1.2 (a) Let w1, w2, · · · , wn be a basis for M over A, and let

vi =

n∑
j=1

aijwj ∈M (1 ≤ i ≤ n)

with aij ∈ A. Prove: v1, v2, · · · , vn is a basis forM overA⇔ det((aij)1≤i,j≤n) ∈
A∗.

(b) The trace Tr(C) of an n × n-matrix C = (cij)1≤i,j≤n over A is defined by
Tr(C) =

∑n
i=1 cii. Prove

Tr(CD) = Tr(DC),

Tr(ECE−1) = Tr(C)

for n× n-matrices C,D,E over A with det(E) ∈ A∗.
(c) Prove that the trace of an A-endomorphism of a finitely generated free module,

as defined in 1.1, is independent of the choice of the basis.

(a) If (vi)
n
i=1 is an A-basis for, then each wj can be expressed as

wj =

n∑
i=1

bjivi

for some unique bji ∈ A. Together with the assumption that vi =
∑

j aijwj , we have

vr =

n∑
i=1

n∑
j=1

arjbjivi, r = 1, · · · , n.

Since each vr is a basis element, by comparing the coefficients, we get

n∑
j=1

arjbji = δir.

In other words, the product [aij ][bij ] = idn, and so

det[aij ] · det[bij ] = 1.

This proves det[aij ] is a unit of A.
Conversely, assume det[aij ] ∈ A×. Consider the equation

n∑
i=1

λivi = 0.

Expressing vi in terms of the basis (wj)
n
j=1 the equation can be rewritten as

n∑
j=1

n∑
i=1

λiaijwj = 0,
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which yields
n∑
i=1

λiaij = 0, j = 1, · · · , n.

These equations can be written in the matrix form

[λ1 · · · λn][aij ] = [0 · · · 0].

Hence it suffices to verify the invertibility of the matrix [aij ]. Recall that for any n× n-
matrix X, we have the matrix identity

X adj(X) = det(X) idn,

in which adj(X) := [(−1)i+j det(Xij)]
T is the adjugate matrix of X, where Xij is the

matrix obtained from deleting the i-th row and the j-th column of X. Now det[aij ] is a
unit in A, by the above matrix identity, 1

det[aij ]
adj[aij ] is an inverse of [aij ]. This means

[aij ] is invertible and we are done.
(b) Write C = [cij ] and D = [dij ]. Then

CD =

[
n∑
r=1

cirdrj

]
and DC =

[
n∑
r=1

dircrj

]
.

The first identity holds since

Tr(CD) =
n∑
i=1

(
n∑
r=1

cirdri

)
=

n∑
r=1

(
n∑
i=1

dricir

)
= Tr(DC).

Replacing the pair (C,D) by (EC,E−1) for any invertible matrix E in the first identity,
we get the second one.

(c) Let M be a finitely generated free A-module with basis (wi)
n
i=1, and f : M −→M

an A-linear map. Suppose that

f(wi) =

n∑
j=1

µijwl, i = 1, · · · , n.

By definition, the trace of f with respect to the basis (wi)
n
i=1 is

Tr(wi)(f) =

n∑
i=1

µii.

Assume that M has another basis (vi)
n
i=1, and that for each i,

vi =

n∑
j=1

aijwj and wi =

n∑
j=1

bijvj ,
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where [aij ] and [bij ] are mutually inverse, as was shown in part (a). Then,

f(vi) =

n∑
j=1

aijf(wj) =

n∑
j=1

aij

n∑
k=1

µjkwk =

n∑
j=1

aij

n∑
k=1

µjk

n∑
l=1

bklvl

=
n∑
l=1

 n∑
j=1

n∑
k=1

aijµjkbkl

 vl.

So the trace of f with respect to the basis (vi)
n
i=1 is

Tr(vi)(f) =
n∑
i=1

n∑
j=1

n∑
k=1

aijµjkbki =
n∑
j=1

n∑
k=1

(
n∑
i=1

bkiaij

)
µjk

=
n∑
j=1

n∑
k=1

δkjµjk =

n∑
j=1

µjj

= Tr(wi)(f).

This proves the trace map is invariant under a change of basis.

1.3 Let B be an A-algebra that is finitely generated and free as an A-module, with basis
w1, w2, · · ·wn. Prove: B is separable over A ⇔ det(Tr(wiwj)1≤i,j≤n) ∈ A∗.

By definition, B is separable over A if and only if the A-linear map

φ : B −→ HomA(B,A),

given by φ(b)(b̃) = Tr(bb̃) for b, b̃ ∈ B, is a bijection.
Let (wi)

n
i=1 be a basis for B over A. Then the A-module HomA(B,A) has a corre-

sponding basis (χi)
n
i=1, where χi : B −→ A is the A-linear map so that χi(wj) = δij .

Write

φ(wi) =
n∑
j=1

aijχj , i = 1, · · · , n.

In actuality, the aij above can be expressed explicitly as

aij =
n∑
l=1

ailχl(wj) = φ(wi)(wj) = Tr(wiwj).

Note that φ is bijective if and only if φ(w1), · · · , φ(wn) form a basis for HomA(B,A); and
this is the case if and only if, by Exercise 2, the determinant det[Tr(wiwj)] is a unit of A.

1.4 Let B be a free separable A-algebra, A′ an A-algebra, and B′ = B ⊗A A′. Prove
that B′ is a free separable A′-algebra.
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We will adopt the notations used in and apply the result of the previous exercise. Since
the A-algebra B is free separable, B =

⊕n
i=1Awi as an A-module, and det[Tr(wiwj)] is

a unit in A.
To show B′ = B ⊗A A′ is free separable A′-algebra, first we check that B′ is finitely

generated and free as an A′-module. In fact, this is true since tensor products commute
with direct sums:

B′ = B ⊗A A′ =

(
n⊕
i=1

Awi

)
⊗A A′ '

n⊕
i=1

(Awi ⊗A A′) '
n⊕
i=1

A′(wi ⊗ 1).

This identification (about the A′-module structure) also implies that the collection (wi⊗
1)ni=1 forms an A′-basis for B′. Hence it remains to verify

det[Tr′(wi ⊗ 1)(wj ⊗ 1)] ∈ (A′)×,

where Tr′ stands for the trace map on HomA′(B
′, B′), as well as the induced map on B′.

Note that (wi ⊗ 1)(wj ⊗ 1) = wjwj ⊗ 1, so what we need to be aware of is Tr′(wiwj ⊗ 1).
More precisely, we have to understand Tr′.

Consider the A′-module HomA′(B⊗AA′, A⊗AA′), in which we write the original A′ as
A⊗A A′, regarded as A′-algebra, for clarity in latter discussion. It has a natural A′-basis
(χ′i)

n
i=1, where χ′i is the A′-linear map determined by χ′i(wj ⊗ 1) = δij(1 ⊗ 1) = δij ⊗ 1.

Also, χi(wj) ⊗ 1 = δij ⊗ 1. So for any a′j ∈ A′, j = 1, · · · , n, by the linearity of χ′i, we
have

χ′i

 n∑
j=1

wj ⊗ a′j

 =
n∑
j=1

a′jχ
′
i(wj ⊗ 1) =

n∑
j=1

a′j(χi(wj)⊗ 1)

=
n∑
j=1

χi(wj)⊗ a′j = χi

 n∑
j=1

wj

⊗ a′j ;
that is,

χ′i = χi ⊗ idA′ .

By the definition of trace, we have Tr′(χ′i) = 1⊗ 1. Together with Tr(χi) = 1, we get

Tr′(χ′i) = Tr(χi ⊗ idA′) = Tr(χi)⊗ 1

Now, suppose that mwiwj =
∑n

l=1 alχl with al ∈ A. Then

mwiwj⊗1 = mwiwj ⊗ idA′ =
n∑
l=1

alχl ⊗ id′A.

Therefore,

Tr′(wiwj ⊗ 1) = Tr′

(
n∑
l=1

alχl ⊗ idA′

)

=
n∑
l=1

alTr(χl)⊗ 1 =
n∑
l=1

al ⊗ 1

= Tr(wiwj)⊗ 1.
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Finally, by the definition of determinant, we have

det[Tr′(wiwj ⊗ 1)] = det[Tr(wiwj)⊗ 1] = det[Tr(wiwj)]⊗ 1.

Since det[Tr(wiwj)] is a unit in A, we know det[Tr(wiwj)]⊗ 1 is a unit in A⊗A A′ = A′

and we are done.

1.5 Let K be an algebraic number field with discriminant ∆ and ring of integers A.
Prove that A[1/∆] is a free separable Z[1/∆]-algebra.

Let A′ = A[1/∆] and Z ′ = Z[1/∆]. Take an integral basis ω1, · · · , ωn of K, i.e. it is a
free Z basis of A. Note that ω1, · · · , ωn is also a basis of K over Q. By the definition of
the discriminant of K,

∆ = det(TrK/Q(ωiωj)).

Notice that TrK/Q(ωiωj) = TrA′/Z′(ωiωj). Using exercise 1.3 and ∆ is invertible in Z ′, A′

is a free separable Z ′-algebra.

1.6 Let A be a ring.

(a) Let a ∈ A. Prove that A[X]/(X2− a) is a free separable A-algebra if and only
if 2a ∈ A∗.

(b) Let, more generally, f ∈ A[X] be a monic polynomial. Prove that A[X]/(f) is
a free separable A-algebra if and only if the discriminant ∆(f) of f belongs to
A∗.

(a) Let B = A[X]/(X2−a) and [b] = b+(X2−a). It is easy to check that {[1], [x]} is a
A-basis of B and thus rankA(B) = 2. By the definition of m[x], we have m[x]([1]) = [x] and
m[x]([x]) = [x]2 = [a]. Then Tr([x]) = Tr(m[x]) = 0. Clearly, Tr([a]) = rankA(B) · a = 2a.
Using Exercise 1.3, B is a free separable A-algebra if and only if

4a = det

(
Tr([1]) Tr([x])
Tr([x]) Tr([x]2)

)
∈ A∗.

(b) LetB = A[X]/(f), [b] = b+(f) and n = deg(f). It is easy to check that {[1], [x], · · · , [x]n−1}
is a A-basis of B and thus rankA(B) = n. Write

f = xn + an−1x
n−1 + · · ·+ a1x+ a0.

A element tm in A (m ∈ Z>0) is defined by using a recursive relations

tm + an−1tm−1 + · · ·+ an+m+1t1 +man−m = 0

for 1 6 m 6 n,
tm + an−1tm−1 + · · ·+ a0tm−n = 0
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for m > n and set t0 = n. (Note that this is Newton identities. Originally it give
relations between power sums and elementary symmetric polynomials.) Also, we define
the discriminant ∆(f) by

∆(f) = det


t0 t1 · · · tn−1

t1 t2 · · · tn
...

...
. . .

...
tn−1 tn · · · t2n−2

 ∈ A.
By an induction on m, the definition of TrB/A(m[x]m) and the recursive relations between
ti and ai, we get Tr(m[x]m) = tm for all m > 0. Using Exercise 1.3, B is a free separable
A-algebra if and only if

∆(f) = det


Tr([1]) Tr([x]) · · · Tr([x]n−1)
Tr([x]) Tr([x]2) · · · Tr([x]n)

...
...

. . .
...

Tr([x]n−1) Tr([x]n) · · · Tr([x]2n−2)

 ∈ A∗.
1.7 Suppose that the scheme X is the disjoint union of two schemes X ′, X ′′. Prove

that the category FEtX is equivalent to a suitably defined “product category”
FEtX′ × FEtX′′ .

Let φ : Z → X = X ′ q X ′′ be a finite étale covering. Consider Z ′ = φ−1(X ′) and
Z ′′ = φ−1(X ′′). Then, Z ′ → X ′ and Z ′′ → X ′′ are flat and unramified because these
are local properties. And they are finitely presented if we consider affine coverings of
X ′ and X ′′ induced from the affine covering of X. Thus, by 6.9, they are finite étale
coverings. Conversely, given finite étale coverings φ1 : Z ′ → X ′ and φ2 : Z ′′ → X ′′, we
consider Z = Z ′qZ ′′ → X. It is finite étale due to the similar reason as above. Consider
F : FETX′ × FETX′′ → FETX is the functor sends objects as discussion. It sends
morphisms in the natural way. It remains to show F is fully faithful. Its induced map on
morphisms is injective clearly. Since

Z1 q Z2

&&

//W1 qW2

xx
X1 qX2

is commutative, surjectivity is assured.

1.8 Let S = lim←−Si be a projective limit as in 1.7, and define for each j ∈ I the projection

map fj : S −→ Sj by fj((xi)i∈I) = xj . Prove that the system (S, (fj)j∈I) has the
following “universal property”:

(i) fij ◦ fi = fj for all i, j ∈ I with i ≥ j;
(ii) if T is a set and (gj : T −→ Sj)j∈I is a collection of maps satisfying fij ◦gi = gj

(for all i, j ∈ I with i ≥ j), then there is a unique map g : T −→ S such that
gj = fj ◦ g for all j ∈ I.
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Prove further that this universal property characterizes (S, (fj)j∈I) in the following
sense: if S′ is a set and (f ′j : S′ −→ Sj)j∈I a collection of maps satisfying the
analogues of (i), (ii), then there is a unique bijection f ′ : S′ −→ S such that
f ′j = fj ◦ f ′ for all j ∈ I.

Recall that the projective limit

S =

{
(xk)k∈I ∈

∏
k∈I

Sk : fij(xi) = xj for all i, j ∈ I with i ≥ j

}
.

For any (xk)k∈I ∈ S and any i, j ∈ I with i ≥ j, we have

fij ◦ fi((xk)k∈I) = fij(xi) = xj = fj((xk)k∈I).

This proves (i). Let (gj : T −→ Sj)j∈I be a collection of maps with the property fij ◦gi =
gj for all i, j ∈ I with i ≥ j. If there is a map g : T −→ S such that gj(t) = fj(g(t)) for
all t ∈ T and j ∈ I, then we will have

g(t) = (gj(t))j∈I ,

in which (gj(t))j∈I indeed belongs to S because of the the property of (gj)j∈I . Now define
the map g : T −→ S by the above formula. Then we obtain both the existence and
uniqueness of g that satisfies the required equations.

The second part that the universal property characterizes projective limits is just a
consequence of the standard formal argument.

1.9 Let the notations be as in 1.7, and S = lim←−Si

(a) Suppose that all sets Si are endowed with a compact Hausdorff topology, that
all Si are non-empty, and that all maps fij are continuous. Prove that S is
non-empty and compact. [Hint: Apply Tikhonovs theorem.]

(b) Suppose that all sets Si are finite and non-empty. Prove that S 6= ∅.
(c) Suppose that I is countable, that all Si are non-empty, and that all fij are

surjective. Prove that S 6= ∅.
(d) Let I be the collection of all finite subsets of R, and let I be partially ordered

by inclusion. For each i ∈ I, let Si be the set of injection maps φ : i → Z,
and let fij : Si → Sj (for j ⊂ i) map φ to its restriction φ|j. Prove that this
defines a projective system in which all Si are non-empty and that all fij are
surjective, but that the projective limit S is empty.

(a) Define Sij := {(si)i∈I ∈
∏
i∈I Si | fij(si) = sj}. We have S = ∩i≥jSij . Since each

Sij is closed in
∏
i∈I Si, by Tikhonov’s theorem,

∏
i∈I Si is compact, and hence Sij is

compact.
For all Ī = {i1, ..., in} and J̄ = {j1, ..., jm}, by I is a projective system, there is

an i0 ∈ I such that Si0 → Si via fi0,i and Si0 → Sj via fi0,j , respectively. Hence
∩i∈Ī,j∈J̄Sij 6= ∅. So S = ∩i,jSij 6= ∅ by the finite intersection property. (Recall: X is
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compact Hausdorff space and {Fi} a family of closed subsets in X. If for all finite indes
set J ⊂ I, we have X ∩ (∩i∈JFi) 6= ∅, then X ∩ (∩i∈IFi) 6= ∅.) So S ⊂

∏
i∈I Si is closed,

hence compact.
(b) Given discrete topology on each Si; then apply (a).
(c) . . .

(d)

I := { i is a finite subset in R }, i ≥ j ⇔ i ⊇ j
Si := {φ : i ↪→ Z}

fij : Si → Sj

φ 7→ φ|j

(i) For each i, j ∈ I, set k := i ∪ j. Then k ≥ i, j
(ii) fii = id is clear.
(iii) fik = fjkfij is the compose of restriction map. Hence (i ∈ I, Si) is a projective
system. S 6= ∅ is clear and fij is surjective since we can freely extend all ψ : j → Z to
ψext : i→ Z if i ⊃ j.

To prove lim←−Si is empty, suppose (φi)i∈I is an element in lim←−Si. By definition,
φi : i→ Z such that φi|j = φj for j ⊂ i. In particular, all φi have the same restriction on
all singleton {x} ⊂ R. This says we have an injection R ↪→ Z, a contradiction.

1.10 Prove: if πj is a profinite group for each j in a set J , then
∏
j∈J πj is a profinite

group.

1.13 Let p be a prime number, and Zp the ring of p-adic integers. Prove:

(a) Z∗p = Zp − pZp;
(b) each a ∈ Zp − {0} can be uniquely written in the form a = upn with u ∈ Z∗p,

n ∈ Z, n ≥ 0;

(c) Zp is a local domain with residue class field Fp.

First, we prove that, for each n > 1, there is an exact sequence of abelian groups

0→ Zp
·pn−−→ Zp

πn−→ Z/pnZ→ 0,

where πn sends ((am)) to an.
Clearly, πn is surjective. If a = (am) belongs to ker(πn), then am ≡ 0 (mod pn) for

all m > n. This means that, under the isomorphism Z/pm−nZ → pnZ/pmZ, there is a
element bm−n of Z/pm−nZ such its image in Z/pmZ satisfies am = pnbm−n. The bl define
an element b of Zp such that pnb = a. Obversely, the kernel of πn contains pnZp and thus
the above sequence is exact at the middle term. Similarly, the multiplicative map ·pn is
injective.

(a) By the above exact sequence for n = 1, we know that Zp/pZp is isomorphic to the
field Fp. This implies that Z∗p ⊆ Zp \ pZp. On the other hand, if a ∈ Z/pnZ which is not
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divided by p, then its image in Z/pZ = Fp is nonzero thus invertible. Hence there are
b, c ∈ Z/pnZ such that ab = 1− pc. Then

ab(1− pc)−1 = ab(1 + pc+ · · ·+ pn−1cn−1) = 1

in Z/pnZ which proves a ∈ (Z/pnZ)∗. In general, for a = (an) ∈ Zp \ pZp, we have
an ∈ Z/pnZ which is not divided by p and thus an has the inverse in Z/pnZ. By the
uniqueness of inverse elements, we get (a−1

n ) ∈ Zp and hence a ∈ Z∗p.
(b) For each nonzero a = (an) ∈ Zp, there is the largest n such that ai = 0 for all

1 6 i 6 n. Since πn(a) = 0, we have a = pnu. By the choice of n, u /∈ pZp i.e. u ∈ Z∗p.
The uniqueness of the decomposition is obvious.

(c) Use (b), we can define the p-adic valuation for Zp:

vp(a) =

{
+∞ if a = 0,

n if a = pnu, u ∈ Z∗p.

Then Zp is a discrete valuation ring, i.e.

vp(ab) = vp(a) + vp(b), vp(a+ b) > min{vp(a), vp(b)}

and vp(a) = +∞ if and only if a = 0. Hence Zp is a local domain with the maximal ideal
{a ∈ Zp | vp(a) > 1} = pZp.

1.14 Prove that there is an isomorphism Ẑ ∼=
∏
p prime Zp of topological rings (definition

obvious).

Recall that Ẑ = lim←−Z/mZ and Zp = lim←−Z/pnZ for any prime p. For any positive
integer m, which admit the prime factorization pn1

1 · · · p
nk
k , the Chinese remainder theorem

gives
Z/mZ ' Z/pn1

1 Z× · · · × Z/pnkk Z.

Through this isomorphism we have a natural map
∏
p prime Zp −→ Z/mZ for every m ∈ N,

which induces a unique homomorphism of topological rings

f :
∏

p prime

Zp −→ Ẑ

such that the natural maps mentioned above are factorized over f . On the other hand,
for each prime number p the collection of canonical maps (Ẑ −→ Z/pnZ)n∈N induces a
unique homomorphism

Ẑ −→ Zp
over which the canonical maps just mentioned are factorized. This gives rise to the
homomorphism

g : Ẑ −→
∏

p prime

Zp.

Note for any m ∈ N that the natural map Ẑ −→ Z/mZ is factorized over g with the help
of the isomorphism at the beginning. An argument concerning the uniqueness of f and
g subject to their characterizing properties shows that both f ◦ g and g ◦ f are identities.
Thus f and g are isomorphisms.
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1.15 Let Z10 = lim←−n≥1
Z/10nZ.

(a) Prove that each a ∈ Z10 has a unique representation a =
∑∞

n=0 cn10n with
cn ∈ {0, · · · , 9}.

(b) Prove that there exits a unique continuous function v : Z10 → R such that
v(a) = (number of factors 2 in a)−1 for each positive integer a.

(c) Let (an)∞n=0 be a sequence of positive integers not divisible by 10 such that the
number of factors 2 in an tends to infinity for n→∞. Prove that the sum of
the digits of an in the decimal system tends to infinity for n→∞.

For any a ∈ Z10, we may write a = (bn)∞n=1 in the product coordinates. Let
∑n−1

m=0 c
n
m10m

be the decimal expansion of bn. Note that cnm stable as n → ∞. Let cm be the stable
value. Then the representation

∑∞
m=0 cm10m is what we are looking for and it is unique.

For the statement (b), the image of Z>0 in Z10 is dense. (The proof is similar to
1.12) The behavior of a continuous function is totally determined by its value on a dense
subset. So (b) follows.

For (c). Suppose there exists such a sequence {an}∞n=1 such that the conditions hold
but the sum of digits of an does not go to infinity. Let s(an) denote the sum of digits of
an. Then by assumption, lim supn→∞ s(an) = M <∞.

Take a sequence {an}∞n=1 so that lim supn→∞ s(an) is minimum. Firstly, observe that
an → ∞. Let bn be the number obtained by removing the first digits from an. Then
bn also satisfying the condition since an − bn = kn · 10r(n). So the number bn must
divisible by 2 sufficiently. And the number bn is non-zero. But lim supn→∞ s(bn) ≤
lim supn→∞ s(an)− 1.

Therefore, such sequence {an}∞n=1 does not exist.

1.16 (a) Prove that each a ∈ Ẑ has a unique representation a =
∑∞

n=1 cnn! with cn ∈
{0, 1, . . . , n}.

(b) Let b ∈ Z, b ≥ 0, and define the sequence (an)∞n=0 of non-negative integers by
a0 = b, an+1 = 2an . Prove that (an)∞n=0 converges in Ẑ, and that lim

n→∞
an ∈ Ẑ

is independent of b.

(c) Let a = lim
n→∞

an as in (b), and write a =
∑∞

n=1 cnn! as in (a). Compute cn for

1 ≤ n ≤ 10.

Throughout the proof we adopt the fact in Problem 1.17(c) that

Ẑ ' lim←−
m>0

Z/m!Z.

(a) Let S be the collection of formal series
∑∞

n=1 cnn! with 0 ≤ cn ≤ n. We will show

that there is a bijection between Ẑ and S. Define for each m a map S −→ Z/m!Z that
sends

∑∞
n=1 cnn! to

∑m−1
n=1 cnn! (mod m!). Indeed, these maps form a projective system;

and we have 0 ≤
∑m−1

n=1 cnn! < m! due to the constraint on cn. Now we prove the induced

map φ : S −→ Ẑ is bijective by constructing its inverse. Observing that

cm =
1

m!

(
m∑
n=1

cnn!−
m−1∑
n=1

cnn!

)
,
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we define a map ψ : Ẑ −→ S sending each (bm (mod m!))m>0, where 0 ≤ bm < m!, to
the formal series

∑∞
n=1( 1

n!(bn+1 − bn))n!. It is well-defined since bn+1 ≡ bn (mod n!), i.e.
bn+1−bn ∈ n!Z, according to the property of projective limits; and because of the bounds
of bn+1 and bn, we know 1

n!(bn+1 − bn) ∈ {0, 1, · · · , n}. Clearly, φ and ψ are mutually
inverse and we are done.

(b) It suffices to show that for each N ∈ N, (an (mod N))n≥N is stable and inde-
pendent of b. We prove this by an induction argument on N . The statement is trivial
for N = 1. For an N > 1, we suppose the statement holds up to N − 1. Now con-
sider an (mod N). Write N = 2kN ′ with N ′ odd. By Chinese remainder theorem, it
is sufficient to verify that (an (mod 2k))n≥N and (an (mod N ′))n≥N stabilize and does
not depends on b. In fact, when n ≥ N > k, we have an ≡ 0 (mod 2k); also, we have
n − 1 ≥ N − 1 ≥ ϕ(N) ≥ ϕ(N ′), where ϕ is the Euler function, implying that (an−1

(mod ϕ(N ′)))n≥N is stable and independent of b due to the induction hypothesis. It
follows by Euler’s theorem that (an (mod N ′))n≥N is stable and independent of b.

(c) According to the correspondence ψ constructed in (a), we first compute a (mod n!)
for n = 1, · · · , 11. Other than Chinese remainder theorem and the fact that a = 2a, in
the calculation we will also need the congruence

2p
r(p−1) ≡ 1 (mod pr+1),

where p is a prime and r is a nonnegative integer. We prove this by induction on r. If
r = 0, then it is just the Euler’s theorem. Assume the congruence is true up to r − 1 for
some r and a fixed prime p. Then we have 2p

r−1(p−1) = 1 +αpr for some integer α. Hence

2p
r(p−1) = (1 + αpr)p

= 1 +

(
p

1

)
αpr +

(
p

2

)
α2p2r + · · ·+

(
p

p

)
αpprp

≡ 1 (mod pr+1).

Thus the congruence holds for every nonnegative r. Now we turn to the calculation:

• a ≡ 0 (mod 1!); a ≡ 0 (mod 2!).

• a ≡ 4 (mod 3!), where 3! = 2× 3.

Since 22 ≡ 1 (mod 3), we have a ≡ 2a mod 2 ≡ 1 (mod 3). Together with the fact
that a ≡ 0 (mod 2), the result follows.

• a ≡ 16 (mod 4!), where 4! = 23 × 3.

This follows from a ≡ 0 (mod 23) and a ≡ 1 (mod 3).

• a ≡ 16 (mod 5!), where 5! = 23 × 3× 5.

Since 24 ≡ 1 (mod 5), we have a ≡ 2a mod 4 ≡ 1 (mod 5). Then combining with
a ≡ 16 (mod 4!) we get the result.

• a ≡ 16 (mod 6!), where 6! = 24 × 32 × 5.

12



Since 23×2 = 26 ≡ 1 (mod 32), we have a ≡ 2a mod 6 ≡ 24 ≡ 7 (mod 9). Also,
we have a ≡ 0 (mod 24) and a ≡ 16 (mod 5!). Combining the conditions together
gives us the result.

• a ≡ 16 (mod 7!), where 7! = 24 × 32 × 5× 7.

Since 26 ≡ 1 (mod 7), we have a ≡ 2a mod 6 ≡ 24 ≡ 2 (mod 7). And by a ≡ 16
(mod 6!) we get the result.

• a ≡ 25, 216 (mod 8!), where 8! = 27 × 32 × 5× 7.

This follows from a ≡ 0 (mod 27) and a ≡ 16 (mod 7!).

• a ≡ 186, 496 (mod 9!), where 9! = 27 × 34 × 5× 7.

Since 233×2 = 254 ≡ 1 (mod 34), we have a ≡ 2a mod 54 (mod 34). To find a mod 54,
first note that 232×2 = 218 ≡ 1 (mod 33), and that a ≡ 16 (mod 18) because
a ≡ 7 (mod 9) and a ≡ 0 (mod 2). It follows that a ≡ 2a mod 18 ≡ 216 ≡ 7
(mod 33). Together with a ≡ 0 (mod 2) we obtain a ≡ 34 (mod 54). Therefore
a ≡ 2a mod 54 ≡ 234 ≡ 34 (mod 34). Combining this with a ≡ 25, 216 (mod 8!)
leads us to the result.

• a ≡ 1, 275, 136 (mod 10!), where 10! = 28 × 34 × 52 × 7.

Since 25×4 = 220 (mod 52), we have a ≡ 2a mod 20 (mod 52). Note that a ≡ 16
(mod 20) because a ≡ 0 (mod 4) and a ≡ 1 (mod 5). Hence a ≡ 216 ≡ 11
(mod 52). Together with a ≡ 0 (mod 28) and a ≡ 186, 496 (mod 9!) we get the
result.

• a ≡ 26, 676, 736 (mod 11!), where 11! = 28 × 34 × 52 × 7× 11.

Since 210 ≡ 1 (mod 11), we have a ≡ 2a mod 10 (mod 11). But a ≡ 6 (mod 10)
since a ≡ 0 (mod 2) and a ≡ 1 (mod 5), so a ≡ 26 ≡ 9 (mod 11). Together with
a ≡ 1, 275, 136 (mod 10!) the result follows.

Then, set bm := a mod m! so that a = (bm (mod m!))m>0. While converting (bm
(mod m!))m>0 into the form

∑∞
n=1 cnn!, we have been aware from part (a) that cn =

(bn+1 − bn)/n!. Applying this formula, we know c1, · · · , c10 are 0, 2, 2, 0, 0, 0, 5, 4, 3, 7,
respectively.

1.17 A subset J of a partially ordered set I is called cofinal if ∀i ∈ I : ∃j ∈ J such that
j ≥ i.

(a) Prove: if J is a cofinal subset of a direct partially ordered set, then J is directed.

(b) Let the notation be as in 1.7, and let J ⊂ I be a cofinal subset. Prove that
there is a canonical bijection lim←−j∈J Sj

∼= lim←−i∈I Si.

(c) Prove: Ẑ ∼= lim←−n>0
Z/n!Z.

13



For (a), let i, j ∈ J ⊂ I. I is direct implies ∃k ∈ I such that k ≥ i and k ≥ j. By
cofinality, there exists an l ∈ J so that l ≥ k. Hence l ≥ i and l ≥ j. This proves J is
also a direct set.

It now makes sense to talk about the inverse limit lim←−j∈J Sj . There are canonical

projections lim←−i∈I Si → Sj for all j ∈ J . The morphisms clearly commute with the

morphisms in the projective system {Sj : j ∈ J}. The universal property says that there
exists a morphism θ : lim←−i∈I Si → lim←−j∈J Sj .

Firstly, this map is canonical by construction. For the surjectivity, let x = (sj)j∈J ∈
lim←−j∈J Sj . For each i ∈ I, we choose j ≥ i by cofinality and define si := fji(sj). This

is well-defined. Indeed, if there exists another k ∈ J with k ≥ i. Pick l ∈ J so that l
dominates j and k.

fji(sj) = fji ◦ flj(sl) = fki ◦ flk(sl) = fki(sk).

By construction, (si)i∈I ∈ lim←−i∈I SI and θ((si)i∈I) = x. The injectivity is obvious. These

prove (b).
For the last one, put J = {n! : n ∈ N} and I = N with the usual ordering. Using (b),

we obtain (c).

1.19 Let π be a profinite group acting on a set E. Prove that the action is continuous if
and only if for each e ∈ E the stabilizer πe = {σ ∈ π : σe = e} is open in π, and for
finite E if and only if the kernel π′ = {σ ∈ π : σe = e, ∀e ∈ E} of the action is
open in π.

Let θ : π × E → E be the action. For each e ∈ E, consider the composition π × {e} →
π × E → E. Suppose the later one is continuous. Then the pre-image of {e}, which is
equal to πe, is clearly an open set. Conversely, it suffices to show that for any e ∈ E the
pre-image of {e} is an open set in π×E. Now θ−1({e}) = {(σ, x) ∈ π×E : σx = e}. Let
O(e) be the set of G-orbit of e. For any m ∈ E, there exists a gm so that gmm = e. We
may write

θ−1({e}) =
∐

m∈O(e)

(gmπm × {m}).

Hence it is open.
From now on suppose E is finite. Note that we have π′ =

⋂
e∈E πe. Being an inter-

section of finitely many open sets, π′ is clearly open. Conversely, assume that π′ is open.
π′ ≤ πe for any e ∈ E. πe is open in π.

1.20 Let G be a group with profinite completion Ĝ. Prove that the category finite G-sets
is equivalence to the category of Ĝ-sets.

Let C be the category of finite G-sets. Let X be an object in Ĝ-sets. This means that
X is a finite set with a continuous Ĝ-action. There exists a natural group homomorphism
G→ Ĝ. Hence X can be viewed as a finite G-set. And Ĝ-morphism also can be regarded
as a G-morphism in this way. So we have defined a functor F from Ĝ-sets to C. It suffices
to show that F is essentially surjective and fully faithful.
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Let Y be an object in C, i.e., there is an action of G on Y . Now consider the stabilizer
of Y , denoted by H. Then H is normal and [G : H] < ∞. Let Ĝ → G/H be the
natural projection. This induces an action of Ĝ on Y . And by construction, the action is
continuous. This proves F is essentially surjective.

We are going to show that F is fully faithful. Given two objects X and Y in Ĝ, F
induces a set-theoretic map

HomĜ(X,Y )→ HomC(F (X), F (Y )).

This map is injective by our construction. Given f ∈ HomC(F (X), F (Y )). f is a G-
equivariant map from X to Y . By construction, the map f can also be viewed as a Ĝ
equivariant map, say f ′. Then we have F (f ′) = f . This shows F is fully faithful.

1.21 (a) Prove that the cateogry Ẑ-sets is equivalent to the category whose objects are
pairs (E,σ), with E a finite set and σ a permutation of E, a morphism from
(E,σ) to (E′,σ′) being a map f : E → E′ satisfying fσ = σ′f .

(b) Construct a profinite group π containing Ẑ as a closed normal subgroup of
index 2, such that the category π-sets is equivalent to the category whose
objects are triples (E, σ, τ), with E a finite set and σ and τ permutations of E
for which σ2 = τ2 = idE , a morphism from (E, σ, τ) to (E′, σ′, τ ′) being a map
f : E → E′ satisfying fσ = σ′f and fτ = τ ′f .

(a) By Exercise 1.20, the category of Ẑ-sets is equivalent to the category of finite Z-sets.
Since Z is generated by 1, it suffices to consider how 1 acts on E, which should be
a one-to-one map since (−1) acts reversely, and thus bijective as E is a finite set.
So, 1 corresponds to some permutation σ ∈ Sn if |E| = n. And the condition for
morphisms is exactly the same condition for morphisms on finite Z-sets.

(b) Construct π as follows: consider the category S consisting of objects (E, σ, τ), where
E is a finite set and σ2 = τ2 = 1. Also any morphism f(E) = E′ should satisfy
fσ = σ′f , fτ = τ ′f . Then, S can be regarded as the category finite P -sets, where
P is a noncommutative group generating by s and t with s2 = t2 = 1. Suppose
ψ : S → Ẑ−sets defined by ψ(E, σ, τ) = (E, στ). We should check ψ is surjective
to claim st is of infinite order. If it is the case, then by Exercise 1.20, the category
finite P -sets is equivalent to π-sets, where π = P̂ . π hence contains Ẑ, which is of
index 2 since Z ∼= 〈st〉 is a normal subgroup of P of index 2. And Ẑ is necessary
closed followed from Exercise 1.11 (b).

To show all permutations can be the product of two order 2 permutations, simply
notice that

(1 2 · · · m) =

(
p+q=m+2∏

p<q

(p q)

)(
p+q=m+1∏

p<q

(p q)

)
,

and the two factors satisfy the equation x2 = 1 in the permutation group.

1.24 Let it given that under the equivalence of categories in 1.14 finite coverings and
finite sets correspond to each other. Deduce from this and Exercise 1.20 that the
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profinite group π̂(X) occuring in 1.15 is the profinite completion of the group π(X)
occuring in 1.14, if X is as in 1.14.

By 1.14 and finite correspondence mentioned above, given X satisfying the conditions
in 1.14, category of finite coverings of X is equivalent to the category of finite π(X)-

sets. And by Exercise 1.20, thus equivalent to the category of π̂(X)-sets. Since π̂(X) is

determined uniquely up to isomorphism, π̂(X) ∼= π̂(X).

1.25 Let X be the topological space {0, 1, 2, 3}, the open sets being ∅, {0}, {2}, {0, 2},
{0, 1, 2}, {0, 3, 2}, X. Prove: π̂(X) ∼= Ẑ.

1.26 (a) Let π be a profinite group such that x2 = 1 for all x ∈ π. Prove that π is
isomorphic to (Z/2Z)n for a uniquely determined cardinal number n, which is
equal to the Z/2Z-dimension of the group of continuous group homomorphisms
π → Z/2Z.

(b) Let G be the additive group of a Z/2Z-vector space of dimension k, where k

is an infinite cardinal. Prove: Ĝ ∼= (Z/2Z)2k as profinite groups.

(c) Construct a profinite group that is not isomorphic to the profintie completion
of any abstract group

(a) G consists only of involutions and thus G is Abelian. Given any open normal sub-
group N , G/N ∼= (Z/2Z)n for some positive integer n. Let N1 · · ·Nn be open normal
subgroups with index 2 such that G/N ∼= G/N1 × · · · × G/Nn and N =

⋂n
i=1Ni.

Consider the group of all continuous group homomorphism in the form G→ Z/2Z,
and this group naturally has Z/2Z-vector space structure. Fix a basis of the vector
space, call it Σ. Then the canonical homomorphisms πi : G → G/Ni

∼= Z/2Z have
decompositions: πi =

∑mi
j=1 fij where fij ∈ Σ. Then

⋂
i,j ker fij ⊂

⋂n
i=1Ni = N . So,

finite intersections of ker(fi) where fi ∈ Σ form a cofinal subset of all open normal
subgroups of G. On the other-hand, we have canonical projections pf : (Z/2Z)Σ →
Z/2Z (f denoted as an element of Σ), and similarly the finite intersections of kernel
of pf also form a cofinal subset of all open normal subgroups of (Z/2Z)Σ. Given
f1 · · · fn ∈ Σ, (Z/2Z)Σ/

⋂n
i=1 ker(fi) ∼= (Z/2Z)n and [G :

⋂n
i=1 ker(fi)] = 2m (where

m ≤ n). Let us verify that m = n. Suppose not, let v1 · · · vm be a basis of
G/
⋂n
i=1 ker(fi). Define A ∈ Mm×n(Z/2Z) by Ai,j = fj(vi). Because m < n,

there exists a nonzero vector x ∈ Z/2Zn such that A · x = (0)m×1. But f1 · · · fn
are Z/2Z-linearly independent, there exists g ∈ G such that

∑n
i=1 xifi(g) = 1,

where x = (x1, · · · , xn)t. Say g =
∑m

i=1 aivi in G/
⋂n
i=1 ker(fi). This then implies

(a1, · · · , am) · A · x = 1, contradiction. Also we have a canonical injective group
homomorphism G/

⋂n
i=1 ker(fi) → (Z/2Z)n by g 7→ (f1(g), · · · , fn(g)). But as

Z/2Z-vector space, they have same dimension; therefore, above mapping is actually
isomorphic. Such isomorphisms are compatible with restriction maps; therefore,
G ∼= (Z/2Z)Σ.

(b) Let us estimate the dimension of Γ, the Z/2Z vector space of all continuous group
homomorphism Ĝ→ Z/2Z, and then apply (a).
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Since the image of the canonical injective group homomorphism G → Ĝ is dense
in Ĝ, a continuous group homomorphism Ĝ → Z/2Z is determined by a group
homomorphism G→ Z/2Z. Thus the case is reduced to compute the dimension of

the dual space of G, which is 2k. This means Ĝ ∼= (Z/2Z)2k .

(c) From (b), the cardinality of completions of such abstract groups are either finite or
greater than or equal to the cardinality of R. Therefore, (Z/2Z)Q is not completion
of any abstract group.

1.27 Let X be an infinite topological space whose closed sets are exactly the finite subsets
and X itself.

(a) Prove that every covering of X is trivial (see the Introduction), that X is
connected, and that the group π̂(X) from 1.15 is trivial.

(b) Suppose that X is countable. Prove that X is not pathwise connected.

(c) Suppose that #X ≥ #R. Prove that X is locally pathwise connected and
semilocally simply connected, and that π(X) is trivial.

(a) Since obviously X is irreducible, use [1.28].

(b) Suppose not. Then given any two distinct points p, q, there exists continuous func-
tion f : [0, 1] → X such that f(0) = p, f(1) = q. Then im(f) is a finite subset or
a countably infinite subset of X. It suffices to consider that im(f) is of countably
infinite. Say im(f) =

⋃∞
i=1 pi. Then [0, 1] =

⋃∞
i=1 f

−1(pi), which is a countably
infinite union of closed disjoint intervals, which is disconnected. Contradiction.

(c) Assume the axiom of choice is true. Recall the definition of locally path connected
and semi-locally simply connected:

Locally path connected: for every point p and open set U containing p, there exist
open path connected V such that p ∈ V ⊂ U .

Semi-locally simply connected: Every point in X has a neighborhood U with the
property that every loop in U can be contracted to a single point.

Proof of locally path connected: Since cardinality of X is greater than R, there
exists a surjective map F : X → R. Let open subset U containing p, since X \ U
is a finite set, Σ := R \ F (U) is a set of finitely many points. Because cardinality
of U is greater than R, F |U is not injective. We can always manually adjust F |U so
that F |U : U → R is surjective. Now, we may assume F : U → R is surjective. Let
p, q be distinct points in U , and F (p) < F (q). By axiom of choice, we can define
a function f : [F (p), F (q)] → U by defining f(F (p)) := p, and f(F (q)) := q and
for y ∈ (F (p), F (q)), let f(y) be an element of F−1(y). Given any closed subset
of im(f), that is, a finite subset of im(f), the pre-image is a set of finitely points
in [F (p), F (q)], which is closed. Therefore, f is continuous. Suppose F (p) = F (q).
Then adjust F by: picking any x ∈ R such that x 6= F (q) and redefine the value of
q, F (q) := x. Then we can apply similar argument. Therefore, U is path connected,
and actually X is a path connected space.

Proof of semi-locally simply connected: Let f : [0, 1]→ X be a loop, . . .
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1.28 Let X be an irreducible topological space. Prove that the group π̂(X) from 1.15 is
trivial.

Let f : Y → X be any covering where Y is a connected topological space. Then
construct a function by sub-covering g : Z ⊂ Y → X by: Pick any point p ∈ X and
an open neighborhood N of p such that f |f−1(N) is a trivial covering. Fix a piece of

f−1(N), N̂ . Then for any other points of X, z /∈ N , and any trivial neighborhood Nz,
Nz ∩N 6= ∅ and Nz ∩N 6= ∅ is also a trivial neighborhood. Then there exists exactly one
piece of f−1(Nz) whose intersection with N̂ is nonempty. Let Z :=

⋃
z /∈N N̂z ∪N . Then

f restricted to Z is a homeomorphism to X, but Y is connected. This implies Y = Z and
Y is a trivial covering.

1.29 Put A = Z[
√
−3], B = Z[X]/(X4 +X2 + 1) and β = (X mod X4 +X2 + 1) ∈ B.

View B as an A-algebra via the ring homomorphism A → B mapping
√
−3 to

β − β−1. Prove that B is a free separable A-algebra.

First, we check that B is a free A-module with a basis {1, β}. Note that the inverse
of β is −β(β2 + 1). Clearly, the A-module B is generated by 1, β, β2, β3. By a direct
computation, we have β2 = 1 +

√
−3β, β3 =

√
−3 − 2β and β4 = −2 +

√
−3β. Also,

1, β are linearly independent over A by comparing the degree in Z[X]. Hence B is a free
A-module of rank 2.

Under the basis {1, β}, we have

[mβ] =

(
0 1
1
√
−3

)
, [mβ2 ] =

(
1

√
−3√

−3 −2

)
.

Then

det

(
Tr(1) Tr(β)
Tr(β) Tr(β2)

)
= det

(
2

√
−3√

−3 −1

)
= 1.

By the exercise 1.3, B is a free separable A-algebra.

2 Exercises for Section 2

2.2 Let K ⊂ L be a Galois extension of fields, and I any directed set of subfields E ⊂ L
with K ⊂ E Galois for which

⋃
E∈I E = L. Prove that there is an isomorphism of

profinite groups Gal(L/K) ∼= lim←−E∈I Gal(E/K). (N.B.: the groups Gal(E/K) need

not be finite here, they are merely profinite.)

The natural map Gal(L/K) → Gal(E/K) is given by σ 7→ σ|E . This is well-defined
since E is Galois over K. So we obtained a morphism

θ : Gal(L/K)→ lim←−E∈I Gal(E/K).

θ is injective, since if σ|E = idE for all such E, then σ = idL. For the surjectivity, let
(σE)E∈I ∈ lim←−E∈I Gal(E/K). Construct an element ε ∈ Gal(L/K) as follow: If α ∈ L,

then α ∈ E for some E since L =
⋃
E∈I E. Then define ε(α) := σE(α). This is again

well-defined by our assumption (σE)E∈I ∈ lim←−E∈I Gal(E/K). And ε 7→ (σE)E∈I .
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2.3 (a) Let K ⊂ L be a Galois extension of fields, with Galois group G. View G as
a subset of the set LL of all functions L → L. Let L be given the discrete
topology and LL the product topology. Prove that the topology of the profinite
group G coincides with the relative topology inside LL.

(b) Conversely, let L be any field and G ⊂ Aut(L) a subgroup that is compact
when viewed as a subset of LL (topologized as in (a)). Prove that LG ⊂ L is
Galois with Galois group G.

(c) Prove that any profinite group is isomorphic to the Galois group of a suitably
chosen Galois extension of fields.

For (a), if U is an open set in LL, we may assume that U =
∏
l∈L Ul with Uk = {sk}

for finitely many k ∈ L and Ul = L for the remaining. The intersection U ∩G is the set
of all automorphisms σ such that σ(k) = sk for those k. Let X ⊂ L be a finite Galois
extension over K ontaining all such k. Let τ ∈ Gal(X/K) with τ(k) = sk. Such τ exists
provided that U ∩G is non-empty.

Let I be the direct set given by finite Galois extensions with the usual inclusion maps.
Define V =

∏
E∈I VE ⊂

∏
E∈I Gal(E/K) with VX = {τ} and VE = Gal(E/K) for E 6= X.

V is open in
∏
E∈I Gal(E/K) and V ∩G = U ∩G.

So for any open set U in LL, G ∩ U is open in G.
For the opposite direction, any open set in G is of the form G ∩ V with V open in∏

E∈I Gal(E/K). We may assume V =
∏
E∈I VE with VE = {σE} for finitely many E

and VF = Gal(F/K) for the remaining. Since an automorphism is completely determined
by its behavior on generators. Hence it is an intersection of G with some open set in LL.

To prove (b), it suffices to show that L over LG is algebraic. Take any l ∈ L. G · l is
compact in L. Hence it is a finite set. Let {l1, · · · , lN} be the image. Then

f(x) :=
N∏
i=1

(x− li) ∈ LG[x].

So LG ⊂ L is an algebraic extension.
Finally, let G be any profinite group. G = lim←−i∈I Gi for some finite groups Gi. Gi

can be embedded into Sni for some ni. Let Xi be the set of ni indeterminantes. Sni acts
on Xi by permutation. This induces an action Gi × Xi → Xi. Let X =

∐
i∈I Xi and

L = C(X). Then G acts on L. G is profinite ⇒ G is compact, and hence by (a), the
hypothesis of (b) holds. Therefore, L is a Galois extension of LG with Galois group G.

2.6 Let K ⊂ L be a Galois extension of fields, and H ′ ⊂ H ⊂ Gal(L/K) closed
subgroups with index[H : H ′] < ∞. Prove that LH ⊂ LH

′
is finite, and that

[LH
′

: LH ] = index[H : H ′]. Which part of the conclusion is still true if H, H ′ are
not necessarily closed?

Firstly, we prove that [LH
′

: LH ] ≤ [H : H ′] and hence it is finite. Let n = [H : H ′].
Suppose the contrary that there exist n+ 1 elements which are linearly independent over
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LH , say u1, · · · , un+1. Let {τi}ni=1 be a complete representative of left coset of H ′ in H.
Let us consider the following linear equations.

τ1(u1)x1 + τ1(u2)x2+ · · ·+ τ1(un+1)xn+1 = 0

τ2(u1)x1 + τ2(u2)x2+ · · ·+ τ2(un+1)xn+1 = 0

...

τn(u1)x1 + τn(u2)x2+ · · ·+ τn(un+1)xn+1 = 0.

There exists a non-zero solution to this system. Choose one, say xi = ai, so that the
number of non-zero elements in the ai’s are minimum. Then I will try to construct
another solution with more zeros in the ai’s.

Firstly, after multiplying by a non-zero constant and rearrange the variables, we may
assume that a1 = 1, a2 6= 0, · · · , ak 6= 0, and ak+1 = · · · an+1 = 0. Also, I may assume
τ1 = idH′ . The first equation reads

u1x1 + · · ·+ un+1xn+1 = 0.

Since ui’s are linearly independent over LH , there exists at least one ai, say a2, such that
a2 ∈ LH

′ − LH . Choose an automorphism σ ∈ H such that σ(a2) 6= a2. Now I consider
the system equations

στ1(u1)x1 + στ1(u2)x2+ · · ·+ στ1(un+1)xn+1 = 0

στ2(u1)x1 + στ2(u2)x2+ · · ·+ στ2(un+1)xn+1 = 0

...

στn(u1)x1 + στn(u2)x2+ · · ·+ στn(un+1)xn+1 = 0.

σ(a1) = σ(1) = 1, σ(a2) 6= a2, · · ·σ(an+1) is a solution to this system. But since στi
are a complete representatives of left cosets of H ′ in H, we have στi(us) = τj(us) for
some j, i.e., the new system is identically equal to the original one. Now a1 − σ(a1) = 0,
a2 − σ(a2) 6= 0, · · · , an+1 − σ(an+1) is a non-zero solution to the system with more zeros
than ai’s.

This proves [LH
′

: LH ] ≤ [H : H ′].
Let K ⊂ E ⊂ F ⊂ L be fields. I claim that [E′ : F ′] ≤ [F : E] if [F : E] < ∞, where

E′ means the automorphism groups of L fixing E.
Use induction on n := [F : E]. The case n = 1 is obvious. Suppose n > 1. Choose an

element u ∈ F − E. Consider E(u). If [E(u) : E] < [F : E]. Then by induction, we have
[E′ : E(u)′] ≤ [E(u) : E] and [E(u)′ : F ′] ≤ [F : E(u)]. So the result follows.

We may assume E(u) = F . Let f be the minimal polynomial of u over E. We will
construct an injection from the coset space E′/F ′ to the set of roots of f in L, say S.

Let τF ′ be a coset. τ ∈ Aut(L/E). Consider τ(u). This defines a map T : E′/F ′ → S.
It is not hard to check it is well-defined. Suppose τ(u) = τ ′(u). Then τ−1τ ′(u) = u. Hence
τ−1τ ′ fixed F . So T is injective.

Now by Galois theory, since the groups are closed, (LH)′ = H and (LH
′
)′ = H ′. So

we have
[H : H ′] ≤ [LH

′
: LH ] ≤ [H : H ′].
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We remark that the closeness of H and H ′ are only used in the last step. Without
assuming H, H ′ are closed, we still can show that

[LH
′

: LH ] ≤ [H : H ′].

2.7 Let K,L, F be subfields of a field Ω, and suppose that K ⊂ L is Galois and that
K ⊂ F . Prove that F ⊂ L ·F is Galois, and that Gal(L ·F/F ) ∼= Gal(L/L∩F ) (as
topological groups).

Define

I := {K ⊂ E ⊂ L : [E : K] is finite and E/K is Galois extension}.

Then L/K is Galois implies L =
⋃
E∈I E. Also we have L · F =

⋃
E∈I E · F and

Gal(E · F/F ) = Gal(E/E ∩ F ) = Gal(E · (L ∩ F )/L ∩ F ).

On the other hand, E · (L∩F ) is a Galois extension over L∩F and L =
⋃
E∈I E · (L∩F ).

Therefore, L/L ∩ F is a Galois extension. Moreover,

Gal(L · F/F ) = lim←−
E∈I

Gal(E · F/F ) = lim←−
E∈I

Gal(E · (L ∩ F )/L ∩ F ) = Gal(L/L ∩ F ).

2.8 Let K be a field. Prove that for every Galois extension K ⊂ L the group Gal(L/K)
is isomorphic to a quotient of the absolute Galois group of K.

Every Galois extension of K is a subfield of Ks containing K and corresponds to a
closed normal subgroup of Gal(Ks/K). By (Thm2.3), done.

2.9 (a) Suppose that H is a finite subgroup of the absolute Galois group of a field K.
Prove that #H ≤ 2 and #H = 1 if char(K) > 0. [Hint: [15, Theorem 56].]

(b) Let K be a field with separable closure Ks, and α ∈ Ks, α /∈ K. Let E be
a subfield of Ks, containing K that is maximal with respect to the property
of not containing α. Prove that Gal(Ks/E) ∼= Z/2Z or Gal(Ks/K) ∼= Zp for
some prime number p.

(a) Let Σ be the set of all open normal subgroups of G with finite index. Because G
is compact, elements of Σ are automatically closed subsets of G. Besides,

⋂
N∈ΣN = e

(where e is identity element); therefore, e is closed in G. Let g ∈ H. Then the canonical
translation map g : G → G is a homeomorphism implies that g(e) = g is closed in G.
Therefore, as a finite union of closed subsets, H is closed. Then by Main theorem of
Galois theory, Ks/K

H
s is Galois with Gal(Ks/K

H
s ) = H. So Ks/K

H
s is a finite extension.

Quote a theorem on this situation:
Theorem 56 (Fields and Rings, by Irving Kaplansky (1969; 2nd ed. 1972))

Theorem 1. Let K be a field, not algebraically closed. If K has a finite extension L,
which is algebraically closed. Then K is an ordered field and L = K(i).
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If charK = 0, then Ks = KH
s (i), so #H = 2. If charK > 0, then H = {e}; otherwise,

KH
s is an ordered field.

(b) There are two cases: Ks/E is a finite extension or not. By 2.9(a), if Ks/E is finite,
then Gal(Ks/E) ∼= Z/2Z. In the following proof, assume Ks/E is infinite extension. The
condition that E is maximal with respect to the property not containing α implies that
for any proper extension H/E, E(α) ⊂ H.

Step 1: E(α)/E is Galois extension of degree p, for prime number p.
Suppose E(α)/E is not Galois. Let E(α) ⊂ L be a Galois closure of Eα. Then

Gal(L/E(α)) is not a normal subgroup in Gal(L/K). So there exists a distinct sub-
group with same index as Gal(L/E(α)), but this implies L has a nontrivial subfield not
containing E(α). Contradiction.

Also, Gal(E(α)/E) has no proper subgroups. So Gal(E(α)/E) = Z/pZ.
Step 2: Any finite Galois extension H/E is of degree pn for some positive integer n.
Suppose not. Let #Gal(H/E) = pnm where (m, p) = 1. Consider the p-Sylow

subgroup Γ of Gal(H/E). Then [HΓ : E] = m, which is impossible to contain E(α).
Contradicition.

Step 3: For any positive integer n, there exists a unique finite Galois extension H/E
such that [H : E] = pn. . . .

2.10 A Steinitz number or supernatural number is a formal expression a =
∏
p p

a(p), where

a(p) ∈ {0, 1, 2, . . . ,∞} for each prime number p. If a =
∏
p p

a(p) is a Steinitz number,

we denote aẐ the subgroup of Ẑ corresponding to
∏
p p

a(p)Zp (with p∞Zp = {0})
under the isomorphism Ẑ ∼=

∏
p Zp (Exercise 1.14).

(a) Prove that the map a 7→ aẐ from the set of Steinitz number to the set of closed
subgroups of Ẑ is bijective. Prove also that aẐ is open if and only if a is finite
(i.e.,

∑
p a(p) <∞).

(b) Let Fq be a finite field, with algebraic closure Fq. For a Steinitz number a,
let Fqa be the set of all x ∈ Fq for which [Fq(x) : Fq] divides a (in an obvious
sense). Prove that the map a → Fqa is a bijection from the set of Steinitz
numbers to the set of intermediate fields of Fq ⊂ Fq. [Ernst Steinitz, German
mathematician, 1871-1928.]

(a) Injectivity of such map is obvious. For subjectivity: Recall (ex1.11). A closed
subgroup of

∏
p Zp is of the form

∏
p πp where πp is a closed subgroup of Zp, and

closed subgroups of Zp is of the form pa(p)Zp for some a(p) ∈ N. Recall that
an subgroup is open if and only if it is closed with finite index. The index of
[Ẑ : aẐ] = [

∏
p Zp :

∏
p p

a(p)Zp] =
∏
p p

a(p). Therefore, aẐ is open if and only if a is
finite.

(b) Discard the original notation.

Define φ : Steinitz numbers→ collection of subsets of F̄q by

φ(a) := {x ∈ F̄q | [Fq(x) : Fq] divides a}.
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Step 1. For any Steinitz number a, φ(a) is a field containing Fq.
Let x ∈ φ(a)\{0}. Then x−1 is in the subfield of Fq(x)/Fq. Therefore [Fq(x−1) : Fq]
divides a. Let y ∈ φ(a). Because Fq is a finite field, there exists a unique extension
of Fq with degree n, for any n ∈ N, and every finite extension is Galois whose Galois
group is cyclic. Therefore

[Fq(x, y) : Fq] = l.c.m([Fq(x) : Fq], [Fq(y) : Fq]),

which also divides a. Therefore, φ(a) is closed in addition and multiplication. So
φ(a) is a field containing Fq.
Step 2. If a is finite, set a ∈ N, then φ(a) = Fqa .

The reason is already stated in Step 1, it comes from the properties of a finite field.

Step 3. φ : Steinitz numbers → collection of intermediated fields of F̄q/Fq is a bi-

jective map. Gal(F̄q/Fq) = Ẑ. By 2.10(a), the closed subgroups has a 1-1 cor-
respondence with Steinitz number. By Main theorem of Galois theory, there is a
correspondence between intermediate field and closed subgroups; therefore, every

intermediate field is of the form F̄aẐq . In the following, b is regarded to be a finite
number dividing a.

F̄aẐq = F̄
⋂
b bẐ

q =
⋃
b

F̄bẐq =
⋃
b

Fqb =
⋃
b

φ(b) = φ(a).

2.11 Let G be a profinite group. We call G procyclic if there exists σ ∈ G such that
the subgroup generated by σ is dense in G. Prove that the following assertions are
equivalent:

(i) G is procyclic;

(ii) G is the projective limit of a projective system of finite cyclic groups;

(iii) G ∼= Ẑ/aẐ for some Steinitz number a (Exercise 2.10);

(iv) for any pair of open subgroups H,H ′ ⊂ G with index[G : H] = index[G : H ′]
we have H = H ′.

Prove also that the Steinitz number a in (iii) is unique if exists.

(b)⇒(a) Given a direct system I with restriction maps fji : Gj → Gi where j ≥ i and Gi
are cyclic. Let G = lim←−Gi. Without loss of generality, assume for every j ≥ i,
fji : Gj → Gi is surjective. Let Si be the set of generators of Gi. Then Si form a
projective system because fi,j are surjective. Because Si are finite and nonempty,
their inverse limit is not empty. Now there exists an element σ ∈ G given by
σ = lim←−i σi where each σi is a generator of Gi. Now it is obvious to see that every
open subset of G has non trivial intersection with 〈σ〉.

(a)⇒ (c) Consider the group homomorphism φ : Ẑ→ G which sends 1 to sigma. It is obvious
that φ is continuous. Because Ẑ is compact and G is Hausdorff, φ(Ẑ) is closed in G
and containing 〈σ〉. Therefore, φ is surjective. Since kerφ is closed in Ẑ, kerφ = aẐ
for some Steinitz number a. So G ∼= Ẑ/aẐ.
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(c)⇒ (d) From (c), G ∼=
∏
p Zp/pa(p)Zp. Then (d) is obvious.

(d)⇒(b) Step 1: Every subgroup of G with finite index is a normal subgroup.

Given a subgroup N , and any g ∈ G, gNg−1 is also subgroup having the same index
with N . Therefore, gNg−1 = N for every g ∈ G.

Step 2: Let N be a subgroup with finite index. Then G/N is cyclic. Let

n := #G/N =
n∏
i=1

psii .

If n is prime, then G/N is cyclic. Assume n is not prime. From condition (d), every
cyclic subgroup of G/N is unique. So the collection of all cyclic subgroups of G/N
can be endowed a partial order by the order of cyclic subgroups.

Suppose G/N is not cyclic. Then there does not exist an element with order n. But
since G/N is a finite group, every element has a finite order. . . .

2.12 Let K be a field with separable closure Ks. Prove that the absolute Galois group
of K is procyclic (see Exercise 2.11) if and only if K has, for any positive integer n,
at most one extension of degree n within Ks; and that it is isomorphic to Ẑ if and
only if K has, for any positive integer n, exactly one extension of degree n within
Ks.

The first statement is equivalent to (2.11 (d)). If Gal(Ks/K) = Ẑ, then Gal(Ks/K) =
Ẑ is pro-cyclic (2.11(c)).

Let
Γ = {n ∈ N|K has a finite extension with degree n within Ks}.

Then Gal(Ks/K) = lim←−n∈Γ
Gal(Kn/K) = lim←−n∈Γ

Z/nZ = Ẑ implies Γ = N. Conversely,
if K has for any positive integer n, exactly one extension with degree n within Ks.
Then Gal(Ks/K) satisfies (2.11(d)). So Gal(Ks/K) ∼= Ẑ/aẐ for some Steinitz number
a. Suppose a 6=

∏
p p
∞, and let a(p) < ∞. Then K does not have a finite separable

extension with degree pa(p)+1, contradiction. So Gal(Ks/K) ∼= Ẑ.

2.17 (Kummer theory.) Let K be a field with algebraic closure K, and m a positive
integer. Suppose that K contains a primitive m-th root of unity ζm, and let Em ⊂
K∗ be the subgroup generated by ζm. Prove that there is a bijective correspondence
between the collection of subfields L ⊂ K for which

L/K is Galois, Gal(L/K) is abelian, ∀σ ∈ Gal(L/K) : σm = idL

and the collection of subgroups W ⊂ K∗ for which K∗m ⊂ W ; this correspondence
maps L to L∗m ∩ K∗ and W to K(W 1/m). Prove also that if L corresponds to
W , there is an isomorphism of topological groups Gal(L/K)

∼−→ Hom(W/K∗m, Em)
mapping σ to (αK∗m 7→ σ(α1/m)/α1/m); here Hom(W/K∗m, Em) has the relative
topology in (Em)W/K

∗m
, where each Em is discrete.
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Let W be a subgroup of K∗ containing K∗m and let L = K(W 1/m). Note that L/K
is Galois because L is the splitting field of separable polynomials Xm − α, α ∈ W (here
we use assumptions that m primes to char(K) and K contains ζm).

First, we shall construct a bijection between Hom(W/K∗m, Em) and the Galois group
G := Gal(L/K). Define a pairing

G×W → Em

by mapping (σ, α) to σ(α1/m)/α1/m, denoted it by 〈σ, α〉. Clearly, 〈σ, α〉 is independent
of the choice of an m-th root α1/m of α, and the map is bilinear i.e.

σ((αβ)1/m)/(αβ)1/m = (σ(α1/m)/α1/m)(σ(β1/m)/β1/m).

Suppose that 〈σ, α〉 = 1 for all α ∈W . Then σ induces the identity on W 1/m and thus on
L. Hence the kernel on the left is 1. Let α ∈W and suppose that 〈σ, α〉 = 1 for all σ ∈ G.
If α1/m is not in K, there is an automorphism of the subfield K(α1/m) over K which is
not identity. Extend this automorphism to L, and call it σ. Then clearly 〈σ, α〉 6= 1.
Hence the kernel on the right is K∗m. Therefore the bilinear paring induces the bijection

G
∼−→ Hom(W/K∗m, Em)

which maps σ to (αK∗m 7→ σ(α1/m)/α1/m). Note that the extension L/K is finite if and
only if W/K∗m is finite and in particular we have the equality [L : K] = [W : K∗m].

We shall prove that the correspondence between subfields L ⊂ K and subgroups
W ⊂ K∗ is injective. Let W1, W2 be subgroups of K∗ containing K∗m. If W1 ⊆W2, then

K(W
1/m
1 ) ⊆ K(W

1/m
2 ). Conversely, if K(W

1/m
1 ) ⊆ K(W

1/m
2 ) we wish to prove W1 ⊆W2.

For each α ∈W1, we have

α1/m ∈ K(α1/m) ⊆ K(W
1/m
2 ).

Then α1/m is contained in a finitely generated subextension of K(W
1/m
2 ) and thus we

may assume that W2/K
∗m is finite. Let W3 be the subgroup of K∗ generated by W2

and α. Then K(W
1/m
2 ) = K(W

1/m
3 ) and from what we saw above, we get the equality

[W2 : K∗m] = [W3 : K∗m] and thus W2 = W3. This proves that W1 ⊆W2.
In order to prove the surjectivity, let L/K be an abelian (Galois) extension of exponent

m. Any finite subextension is a composite of cyclic extensions of exponent m because
any finite abelian group is a product of cyclic groups. Notice that m is a multiple of
the degree of a finite cyclic extension. Since m is prime to char(K) and ζm ∈ K, by
a theorem of finite cyclic extension fields (cf. Hilbert 90), any finite cyclic extension of
exponent dividing m equals K(α1/m) for some α ∈ K∗. Hence L can be obtained by

adjoining a collection of m-th roots {α1/m
λ }λ∈Λ with αλ ∈ K∗. Let W be the subgroup of

K∗ generated by K∗m and {αλ}λ∈Λ. Hence K(W 1/m) = K({α1/m
λ }λ∈Λ) = L.

Finally, since each continuous bijection from a compact space to a Hausdorff space is a
homeomorphism, the continuous bijection G

∼−→ Hom(W/K∗m, Em) is an isomorphism of
topological groups. We remark that this also can be proved by the following isomorphisms
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of profinite groups:

G ' lim←−E∈I Gal(E/K)

' lim←−W ′∈J Hom(W ′/K∗m, Em)

' Hom(lim−→W ′∈JW
′/K∗m, Em) ' Hom(W/K∗m, Em),

where I is the set of subfields E of L for which E/K is finite Galois and J is the set of
subgroups W ′ of W for which K∗m ⊆W ′ and W ′/K∗m is finite.

2.18 (Artin-Schreier theory.) Let K be a field with algebraic closure K, let p =
char(K) > 0. Prove that there is a bijective correspondence between the collection
of subfields L ⊆ K for which

K ⊆ L is Galois, ∀σ ∈ Gal(L/K) : σp = idL

and the collection of additive subgroups W ⊆ K for which ℘[K] ⊆ W , where
℘ : K → K is defined by ℘(x) = xp−x; this correspondence maps L to ℘[L]∩K and
W to K(℘−1[W ]). Prove also that if L corresponds to W , there is an isomorphism
of topological groups Gal(L/K)

∼−→ Hom(W/℘[K],Fp) mapping σ to (α + ℘[K] 7→
σ(β)− β, where℘(β) = α).

Let W be a subgroup of K containing ℘[K] and let L = K(℘−1[W ]). Note that L/K
is Galois because L is the splitting field of separable polynomials Xp −X − α, α ∈W .

First, we shall construct a bijection between Hom(W/℘[K],Fp) and the Galois group
G := Gal(L/K). Define a pairing

G×W → Fp

by mapping (σ, α) to σ(β) − β where ℘(β) = α, denoted it by 〈σ, α〉. Clearly, 〈σ, α〉 is
independent of the choice of a β which satisfies ℘(β) = α, and the map is bilinear since
char(K) = p.

Suppose that 〈σ, α〉 = 0 for all α ∈ W . Then σ induces the identity on ℘−1(W ) and
thus on L. Hence the kernel on the left is 1. Let α ∈ W and suppose that 〈σ, α〉 = 0
for all σ ∈ G. If ℘−1α is not contained in K, there is an automorphism of the subfield
K(℘−1α) over K which is not identity. Extend this automorphism to L, and call it σ.
Then clearly 〈σ, α〉 6= 0. Hence the kernel on the right is ℘[K]. Therefore the bilinear
paring induces the bijection

G
∼−→ Hom(W/℘[K],Fp)

which maps σ to (α + ℘[K] 7→ σ(β) − β), where℘(β) = α. Note that the extension
L/K is finite if and only if W/℘[K] is finite and in particular we have the equality
[L : K] = [W : ℘[K]].

We shall prove that the correspondence between such subfields L ⊂ K and subgroups
℘[K] ⊆W ⊆ K is injective. Let W1, W2 be subgroups of K containing ℘[K]. If W1 ⊆W2,
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then K(℘−1[W1]) ⊆ K(℘−1[W2]). Conversely, if K(℘−1[W1]) ⊆ K(℘−1[W2]) we wish to
prove W1 ⊆W2. For each α ∈W1, we have

℘−1α ⊆ K(℘−1α) ⊆ K(℘−1[W2]).

Then ℘−1α is contained in a finitely generated subextension of K(℘−1[W2]) and thus we
may assume that W2/℘[K] is finite. Let W3 be the subgroup of K generated by W2 and
℘−1α. Then K(℘−1[W2]) = K(℘−1[W3]) and from what we saw above, we get the equality
[W2 : ℘[K]] = [W3 : ℘[K]] and thus W2 = W3. This proves that W1 ⊆W2.

In order to prove the surjectivity, let L/K be an abelian (Galois) extension of exponent
p. Any finite subextension is a composite of cyclic extensions of exponent p because any
finite abelian group is a product of cyclic groups. Notice that p is the degree of a finite
cyclic extensions of exponent p. Since char(K) = p, by a theorem of finite cyclic extension
fields of degree p (cf. additive Hilbert 90), any finite cyclic extension of exponent p equals
K(℘−1α) for some α ∈ K. Hence L can be obtained by adjoining a collection of “℘-th
roots” {℘−1αλ}λ∈Λ with αλ ∈ K. Let W be the subgroup of K generated by ℘[K] and
{αλ}λ∈Λ. Hence K(℘−1W ) = K(∪λ∈Λ℘

−1αλ) = L.
Finally, since each continuous bijection from a compact space to a Hausdorff space is

a homeomorphism, the continuous bijection

G
∼−→ Hom(W/℘[K],Fp)

is an isomorphism of topological groups. We remark that this also can be proved by the
following isomorphisms of profinite groups:

G ' lim←−E∈I Gal(E/K)

' lim←−W ′∈J Hom(W ′/℘[K],Fp)

' Hom(lim−→W ′∈JW
′/℘[K],Fp) ' Hom(W/℘[K],Fp),

where I is the set of subfields E of L for which E/K is finite Galois and J is the set of
subgroups W ′ of W for which ℘[K] ⊆W ′ and W ′/℘[K] is finite.

2.23 (a) Let A be a local ring and x ∈ A such that x2 = x. Prove that x = 1 or x = 0.

(b) Prove that any ring isomorphism
∏s
i=1Ai

∼−→
∏t
i=1Bj , where the Ai and Bj

are local rings and s, t < ∞, is induced by a bijection σ : {1, 2, · · · , s} ∼−→
{1, 2, · · · , t} and isomorphisms Ai

∼−→ Bσ(i), 1 ≤ i ≤ s.

For (a), x(1 − x) = 0. In a local ring, at least one of x and 1 − x is a unit. Indeed,
if x ∈ m (resp. 1− x ∈ m), the unique maximal ideal, then 1− x /∈ m (resp. x /∈ m). So
1− x (resp. x) is a unit. ⇒ 1− x = 0 or x = 0.

To prove (b), since Ai, Bj ’s are local, the number of maximal ideals of A :=
∏s
i=1Ai

(resp. B :=
∏t
j=1Bj) is exactly s (resp. t). A ∼= B implies s = t. Further, Ai is an ideal

in A. So its image in B under the isomorphism φ : A ∼= B is also an ideal of B. Hence it
is isomorphic to a direct product of ideals in Bj , 1 ≤ j ≤ t. Write Ai ∼= J1 × · · · × Jt for
Jk / Bk. Let φi : Ai → A → B. φi(1) is a unit in B. It is of the form (u1, · · · , ut) with
ui’s being units in Bi. So either Jk = Bk or Jk = 0. It is impossible that there are more
than one Jk 6= 0 since Ai contains no idempotent other than 0 and 1. Hence Ai ∼= Bj for
some j. Induction on s = t proves the result.
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3 Exercises for Section 3

3.1 (Left limits and right limits [12].) A directed graph D consists of a set V = VD
of vertices, a set E = ED of edges, a source map s = sD : E → V and a target map
t = tD : E → V ; each e ∈ E is to be thought of as an arrow from s(e) to t(e). Let
D be a directed graph and C a category. A D-diagram in C is a map that assigns
to each v ∈ V an object Xv of C and to each e ∈ E a morphism fe from Xs(e)

to Xt(e) in C. A morphism from a D-diagram ((Xv)v∈V , (fe)e∈E) to a D-diagram
((Yv)v∈V , (ge)e∈E) is a collection of morphisms (hv : Xv → Yv)v∈V in C such that
ht(e)fe = gehs(e) for all e ∈ E.

(a) Show that the D-diagrams in C form a category. We denote this category by
CD.

(b) Show that there exists a functor Γ : C → CD mapping an object X to the
constant D-diagram with Xv = X for all v ∈ V and fe = idX for all e ∈ E, and
mapping a morphism h : X → Y to the morphism (hv)v∈V with all hv = h.

(c) A left limit of a D-diagram A in C is an object lim←−A of C such that

HomC(−, lim←−A) ∼= HomCD(Γ(−), A)

as functors on C. Prove that lim←−A is unique up to isomorphism if it exists,
and that the notion of a left limit generalizes that of a projective limit (see 1.7
and Exercise 1.8).

(d) Show that C admits left limits of all D-diagrams in C if and only if the functor
Γ : C→ CD has a right adjoint lim←− : CD → C, i.e.,

HomC(−, lim←−(−)) ∼= HomCD(Γ(−),−).

If this right adjoint exists, we say that C admits left limits over D.

(e) A right limit of a D-diagram A in C is an object lim−→A of C such that

HomC(lim−→A,−) ∼= HomCD(A,Γ(−))

Formulate and prove the analogues of the assertions in (c) and (d). If Γ has a
left adjoint lim−→ : CD → C we say that C admits right limits over D.

(a) Let D-diagrams be class of objects, and class of morphisms be defined in the state-
ment. We have to check three conditions:

(i) Composition of morphisms: Let a, b, c be objects and f ∈ Hom(a, b) g ∈
Hom(b, c), the canonical composition g ◦ f ∈ Hom(a, c).

(ii) identity morphism idX : X → X. Canonically, a collection of morphisms
(idv : Xv → Xv). Associativity is obvious.

. . .

(b) This is a covariant functor.
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(c) Let L1, L2 be two left limits for A ∈ CD and fi : Γ(Li) → A be the canonical
morphisms, i = 1, 2. . . .

Let (I,≤) be a directed poset and Gi be objects in the set category and restriction
maps fi,j : Gj → Gi with j ≥ i satisfying

(1) fii = idGi

(2) fik = fij ◦ fjk for all k ≥ j ≥ i.

Then (I,≤) can be thought of as a directed graph D and the projective system as
a D-diagram. Then the universal property of lim←−i∈I Gi is the definition of the left
limit of the D-diagram.

(d) This follows directly from the definition of left limits.

(e) Prove that lim−→A is unique up to isomorphism if exists, and that the notion of a
right limit generalizes that of a injective limit.

Let R1, R2 be two right limits for A ∈ CD, and gi : A → Γ(Ri) be the canonical
morphisms, i = 1, 2. . . .

3.2 (Left limits in axiom G1.) Let C be a category.

(a) Prove that C admits left limits over the empty directed graph (with V = E =
∅) if and only if C has a terminal object.

(b) Prove that C admits left limits over the directed graph · // · ·oo if and
only if the fibres product of any two objects over a third one exists in C.

(a) Suppose CD has a left limit over empty graph A. For every K ∈ Ob(C), The set
HomCD(Γ(K), A) = {∅} has a unique element. Then HomC(K, lim←−A) also has an
unique element, which implies lim←−A is the terminal object of C. Conversely, let T
be the terminal object of C. Both HomCD(Γ(K), A) and HomC(K,T ) has unique
element for every K ∈ Ob(C).

Therefore, HomC(K,T ) ∼= HomCD(Γ(K), A), so T is the left limit over empty graph.

(b) The universal property of the product of any two objects over a third one coincides
with that of the left limit of · // · ·oo

3.3 (Equalizers and finite left limits.) Let C be a category. An equalizer of two
morphisms f, g : X → Y in C is a left limit of the D-diagram f, g : X ⇒ Y
with D = • ((

66 • . We say that C has equalizers if it admits left limits over
D = • ((

66 • . We say that C has finite products if it admits left limits over any
D with V finite and E = ∅. We say that C has finite left limits if it admits left
limits over any finite D (i.e., with both V and E finite).

(a) Suppose C satisfies G1 (see 3.1), and let f, g : X → Y be morphisms in C. Let
X ×Y X be formed with respect to f and g. Prove that there exists a natural
morphism X ×Y X → X ×X and a diagonal morphism X → X ×X such that
X ×X×X (X ×Y X) is an equalizer of f, g.
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(b) Prove that C satisfies G1 if and only if it has equalizers and finite products,
and if and only if it has finite left limits.

3.4 (Right limits in axiom G2.) Let C be a category.

(a) Prove that C admits right limits over the empty directed graph if and only if
C has an initial object.

(b) Prove that the following three assertions are equivalent.

(i) finite sums exists in C;

(ii) any two objects X,Y of C have a sum X q Y in C, and C has an initial
object;

(iii) C admits right limits over any directed graph D with V finite and E empty.

(c) Show how the quotient X/G of an object X by a finite subgroup G ⊂ Aut(X)
can be interpreted as a right objects.

(a) Similar to (3.2(a)).

(b)

(i)⇒(ii) Uses (a).

(ii)⇒(iii) Do this by induction. Assume C has right limits over any directed graph D
with #V (D) = n and E(D) = ∅. Let X1 · · ·Xn+1 be objects of C. Let B
be the right limits over X1, · · · , Xn. Let us verify that A := B t Xn+1 with
morphisms vi : Xi → A is the right limit of X1, · · · , Xn+1.

Given an object K with morphisms ki : Xi → K, i = 1, . . . , n. ki induce a
morphism b1 : B → K, which further induces b2 : A→ K such that b2 ◦vi = ki
for any i. So A with morphisms vi implies that HomC(A, ·) ∼= HomCD(D,Γ(·)).
So A is the right limit over X1, · · · , Xn+1.

(iii)⇒(i) Definition of finite sums.

(c) Let G be a finite subgroups of Aut(X), and G={idX , σ1 · · ·σn}. Let A be the
right limit of the graph X

idX

!!

· · · X

σn~~
X

and let p : X → A be the canonical

morphism such that p = p ◦ σi, and let Y with morphism f : X → Y satisfying
f = f ◦ σi where i = 1 · · ·n.

X
idX

!!

· · · X

σn~~
X

p

��

f

!!
A g // Y

Then f induces a morphism g : X/G → Y such that f = g ◦ p. So A satisfies the
definition of the quotient X/G.
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3.5 Let f : X → Y be a morphism in a category C. Prove that f is an epimorphism if
and only if Y , together with idY : Y → Y and f : X → Y , is a right limit of the
diagram Y X //oo Y in which both arrows equal f .

Assume Y , together with idY and f : X → Y is the right limit of Y X
f //foo Y .

Then given an object Z with morphisms g : Y → Z and h : Y → Z such that g◦f = h◦f .
Then it induces a morphism p : Y → Z such that g = p ◦ idY = h.

Z

Y

p

__

X

f
��

f
``

f // Y

idY

kk

h

kk

Y

idY

SS

g

TT

Therefore, f is epimorphism. Now reverse the argument and assume f is epimorphism.
Then it can be easily seen that Y , together with idY and f : X → Y is the right limit of

Y X
f //foo Y .

3.6 Let C be a category satisfying G1, and F a covariant functor from C to the category
of sets

(a) Prove that F satisfies G4 if and only if it commutes with equalizers and with
finite products, and if and only if it commutes with arbitrary finite left limits.

(b) Suppose that F satisfies G4 and G6, and let f, g : X → Y be morphisms in C
with F (f) = F (g). Prove that f = g.

(a) Restatement of (ex3.3(b)).

(b) Let A with morphism u : A → X be the equalizer over X
f
))

g
55 Y . Since F (f) =

F (g) and F commutes with finite left limits, F (A) 'F (u) F (X). So u is an isomor-
phism. So u is epimorphism. Then f ◦ u = g ◦ u implies f = g.

3.7 Let C be a category and F a covariant functor from C to the category of sets.
Suppose that F commutes with finite right limits. Prove that F satisfies G4. [Hint:
Exercises 3.4 and 3.5.]

This is just the restatement of (ex3.4, ex3.5)

3.18 (Injective limits.) An injective system of sets consists of a directed partially
ordered set I, a collection of sets (Si)i∈I and a collection of maps (fij : Si →
Sj)i.j∈I,i≤j satisfying the conditions

fii = (identity on Si) for each I ∈ I,
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fik = fjk ◦ fij for all i, j, k ∈ I with i ≤ j ≤ k.

Call x ∈ Si equivalent to y ∈ Sj if there exists k ∈ I with k ≥ i, k ≥ j and
fik(x) = fjk(y) in Sk

(a) Prove that this is an equivalence relation on disjoint union of the sets Si. The
set of equivalence classes is called the injective limit of the system, notation:
lim−→Si or lim−→i∈I Si.

(b) Prove that injective limit can be expressed as a right limit (Exercise 3.1).

(c) Suppose I 6= ∅, that all Si are groups and that all fij are group homomor-
phisms. Show that lim−→Si has a natural group structure.

(d) Let I be the set of positive integers, ordered by divisibility. For n,m ∈ I, n
dividing m, let Z/nZ → Z/mZ be the group homomorphism by mapping (1
mod n) to (m/n mod m). Prove that lim−→Z/nZ ∼= Q/Z.

(a) fii = id is clear, so x ∼ x. x ∼ y implies y ∼ x is trivial. For x ∼ y and y ∼ z, we
have fik(x) = fjk(y) and fjl(y) = fhl(z) for some k, l ∈ I. Choose t ≥ k, l. Then

fit(x) = fktfik(x) = fktfjk(y) = fjt(y) = fltfjl(y) = fltfhl(z) = fht(z).

So x ∼ z.

(b) We have a commutative

Si
fij //

φi !!

Sj

φj||
lim−→Si

for all i, j. Denote S = lim−→Si. Then S satisfies the universal property: Let T be an
object such that

Si
fij //

ψi ��

Sj

ψj��
T

for all i, j. Then there exist an unique u : S → T such that u ◦φi = ψi for all i, i.e.,
if [x ∈ Si] ∈ S, then u([x]) := ψi(xi). Conversely, given an u : S → T , let u ◦ φi =
ψi, we recover the morphisms above. So we have a bijection Hom(SET )(S, T ) =
Hom(SET )D((Si, I, fij),Γ(T )). This map is functorial, so lim−→Si is a right limit.

(c) Define an operation “+” on S = lim−→Si: Let [x], [y] ∈ S, so x ∈ Si, y ∈ Sj for some
i, j. Pick k ≥ i, j. Then we define [x] + [y] ≡ [fik(x) + fjk(y)] ∈ S. This is well
defined. Since if [x] = [x′], i.e., x′ ∈ Si′ . So ∃i′′ ≥ i, i′ such that fii′′(x) = fi′i′′(x

′).
We have two kinds result of [x] + [y]:

[fik(x) + fjk(y)], [fi′k′(x
′) + fjk′(y)],
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for k ≥ i, j and k′ ≥ i′, j. Choose l ≥ k, k′. Then

[x] + [y] = [fik(x) + fjk(y)] = [fklfik(x) + fklfjk(y)]

= [fil(x) + fjl(y)]

= [fil(x)] + [ffjl(y)]

= [fi′′jfii′′(x)] + [fk′lfjk′(y)]

= [fi′′lfi′i′′(x
′)] + [fk′lfjk′(y)]

= [fi′l(x
′)] + [fjl(y)]

= [x′] + [y]

so this is independent of choice of x, similar argument holds to y. The identity
element is [eSi ], and the inverse element of [x] is [−x].

(d) We have a diagram

Z/nZ
n|m //

ψn ##

Z/mZ

ψm{{
Q/Z

where ψn(1) := 1
n = 1

m
m
n = ψm(mn ), so the diagram commutes. This induces an

unique map lim−→Z/nZ → Q/Z by [a ∈ Z/mZ] 7→ [a/m]. The map is 1-1 since
[a/m] = 0 in Q/Z implies a ≡ 0 (mod m). The map is onto since for all n

m is
mapped from n ∈ Z/mZ.

4 Exercises for Section 4

4.6 Let K be a field and G a finite abelian group of order not divisible by char(K). Prove
that K[G] is isomorphic to the product of a finite number of fields, and deduce that
every K[G]-module is projective.

Use Thm(2.6). There is a ring isomorphism K[G] ∼=
∏m
i=1Bi. Here Bi’s are K-

algebra that are local with nilpotent maximal ideals. It suffices to show that K[G] is
reduced. Then by theorem (2.7), Bi’s are finite separable field extension of K. Let
G = {g1, · · · , gn}. Since gni = 1, gi are diagonalizable over some algebraical closure of K,
say K, as a linear map K[G] → K[G]. Since gi’s commute to each other, they can be
diagonalized simultaneously. So are g for all elements in K[G]. Now ∀g ∈ K[G], we may
assume g is diagonal. gn = 0 implies g = 0. Hence K[G] is reduced. Hence each Bi is a
field.

For the second statement, if R is a finite direct product of fields, then any R module
M is projective. Indeed, the localization of R at any prime ideal must be a field. So
the localization of M is free, and hence projective. The result follows from the fact that
projectivity is a local property.

4.7 Let A be a ring and G a finite abelian group for which #G · 1 ∈ A∗.
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(a) Suppose that f : M → N is a homomorphism of A[G]-modules, and g : N →M
an A-linear map with fg = idN . Define g′ : N → M by g′(x) := (#G · 1)−1 ·∑

σ∈G σ · g(σ−1 · x). Prove that g′ is a homomorphism of A[G]-modules and
that fg′ = idN .

(b) Let P be an A[G]-module. Prove that P is projective as an A[G]-module if
and only if P is projective when considered as an A-module. (See the following
exercise for a converse.)

For (a), let τ ∈ G.

g′(τx) =
1

|G|
∑
σ∈G

σ · g(σ−1τx) =
1

|G|
∑
h∈G

τh · g(hx) = τg′(x). (1)

And note that f is already an A[G]-linear map. f commutes with G-actions. So

fg′(x) =
1

|G|
∑
σ∈G

σ · fg(σ−1x) =
1

|G|
· |G|x = x.

For (b), note A[G] is a free A-module. So if P is a projective A[G]-module, it is
a direct summand of a free A[G]-module. Therefore, it is a direct summand of a free
A-module, i.e., P is projective A-module.

Suppose P is a projective A-module. Assume P can be fitted into a split exact
sequence of A[G]-modules

0 −−−−→ K −−−−→ F
f−−−−→ P −−−−→ 0,

with F a free A[G]-module. Now regard this sequence as an A-module exact sequence.
Then there exists a A-linear splitting g : P → F . (a) says we can modify g into an
A[G]-linear map g′ with fg′ = idP . We obtain a A[G] splitting, i.e., P is a projective
A[G]-module.

4.8 Let A be a ring and G a finite abelian group. Consider A as an A[G]-module by
letting every σ ∈ G act as the identity on A. Prove that A is projective as an
A[G]-module if and only if #G · 1 ∈ A∗.

If |G| · 1 ∈ A∗, consider A[G]→ A by

(aσ)σ∈G 7→
∑
σ∈G

aσ ∈ A.

The map has a splitting A → A[G] by a 7→ (a/|G|)σ∈G. Note that these maps are
A[G]-linear. Hence A is a direct summand of a free A[G]-module. So A is a projective
A[G]-module.

Conversely, assume that A is a projective A[G]-module. Define f : A[G]→ A by∑
g∈G

agg 7→
∑
g∈G

ag.
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It is surjective and A[G]-linear. By projectivity, there exists a splitting g : A → A[G] so
that fg = idA. Then splitting must be of the form

g(x) =
∑
k∈G

h(x)k

by A[G]-linearity. fg = idA ⇒ 1 = |G|h(1). Therefore, |G| ∈ A∗.

4.12 Let A be a Dedekind domain and (In)∞n=0 a sequence of fractional A-ideals. Prove
that ⊕∞n=0In

∼= ⊕∞n=0A as A-modules, and deduce that every projective A-module
that is not finitely generated is free.

Let {x1, x2, ...} be a countable set of generators of ⊕∞n=0In (Generators may have
relations, but the construction below still work). Try to build a sequences of submodules
{Kj}∞j=1 of ⊕∞n=0In such that

(i) K1 ⊂ K2 ⊂ ...

(ii) Kj is free for all j

(iii) Kj+1 is the direct sum of Kj and a free module

(iv) ⊕∞n=0In is the direct sum of Kj and a module Lj which is an infinite direct sum of
finitely generated module of rank one

(v) ∪∞n=1Kn = ⊕∞n=0In

(i)∼(v) implies that ⊕∞n=0In is free.
Take K1 = (0), and suppose Kr has been constructed. Let y denote the first of the

xi’s which is not in Kr, and z is the Lr component of y with respect to Kr⊕Lr = ⊕∞n=0In.
By assumption, Lr ' ⊕∞t=0Pt, where Pt /A is an invertible ideal. Suppose z ∈ P1⊕ ...⊕Ps
and write I := P1P2...Ps.

By A is Dedekind,

Ps+1 ⊕ Ps+2 ' A⊕ Ps+1Ps+2 ' I−1 ⊕ IPs+1Ps+2 =: G⊕H,

where G := I−1 and H := IPs+1Ps+2, respectively. Then the module P1 ⊕ ...⊕ Ps ⊕G '
P1 ⊕ ...⊕ Ps ⊕ P−1

1 ...P−1
s ' A⊕ ...⊕A is a free A-module, and we set Kr+1 := P1 ⊕ ...⊕

Ps⊕G⊕Kr, and Lr+1 := H ⊕Ps+3⊕ .... Hence Kr+1 and Lr+1 satisfying (i) ∼ (iv), the
final (v) is trivial, hence we are done.

(The construction can be found in I.Kaplansky’s paper: “Modules over Dedekind
Rings and Valuation Rings”.)

Let P be a projective module over a Dedekind ring A which is not finitely generated.
Then P⊕Q = F for some module Q and free module F . By A is Dedekind, A is hereditary,
so P ' ⊕∞k=0Ik for Ik be ideals in A (ex.4.9(a)). So P is free by above argument.

4.13 Let A be a domain with field of fractions K and I ⊂ K an A-module.

(a) Prove that I is projective if and only if it is invertible, and that it is free if and
only if it is principal. [Hint: map a free module onto I.]
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(b) Prove that invertible ideals are finitely generated.

(c) Prove that A is a Dedekind domain if and only if all ideals of A are projective.

For (a), suppose I is invertible, I−1I = A, 1 =
∑m

i=1 cibi for some ci ∈ I−1 := {x ∈
Q(A)|xI ⊂ A} and bi ∈ I. Define maps fi : a ∈ I 7→ aci ∈ A, so fi ∈ HomA(I, A).
Hence for all a ∈ A, a =

∑
i(aci)bi =

∑
i fi(a)bi, so by dual basis lemma, I is projective.

(Recall the dual basis lemma: A module M is projective if and only if ∃{xα}α∈I ⊂ M
and {x∗α}α∈I ⊂ M∗ such that ∀x ∈ M , x∗α(x) = 0 for all but finitely many α and
x =

∑
α x
∗
α(x)xα.)

Conversely, suppose I / A is projective, the dual basis lemma asserts that ∃{bα}α∈Λ

generators of I, ∃{fα}α∈Λ ⊂ HomA(I, A), such that for each a ∈ I, fα(a) = 0 for all
but finitely many α and a =

∑
α fα(a)bα. Note that if f ∈ HomA(I, A) and I / A be

fractional, then f : a 7→ b−1f(b)a for all b ∈ I \ {0}. Fix b ∈ I \ {0}, since fα(b) = 0 for
almost all α except some α = 1, 2, ...,m and a =

∑
α∈Λ fα(a)bα =

∑m
α=1 b

−1fα(b)abα, so
1 =

∑m
α=1 b

−1fα(b)bα. Since b−1fα(b)a ∈ A for all a ∈ I, so define cα := b−1fα(b) ∈ I−1.
Hence 1 =

∑m
α=1 cαbα, cα ∈ I−1 and bα ∈ I, so I is invertible.

If the fractional ideal is principle, then it is clearly free. Conversely, if I ⊂ K = Q(A)
is free, choose xα = aα

bα
and xβ =

aβ
bβ

be A-linearly independent for some aα, aβ, bα, and

bβ in A \ {0}. Then

(−aβbα)xα + (aαbβ)xβ = (−aβbα)
aα
bα

+ (aαbβ)
aβ
bβ

= 0.

So by A-linearly independence, −aβbα = aαbβ = 0, means A has zero divisors, a contra-
diction. So I has at most one (free) generator.

(b) Let I−1I = A, so ∃ci ∈ I−1 and bi ∈ I such that
∑n

i=1 cibi = 1. So for all b ∈ I,

b = b · 1 = b

n∑
i=1

cibi =

n∑
i=1

(bci)bi ∈ I

where bci ∈ A since ci ∈ I−1.
(c) The definition of A to be Dedekind is that every fractional ideals in Q(A) is

invertible. So by (a), all ideals in A are projective.

4.14 Let A be a local ring with residue field k.

(a) Suppose a1, a2, . . . , an ∈ A are such that none of the ai belongs to the ideal
generated by the others, and let a = (ai)

n
i=1 ∈ An. Let f : An → An be an

A-linear map with f(a) = a. Prove that f ⊗ idk is the identity mapping on kn,
and f is invertible.

(b) Let F be a free A-module, P a direct summand of F , and a ∈ P . Prove that
there exists a free direct summand of P containing a. [Hint: Choose a basis
of F on which a has the smallest possible number of non-zero coordinates, say
a1, a2, . . . , an, and apply (a) to a suitable map An → P → An.]

(c) Prove that countably generated projective A-module is free.
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(a) Let {e1, ..., en} be standard basis of An and f(ei) =
∑n

j=1 bijej for all i = 1, ..., n.
I need to show that (bij) is invertible. By f(a) = a,

∑n
i=1 aiei =

∑n
i=1 ai

∑n
j=1 bijej =∑n

j=1(
∑n

i=1 aibij)ej . So I get aj =
∑n

i=1 aibij for all j, hence

(1− bjj)aj = a1b1j + ...+ ˆajbjj + ...+ anbnj

for all j = 1, ..., n. By aj not lies in (a1, ..., aj−1, aj+1, ..., an), (1−bjj) and bij are nonunits.
(1− bjj) is nonunit means that it lies in the Jacobson radical of A, so bjj = 1− (1− bjj)
is an unit in A. So the determinant of (bij) is det(bij) =

∏n
j=1 bjj + (nonunits) is an unit

in A. Hence (bij) is invertible.
f ⊗ idk = id. . . .
(b) Let B = {ei}i∈I be a free base of F such that a =

∑n
i=1 aiei and the number n

is the smallest. This implies that ai not lies in the ideal (a1, ..., ai−1, ai+1, ..., an), for if
aj =

∑n
i 6=j aibi for some bi ∈ A, then replace ei by ei + bjej , i = 1, ..., n, i 6= j, and other

ei (i not in {1, ..., n} \ {j}) unchanged. Then we get a new base with shorter expression
in a.

Let ei = yi + zi, yi ∈ P and zi ∈ Q, i = 1, ..., n. Then I get a =
∑n

i=1 aiyi +∑n
i=1 aizi ∈ P , so

∑n
i=1 aizi = 0 ∈ P ∩ Q = {0}. Define N := spanA(y1, ..., yn) ⊆ P .

Then a =
∑n

i=1 aiyi ∈ N .
I show that N is free, the strategy is to show {y1, ..., yn} ∪ (B \ {e1, ..., en}) is a free

base. Write yi =
∑n

j=1 hijej + ti, i = 1, ..., n, where ti are combinations of {ej}j≥n+1.
Plug yi into a =

∑n
j=1 ajej =

∑n
i=1 aiyi = a, so

n∑
j=1

ajej =

n∑
i=1

ai(

n∑
j=1

hijej + ti) =

n∑
i,j=1

aihijej +

n∑
i=1

aiti.

By {ej} are free basis, we get aj =
∑n

i=1 aihij . From our choice of aj ’s and similar
arguments in (a), (hij) is invertible, so the map F → F via ei 7→ yi for i = 1, ..., n, and
ei 7→ ei for i ≥ n+ 1 is invertible, . . .

(c) Let P be countably generated and projective. Then P ⊕Q = F for some A-module
Q and free A-module F . Let {xi}∞i=1 be generators (not free) of P . I construct a sequence
of free submodules of Pi (which are all free and ⊕∞i=1Pi ' P ) as follows: By (b), let P1 be
a free direct summand of P contains x1, so we furnish P1. Suppose we have constructed
P1, · · · , Ps such that ⊕si=1Pi contains x1, · · · , xs and ⊕si=1Pi is free, by (b), let Ps+1 be a
free direct summand of P/⊕si=1 Pi such that Ps+1 contains the element πs(xs+1), where
πs : P → P/⊕si=1 Pi is the canonical projection. So we construct all Pi’s by induction.

By our construction, ⊕∞i=1Pi is free and it contains {xi}∞i=1, so P = ⊕∞i=1Pi.

4.16 Deduce from 4.14 and 4.15 that any projective module over a local ring is free.

Let P be projective, so P ⊕Q = F for some free F and Q. By F is free, we can write
F = ⊕λ∈ΛFλ where Fλ is countably generated for all λ. Then by ex.4.15(c), P = ⊕λPλ
where Pλ is countably generated for all λ (and Pλ is also projective). So by ex.4.14(c),
Pλ is free for all λ. So P is free.

4.17 Let an ideal a of a ring A called almost nilpotent if for every sequence (ai)
∞
i=0 of

elements of a there exists n with
∏n
i=0 ai = 0.
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(a) Prove that a nilpotent ideal is almost nilpotent.

(b) Prove that a finitely generated almost nilpotent ideal is nilpotent.

(c) Let K[X1, X2, . . . ] be the polynomial ring in countably many variables over a

field K, and I be the ideal generated by {Xk ·
∏n
i=1X

a(i)
i : k, n ≥ 1, a(i) ≥

0 (0 ≤ i ≤ n),
∑n

i=1 a(i) ≥ k}. Prove that K[X1, X2, . . . ]/I is a local ring
whose maximal ideal is almost nilpotent but not nilpotent.

(a) If a is nilpotent, then there exists n ∈ N such that an = 0. Done.

(b) If a is almost nilpotent and finitely generated. Let a1, . . . , an generates a. Then it
suffices to prove that every ai is nilpotent. Consider sequences ai, ai, ai · · · . Then
ai is nilpotent.

(c) To prove that K[X1, X2, . . . ]/I is a local ring, it suffices to prove that for any element
r ∈ K[X1, X2, . . . ]/I whether r or 1−r is unit. Furthermore, it suffices to prove that
1 + g(X1, . . . Xn) is a unit where g(X1, . . . , Xn) is any polynomial without constant
term and n any positive integer. Let g(X1, . . . , Xn) =

∑n+1
i1,...in

ki1,...,inX
i1
1 · · ·Xin

n .
gn = 0, so 1 + g is unit. K[X1, X2, . . . ]/I is a local ring with the maximal ideals
m := {f ∈ K[X1, X2, . . . ]/I|f has no constant term}. Given a sequence {fi}∞i=1,
fi ∈ m, let f1 = f1(X1, . . . , Xn) =

∑n+1
i1,...in

ki1,...,inX
i1
1 · · ·Xin

n . Then
∏n+1
i=1 fi = 0

because each term of
∏n+1
i=1 (fi) has degree larger than n+1. So m is almost nilpotent.

Suppose m is nilpotent. Let mN = 0. But xNN+1 ∈ m is nonzero. Contradiction.

4.18 Let A be a local ring whose maximal ideal m is almost nilpotent.

(a) Prove that any A-module M with mM = M is zero.

(b) Let F be a free A-module. Prove that a subset of F is an A-basis if and only
if it yields an A/m-basis for F ⊗A A/m. Prove also that any generating set for
F contains a basis.

(a) Suppose mM = M 6= 0. Let J := AnnA(M). Then m \ J 6= 0 because M 6= 0.
Choose any a1 ∈ m \ J . Then a1M = a1mM 6= 0. So a1m \ J 6= ∅.
Then there exist a2 ∈ m \ J such that a1a2 ∈ m \ J . By induction, we can form an
infinite sequence in m, but there exists finite integer n such that

∏n
i=1 ai = 0 ∈ J ,

contradiction.

(b) Let Ξ be a basis of F . Then obviously Ξ ⊗A 1 generates F ⊗A A/m. Given
{m1 . . .mn} ⊂ F and {a1 . . . an} ⊂ A/m such that

∑n
i=1 aimi ⊗A 1 = 0. Then∑n

i=1 aimi ⊂ mF , which implies ai ≡ 0 mod m.

Conversely, if Ξ⊗A 1 is a basis of F ⊗A A/m, . . .

Let Ω be a generating set of F . Then Ω⊗A 1 contains a basis for F ⊗AA/m, because
every generating set of a vector space contains a basis. By previous argument, such
subset of Ω is actually a basis of F .

4.19 Let A be a local ring whose maximal ideal m is not almost nilpotent.
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(a) Construct a countably generated nonzero A-module M with M = mM . [Hint:
Consider a suitable injective limit A→ A→ A→ . . . .]

(b) Let f : F →M beA-linear, with F free andM as in (a). Prove that ker(f)∪mF
generates F but does not contain a basis.

(a) There exists a sequence (ai)
∞
i=1, ai ∈ m such that

∏n
i=1 ai 6= 0 for any

integer n. Consider the injective system A
a1 // A

a2 // · · · Let M :=
lim−→A = ⊕∞i=1A/(∼) be the injective limit with respect to above system
where (∼) is the submodule of ⊕∞i=1A generated by canonical relations.
Then M is countably generated. Let ui : A → M be the canonical ho-
momorphism into the i-th component. Suppose M = 0. Then u1(1) = 0
implies

∏n
i=1 ai = 0 for some integer n. Contradiction.

Let m ∈M . Then m = ui(mi) for some integer i. So m = ai+1ui+1(mi) ∈
mM . So mM = M .

(b) M = mM implies that cokerf = mcokerf . . . .

4.20 Let M,N be modules over a ring A, with M finitely presented, and let S ⊂
A be a multiplicative subset. Prove that the obvious map S−1 HomA(M,N) →
HomS−1A(S−1M,S−1N) is an S−1A-module isomorphism.

Since M is finitely presented, there exists an exact sequence

Am // An //M // 0.

Because HomA(·, N) functor is right-exact, applying HomA(·, N) to above sequence,
we have

0 // HomA(M,N) // HomA(An, N) // HomA(Am, N)

and recognise HomA(An, N) = Nn. Furthermore, S−1 localisation is an exact functor,
apply to above sequence, we have:

0 // S−1 HomA(M,N) // S−1Nn // S−1Nm.

On the other side, back to the original sequence, and apply S−1 functor first then
HomS−1A(·,S−1N)

S−1Am // S−1An // S−1M // 0,

0 // HomS−1A(S−1M,S−1N)) // S−1Nn // S−1Nm.

Putting identity maps in vertical maps between the last two and check the commuta-
tivity

0 // S−1 HomA(M,N)

π
��

// S−1Nn // S−1Nm

0 // HomS−1A(S−1M,S−1N)) // S−1Nn // S−1Nm

where π : S−1 HomA(M,N) → HomS−1A(S−1M,S−1N)) is the canonical map. We con-
clude that π is isomorphism by five lemma.
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4.21 Let A be a ring, (fi)i∈I a collection of elements of A with
∑

i∈I fiA = A, and M an
A-module.

(a) Suppose that Mfi = 0 for all i ∈ I. Prove that M = 0.

(b) Suppose that Mfi is a finitely generated Afi-module for each i ∈ I. Prove that
M is finitely generated.

(a) Let f1 . . . fn ∈ I such that
∑n

i=1 aifi = 1 for some a1 . . . an ∈ A. Given m ∈
M . Since Mfi = 0, there exists integers ni such that fnii m = 0. Then m =
(
∑n

i=1 aifi)m = (
∑n

i=1 aifi)
∑n
i=1 nim = 0.

(b) Same notation as above
∑n

i=1 aifi = 1. Let {mi,1
f
s1
i

. . . ,
mi,im
fsmi
} be a generating set of

Mfi . Then {mi,11 , . . . ,
mi,im

1 } also generates Mfi . Then there exists integer Ni such
that

fNii m ∈ A[mi1 . . .mi,im ]

(where A[mi1 . . .mi,im ] is a A-module generated by {mi1 . . .mi,im}). Then choose an
integer N large enough, we have m = (

∑n
i=1 aifi)

Nm ∈ A[m11 . . .m1,1m . . .mn,nm ].

4.22 Let M = {q ∈ Q : q has a squarefree denominator}, considered as a module over
A = Z. Prove that Mp is Ap-free module of rank 1 for every prime ideal p of A, but
that M is not projective over A.

If p > 0, observe that Mp = 1
pAp. If p = 0, then Mp = Q. Then Mp is a free Ap

module of rank 1 for every prime ideal p. Since Z is PID, a module over Z is projective
if and only if it is free. Let us prove that M is not a free Z module.

Suppose E ⊂ M is a basis of M , and E only contains one element, say q
p generates

M . But prime numbers are infinitely many, so there exists prime g such that 1
g /∈ Z −

module generated by q
p .

So E contains more than one element. Let a
p ,

b
q ∈ E. But pbap − qa

b
q = 0. Contradic-

tion. Therefore, M is not projective.

4.23 Let V be an infinite set and A = FV2 be a ring.

(a) Prove that A has a maximal ideal n that is not principal.

(b) Let M = A/n, with n as in (a). Prove that M is finitely generated, that Mm is
Am-free of rank ≤ 1 for all maximal ideal m of A, but that M is not projective.

(a) Let n := ⊕v∈V F2 /A '
∏
v∈V F2 be an ideal; it is not principle. This n is maximal

since every non-zero element f + n in A/n is of the form f + n = I + (f − I) + n, where
f(x) = 1 for all but finitely many x ∈ V and I denotes the function “x 7→ 1 for all
x ∈ V ”. By definition, (f − I) ∈ n, so A/n has only two elements: 0 + n and I + n. So
it is isomorphic to a field F2. So n is maximal.

(b) Let n as in (a). Then the A-module A/n is finitely generated (in fact, it has only
two elements). By A is a Boolean ring, localization of A/n at any maximal ideal m / A
gives an F2-module, hence a vector space (of dimension ≤ 1), hence free. . . .

Suppose M := A/n is projective. The the exact sequence 0 → n → A → A/n splits,
so we get A ' A/n⊕ n as A-module. . . .
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4.24 Let A be a ring and P a finitely generated projective A-module. Prove that A can
be written as the product of finitely many rings, A = A1 × · · · × An, such that
P = P1 × · · · × Pn where each Pj is a finite generated projective Aj-module of
constant rank.

(Reference: http://www.maths.ed.ac.uk/∼aar/papers/kbook.pdf)
Let A be a ring and P a finitely generated projective A-module. The map r =

rankA(P ) : SpecA −→ Z is locally constant and hence continuous. Since SpecZ is quasi-
compact, the image of r is also quasi-compact, and so r takes on only finitely many
values, namely m1, · · · ,mn. Now each Vj := r−1(mj) is closed and open due to the
discrete topology on Z. It follows that

SpecA = V1 t · · · t Vn.

We want to write each Vj as SpecAj such that A = A1 × · · · ×An.
To do this we may assume that the ring A is reduced. In fact, if N is the nilradical

(the ideal of all nilpotent elements in A), then A/N is reduced. Also, we have SpecA/N =
SpecA; and by idempotent lifting we know there is an equivalence between the category of
finitely generated projective A-modules and the category of finitely generated projective
A/N -modules.

Now, let Ij =
⋂

p∈Vj p be the ideal of Vj and write Aj = A/Ij . Then for any i, j

with i 6= j, we have V (Ii + Ij) = V (Ii) ∩ V (Ij) = ∅. It follows that Ii + Ij = A, and
I1 · · · In =

⋂
j Ij = 0. By the Chinese remainder theorem, we have

A ' A1 × · · · ×An

Pick Pj := P ⊗A Aj . Then we obtain the desired decomposition.

4.25 Let A be a ring and P a finitely generated projective A-module. Prove that the
following four properties are equivalent:

(i) P is faithfully projective;

(ii) the map A→ EndZ(P ) giving the A-module structure is injective;

(iii) P is faithful, i.e., an A-module M is zero if and only if M ⊗ P = 0;

(iv) P is faithfully flat, i.e., a sequence M0 → M1 → M2 of A-modules is exact if
and only if the induced sequence M0 ⊗ P →M1 ⊗ P →M2 ⊗ P is exact.

(iv)⇒(iii) 0→M → 0 is exact ⇔ 0→M ⊗ P → 0 is exact.

(iii)⇒(ii) The map A → EndZ(P ) is clearly defined by a 7→
[
P

a // P
]
. Let x ∈ A

such that xP = 0. Consider Ax as A-module. Then, Ax ⊗ P = 0 implies Ax = 0 and
1 ∈ A gives x = 0.
(ii)⇒(i) If not, ∃p ∈ SpecA such that Pp = 0. Since P is finitely generated, let {pi}n1
be generators. Then, pi

1 = 0 implies ∃xi ∈ A − p such that xipi = 0. Thus, xP = 0 for
x =

∏n
1 xi ∈ A− p (⇒ x 6= 0), contradiction.
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(i)⇒(iv) Using the facts that localization is an exact functor (and ∀p localization of the
sequence is exact implies exact) and it commutes with tensor product and also Pp is a
free Ap-module, we obtain:

M0 ⊗ P //M1 ⊗ P //M2 ⊗ P is exact

⇔ (M0)p ⊗ (Ap)
n // (M1)p ⊗ (Ap)

n // (M2)p ⊗ (Ap)
n is exact ∀p

⇔ (M0)np // (M1)np // (M2)np is exact ∀p
⇔ (M0)p // (M1)p // (M2)p is exact ∀p
⇔ M0

//M1
//M2 is exact

4.26 Let P and P ′ be finitely generated projective modules over a ring A, and k ∈ Z,
k ≥ 0. Prove that the A-modules P ⊕ P ′, P ⊗ P ′,HomA(P, P ′), P ∗ = HomA(P,A),∧k P , P⊗k are finitely generated projective, and the ranks of these modules are
given by

rank(P ⊕ P ′) = rank(P ) + rank(P ′),

rank(P ⊗ P ′) = rank(P ) · rank(P ′),

rank(HomA(P, P ′)) = rank(P ) · rank(P ′),

rank(P ∗) = rank(P ),

rank(
k∧
P ) =

(
rank(P )

k

)
,

rank(P⊗k) = rank(P )k

as functions on SpecA.

Note that the ranks can be easily computed once we prove that they are finitely
generated projective modules, since they are free Ap-modules for every prime p. We only
need to prove for P ⊕ P ′, P ⊗ P ′, P ∗,∧kP , since HomA(P, P ′) ∼= P ∗ ⊗ P ′.

To prove a module P is finitely generated projective, one only needs to find a module
Q such that P ⊕ Q is free of finite rank (converse is also true). Now suppose P and P ′

are finitely generated projective modules. Then there exists Q and Q′ such that P ⊕ Q
and P ′ ⊕Q′ are free of finite ranks. Then (P ⊕ P ′)⊕ (Q⊕Q′) is free of finite rank.

(P ⊕ Q) ⊗ (P ′ ⊕ Q′) = (P ⊗ P ′) ⊕ [(Q ⊗ P ′) ⊕ (P ′ ⊗ Q) ⊕ (Q ⊗ Q′)] is free of finite
rank.

(P ⊕Q)∗ = P ∗ ⊕Q∗ is free of finite rank.∧k(P ⊕Q) =
∧k P ⊕ [⊕1≤l≤k(

∧k−l P ⊗
∧lQ)] is free of fintie rank.

4.27 Let P be a fintiely generated A-module such that for each p ∈ SpecA the Ap-module
Pp is free of finte rank r(p), where r : SpecA → Z is continuous. Prove that P is
finitely generated projective.

We first try to prove the following statement: ∀ maximal ideal m of A, ∃ f ∈ A − m
such that Pf is a free Af -module of finite rank. If this is true, consider the ideal I
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generated by all such f . Then, I * m, ∀ m implies I = A and therefore exists fi ∈ I and
ai ∈ A such that

∑n
i=1 aifi = 1. By 4.6 (iii), we obtain the desired result.

To show this statement, consider a maximal ideal m of A. Suppose r(m) = n and let
{yi}ni=1 be the basis of Pm. We can then find {xi}ni=1 ⊂ P such that xi = biyi for some
invertible element bi in Am. Let {ei} be the standard basis of An and η : An → P such
that η(ei) = xi. Because P is finitely generated, so is Q = cok(η). Then, by Qm = 0 and Q
is finitely generated, we are able to find f ∈ A−m such that fQ = 0⇒ Qf = 0. In other
words, ∃ f makes the induced map ηf surjective. We conclude that ηfg is also surjective
for all g ∈ A − m and by hypothesis, ∃ g ∈ A − m such that r(Ap′) = n, ∀ p′ ∈ D(fg).
Now, replace f by fg, we obtain (ηf )p′ : (Anf )p′ → (Pf )p′ is a surjective homomorphism
and (Anf )p′ , (Pf )p′ are free modules of the same rank n for all p′ in Af . We then conclude
(ηf )p′ is a bijective homomorphism for all p′ and hence so is ηf .

4.28 Let P be a fintiely generated module over a ring A. Prove that P is projective of
rank 1 if and only if P is invertible, i.e., if and only if P ⊗Q ∼= A for some A-module
Q. [Hint for the “only if ” part: take Q = P ∗.]

Suppose that P is finitely generated projective module of rank 1. Define f : P ⊗P ∗ →
A by (x ⊗ f 7→ f(x)), where x ∈ P, f ∈ P ∗. By Exercise 4.26, P ∗ is also a finitely
generated projective module of rank 1, so both Pp and P ∗p are free Ap-module of rank 1
for any p ∈ SpecA, and thus fp is an isomorphism, which proves that P is invertible.

Conversely, suppose that P ⊗ Q ∼= A for some A-module Q. Localizing this isomor-
phism to each prime ideals, then passing to the residue fields, we can see that Pp/pPp is
a 1-dimensional k(p)-vector space for any p ∈ SpecA. By Nakayama lemma, Pp can be
generated by a single element. This element is not a torsion since we have Pp⊗Qp

∼= Ap.
Hence Pp is free of rank 1. And by Exercise 4.27, P is projective.

4.29 For a ring A, let Pic(A) be the set of isomorphism classes of finitely generated
projectiveA-modules of rank 1. Prove that Pic(A) is an abelian group with operation
⊗A, the Picard group of A. Express the function HomA(−,−) : Pic(A)× Pic(A)→
Pic(A) in terms of the group operation.

For any two finitely generated projectiveA-modules P,Q of rank 1, P⊗Q is also finitely
generated projective of rank 1 by Exercise 4.26. The identity element in Pic(A) is A. The
existence of an inverse element is followed by Exercise 4.28. And HomA(P,Q) = P−1⊗Q
clearly.

4.30 Let A be a ring. The group K0A is defined by generators and relations. There is one
generator [P ] for each finitely generated projectiveA-module P (up to isomorphism),
and one relation [P ⊕ P ′] = [P ] + [P ′] for each pair P, P ′ of such modules.

(a) Prove that [P ] = [P ′] if and only if P and P ′ are stably isomorphic, i.e., if and
only if P ⊕An ∼= P ′ ⊕An for some n ≥ 0.

(b) Prove that ⊗A induces a multiplication on K0A that makes K0A into a com-
mutative ring with unit element [A].
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(c) Show that there are group homomorphisms φ : Pic(A) → (K0A)∗ and ψ :
K0A → Pic(A) (the latter from an additive group to a multiplicative group)

with ψφ = idPic(A). [Hint: put ψ([P ]) = [
∧rank(P ) P ], to be defined in a

suitable way if rank(P ) is non-constant.]

(a) If [P ] = [P ′], then there exists finitely generated projective A-modules Q1, . . . , Qm,
such that P ⊕Q1⊕ · · · ⊕Qm ∼= P ′⊕Q1⊕ · · · ⊕Qm. And there exists a finitely generated
projective A-module Q such that Q⊕Q1 ⊕ · · · ⊕Qm ∼= An for some n ≥ 0, which proves
that P and P ′ are stably isomorphic. The converse is obvious.

(b) Define [P ] · [Q] := [P ⊗ Q]. Firstly, we need to check that if [P ] = [P ′], then
[P ⊗Q] = [P ′ ⊗Q]. By (a), P ⊕An ∼= P ′ ⊕An for some n ≥ 0. Hence

[P ⊗Q] = [(P ⊕An)⊗Q]− [An ⊗Q] = [(P ′ ⊕An)⊗Q]− [An ⊗Q] = [P ′ ⊗Q],

so the map is well-defined. The fact that ⊗A gives a commutative ring structure with
unit element [A] is easy to see.

(c) The map φ is defined to be the obvious one. Note that φ is in fact injective, i.e.,
stably isomorphic implies isomorphic in rank 1 case. This is a special case of a statement
that will be proved later.

To define ψ, given a finitely generated projective module P , consider its rank function
SpecA → Z. SpecA will decompose into finitely many components, where the rank
function is constant on each components. Every component is closed in SpecA, so we
may write down the decomposition as SpecA = Spec(A/I1)q · · · q Spec(A/In). Suppose
that P has constant rank kj on the component Spec(A/Ij). Then we define ψ(P ) :=∧k1(P/I1P ) × · · · ×

∧kn(P/InP ). (If kj = 0 for some j, put A/Ij at the j-th place.)
Then ψ(P ) is finitely generated, and for any prime ideal p of A, suppose that p is in
Spec(A/Ij). Then ψ(p)p =

∧kj (P/IjP )p is a free (A/Ij)p = Ap−module of rank 1 (since∧ki(P/IiP )p = 0 = (A/Ii)p for i 6= j). Hence ψ(P ) ∈ Pic(A).
Firstly, we show that this definition is independent of the decomposition of SpecA,

i.e., if P has constant rank k on SpecA, and we also have A = (A/I1) × · · · × (A/In),
then we show that

∧k(P/I1P )× · · · ×
∧k(P/InP ) ∼=

∧k P .
Expand the right hand side,

∧k P =
∧k(P/I1P × · · · × P/InP ), so we have to show

that the “mixed terms” like
∧k−1(P/I1P )⊗

∧1(P/I2P ) are all zero. This follows from a
simple observation: I1 + I2 = A. Suppose that this is false. Then I1 + I2 is contained in
some maximal ideal, which contradict to SpecA/I1 and SpecA/I2 are disjoint.

Now we show that ψ is well-defined on K0A, i.e., if P ⊕ An ∼= P ′ ⊕ An, then ψ(P ) =
ψ(P ′). Note that P and P ′ have the same rank, so it is suffices to check on each component.
This reduces to the case that, if P and P ′ are of constant rank k and P ⊕An ∼= P ′ ⊕An,
we claim that

∧k P ∼=
∧k P ′. Take the determinant line bundle,

∧k+n(P ⊕ An) ∼=∧k P ⊗
∧nAn ∼=

∧k P , which proves the claim.
Finally, we claim that ψ is a group homomorphism, i.e., ψ(P ⊕ Q) ∼= ψ(P ) ⊗ ψ(Q).

We can find I1, . . . , In such that both P and Q are of constant rank on each SpecA/Ij ,
say the ranks are kj and lj . We have to prove that

k1+l1∧
((P ⊕Q)/I1(P ⊕Q))× · · · ×

kn+ln∧
((P ⊕Q)/In(P ⊕Q))
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is isomorphic to(
k1∧

(P/I1P )× · · · ×
kn∧

(P/InP )

)
⊗

(
l1∧

(Q/I1Q)× · · · ×
ln∧

(Q/InQ)

)
.

Observe that
∧k1+l1((P ⊕Q)/I1(P ⊕Q)) ∼=

∧k1(P/I1P )⊗
∧l1(Q/I1Q), and the “mixed

terms”
∧k1(P/I1P )⊗

∧l2(Q/I2Q) = 0 by I1 + I2 = A.
Note that ψφ = idPic(A) by our construction.

4.31 Let A be a ring, and H0A the ring of continuous functions SpecA→ Z.

(a) Prove the rank: K0A→ H0A is a ring homomorphism.

(b) Construct a ring homomorphism λ : H0A→ K0A such that rank ◦λ = idH0A.

(c) Let K̃0A = kerλ.1 Prove that K0A ∼= H0A⊕ K̃0A. Remark. It can be proved
that K̃0A is the nilradical of K0A; see [4, Proposition IX.4.6].

(a) This is a direct result followed by Exercise 4.26.

(b) Since SpecA is quasicompact for any commutative ring A, it has only finite con-
nected components Ui. Because every element in H0A is a continuous function, each
Ui corresponds to an integer di. Follow by Exercise 4.24, we know A has decomposi-
tion as

∏n
i=1A/Ii by Chinese Remainder Theorem, such that Ui ∼= Spec(A/Ii). Now,

consider λ defined by [Ui 7→ di] 7→
∏n
i=1(A/Ii)

di . Then, clearly, rank ◦λ = idH0A.

(c) Since the exact sequence

0→ K̃0A→ K0A→ H0A→ 0

splits by (b), the claim holds.

4.32 (a) Prove that K̃0A = 0 if A is a field, or a local ring, or a principal ideal domain,
or a semilocal ring (i.e., a ring with only finitely many maximal ideals).

(b) Prove that K̃0A ∼= Pic(A) ∼= Cl(A), the ideal class group of A, if A is a
Dedekind domain.

Note that a general element in K̃0A can be written as [P ]− [Q], where P and Q are
finitely generated projective modules with the same rank function.

(a) If A is a field, then the statement is obviously true since P and Q are simply vector
spaces with the same finite dimension. If A is a local ring, then P and Q are free modules
with the same finite rank, so we still have K̃0A = 0. If A is a PID, we have the structure
theorem for finitely generated modules. Projectivity of the module implies that it does
not have torsion part, so finitely generated projective modules over PID are free modules
of finite rank, hence K̃0A = 0.

Let A be a semilocal ring, with maximal ideals m1, . . . ,mk. Then A can not be written
as a direct product of more than k nonzero rings, so we may write A = A1 × · · · × Ar,

1 K̃0A = ker(rank).
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where each Aj is an indecomposable ring (i.e., with only trivial idempotents). Then each
Aj is still semilocal. We may write P = P1 × · · · × Pr, where Pj is a finitely generated
projective Aj-module of constant rank, and Ai ·Pj = 0 for i 6= j (c.f. the proof of Exercise
4.30).

Claim: Let A be a semilocal ring, P a finitely generated projective A-module of
constant rank n. Then P ∼= An.

Note that if this claim is true, then the isomorphic class of P = P1 × · · · × Pr only
depends on the rank, which proves that K̃0A = 0 in the semilocal case. Now back to the
claim. For any mi, pick xi1, . . . , xin ∈ P such that they form a free basis of Pmi . Then
by Chinese Remainder Theorem, we can find x1, . . . , xn, such that xj ≡ xij (mod miP ).
Hence x1, . . . , xn form a basis of Pm for every maximal ideal m. Now we define An → P
which sends the basis ei to xi. This map is an isomorphism on every maximal ideal, hence
an isomorphism.

(b) By the structure theorem for finitely generated modules over Dedekind domains,
P decomposes into torsion part and torsion-free part. The torsion part vanishes due to
the projectivity, and the torsion-free part is precisely controlled by the class group, i.e.,
a finitely generated torsion-free module of rank n is isomorphic to An−1⊕ I, where I is a
rank one projective module. (c.f. 4.4 Example (d)) The map K̃0A→ Pic(A) . . .

4.33 Let A be a ring, B an A-algebra and P a projective A-module. Prove that P ⊗A B
is a projective B-module, and that the diagram

SpecB

rankB(P⊗AB) ##

// SpecA

rankA(P ){{
Z

commutes if P is finitely generated.

P is a projective A-module ⇒ ∃ Q an A-module such that P ⊕Q is a free A-module
⇒ (P ⊕Q)⊗AB = (P ⊗AB)⊕ (Q⊗AB) is a free B-module⇒ P ⊗AB is a projective B-
module. If P is finitely generated as an A-module, so is P ⊗AB as a B-module. Consider
p is a prime ideal of B. We would like to prove that (P ⊗AB)p is a free Bp-module of the
same finite rank as the free Aq-module Pq, where q is the inverse of p. As in the proof of
Exercise 4.27, we are able to find the basis {xi}ni=1 ⊂ P for the Aq-module Pq. It is then
natural to claim that {xi ⊗ 1}ni=1 is the basis for (P ⊗A B)p ∼= Pq ⊗Aq Bp. However, this
is certainly true because every element of Pq ⊗Aq Bp has an unique representation in the
form

∑n
i=1 xi ⊗ bi. (This can be obtained by some elementary argument. See [Keith].)

4.34 Prove that any ring homomorphism f : A → B induces a ring homomorphism
K0A→ K0B via −⊗A B, and that K0 is a functor.

Let P be a finitely generated projective A-module. First we claim that P ⊗A B is a
finitely generated projective B-module. Note that there exists an A-module Q such that
P ⊕Q is a free A-module of finite rank. Hence (P ⊗AB)⊕ (Q⊗AB) is a free B-module of
finite rank, which proves our claim. Since −⊗A B commutes with direct sum, it gives a
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well-defined map K0A→ K0B. We have (P ⊗AP ′)⊗AB ∼= (P ⊗AB)⊗B (P ′⊗AB), hence
the map is a ring homomorphism. Also, given another ring homomophism g : B → C, we
have K0(g ◦ f) = K0(g) ◦K0(f), since (P ⊗A B)⊗B C ∼= P ⊗A C. Hence K0 is a functor.

4.35 Let P be a freeA-module with basis w1, w2, ..., wn, and define w∗i ∈ P ∗ = HomA(P,A)
by w∗i (wj) = 1 if i = j and w∗i (wj) = 0 if i 6= j.

(a) Prove that P ∗ is a free A-module with basis w∗1, w
∗
2, ..., w

∗
n.

(b) Let f : P → P be A-linear, f(wi) =
∑n

j=1 aijwj with aij ∈ A. Prove that

φ−1(f) =
∑

i,j aijw
∗
i ⊗ wj , where φ : P ∗ ⊗A P → HomA(P, P ) is as in 4.8.

(c) Prove that the traces defined in 1.1 and 4.8 coincide.

(a) Consider any T ∈ P ∗ such that T (wi) = ai. Then, it is clear that T =
∑n

i=1 aiw
∗
i .

If
∑n

i=1 biw
∗
i = 0 for some bi ∈ A, we have 0 = 0(wj) =

∑n
i=1 biw

∗
i (wj) = bj showing

the linear independence.

(b) Since φ is an isomorphism, it suffices to show φ(
∑

i,j aijw
∗
i ⊗ wj) = f , which is

clearly true by definition.

(c) Followed by 4.8, Tr(f) =
∑

i,j aijw
∗
i (wj) =

∑n
i=1 aii.

4.36 Let A be a ring, B an A-algebra and P a finitely generated projective A-module.
Prove that the diagram of natural maps

EndA(P )
⊗idB //

TrP/A
��

EndB(P ⊗A B)

TrP⊗AB/B
��

A // B

is commutative.

Note that EndA(P ) = P ∗ ⊗ P . Given f ∈ P ∗, p ∈ P ,

f ⊗ p � //
_

��

(f ⊗ 1)⊗ (p⊗ 1)
_

��
f(p) � // φ(f(p)) = f(p)⊗ 1

4.37 Let A be a ring and P a finitely generated projective A-module.

(a) Suppose that P has constant rank n. Prove that TrP/A(idP ) = n · 1 ∈ A.

(b) In the general case, prove that TrP/A(idP ) is the image of rank(P ) under the
natural map H0A → Γ(SpecA,O) ∼= A; here H0A is as in Exercise 4.31, the
sheaf O is the natural sheaf of rings on SpecA (see [10, Chapter II, Section 2]),
the map H0A→ Γ(SpecA,O) is induced by the ring homomorphisms Z→ Ap,
and Γ(SpecA,O) ∼= A is the isomorphism from [10, Chapter II, Proposition
2.2].
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For (a), if P has constant rank n, then for any prime ideal p, we have rank(Pp) = n.
Note that now Pp is a free Ap-module of rank n. Using the previous exercise (Exercise
4.33) with B = Ap, we have that TrP/A(idP ) equals to n in every localization Ap. So
TrP/A(idP ) = n ∈ A.

Let Φ : H0A → Γ(SpecA,O). Note that TrP/A(idP ) and Φ(rank(P )) are elements in
A. To prove they are equal, it suffices to show that they are equal under every localization
Ap. Suppose P has constant rank. Then (b) follows from (a). If P does not have constant
rank, then use Exercise 4.24. This completes the proof.

4.38 Let A be a ring, 0 → P0 → P1 → P2 → 0 an exact sequence of A-modules in
which P1 and P2 are finitely generated projective, and g : P1 → P1 an A-linear map
with g[P0] ⊂ P0. Denote by h the induced map P2 → P2. Prove that P0 is finitely
generated projective and TrP1/A(g) = TrP0/A(g |P0) + TrP2/A(h).

Since P2 is projective, the exact sequence splits. Hence there exists an exact sequence

0→ P2 → P1 → P0 → 0.

So P0 is finitely generated. It is projective since it is a direct summand of a projective
module. For the trace formula, we firstly localized at p. We may assume Pi’s are free.
Thus, the assertion follows from the standard fact from linear algebra.

4.39 Let P and Q be two finitely generated projective A-modules, and f : P → Q,
g : Q→ P two A-linear maps. Prove that TrQ/A(f ◦ g) = TrP/A(g ◦ f).

Since the trace map commutes with localization, we may prove this equality under
localization at arbitrary prime ideal p. We may assume A is local. But then P ∼= Am and
Q ∼= An. Now this is a consequence in linear algebra.

4.40 (a) Let P be a finitely generated projective A-module. Prove that the map ψ :
EndA(P ) → EndA(P ∗) defined by ψ(f)(g) = g ◦ f is an anti-isomorphism of
not necessarily commutative rings, and that TrP ∗/A(ψ(f)) = TrP/A(f).

(b) Let f : P → P and g : Q → Q be endomorphisms of finitely generated
projective A-modules P and Q. Prove that TrP⊗Q/A(f ⊗ g) = TrP/A(f) ·
TrQ/A(g).

As in the previous exercise, we may assume A is local, so P and P ∗ are free A-modules.
Let e1, · · · en be a basis of P and e∗1, · · · , e∗n be the dual basis of P ∗. So under the matrix
representation, f corresponds to a matrix M and ψ(f) = M t. Now the result follows
from a direct computation. This proves (a).

For the statement (b), let e1, · · · , en be a basis of P and d1, · · · , dm be the one of Q.
Under these bases, f has a matrix representation M and g has a matrix representation
N . Then f ⊗ g has a matrix representation M ⊗ N . Now the theorem follows from a
basic fact from linear algebra.

4.41 Let B1, B2, . . . , Bn be algebras over a ring A. Prove that
∏n
i=1Bi is a finite projec-

tive A-algebra if and only if each Bi is a finite projective A-algebra.
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It is clear that
∏n
i=1Bi is a finite A-algebra if and only if each Bi is. It remains to

show that, when regarded as A-modules,
∏n
i=1Bi is projective if and only if so is each Bi.

Let B1, · · · , Bn be projective. For any A-epimorphism f : M −→ N and any A-linear
map g :

∏n
i=1Bi −→ N , consider the map g|Bi : Bi −→ N which is A-linear. By the

projectiveness of Bi there is an A-linear map hi : Bi −→ M such that g|Bi = f ◦ hi.
Setting h =

∏n
i=1 hi, we have g = f ◦ h. Hence

∏n
i=1Bi is projective.

Now we suppose that
∏n
i=1Bi is projective. Let f : M −→ N be an A-epimorphism

and gj : Bj −→ N an A-linear map. Define gj :
∏n
i=1Bi −→ N as gj = gj ◦ pj , where

pj :
∏n
i=1Bi −→ Bj is the natural projection. Since

∏n
i=1Bi is projective, there exists

an A-linear map hj :
∏n
i=1Bi −→ M such that gj = f ◦ hj . Note that in the category

of A-modules, finite products coincide with finite sums. Let ιj : Bj −→
∏n
i=1Bi be the

inclusion. Choose hj = ιj ◦hj . Then we have gj = f ◦hj . This shows each Bj is projective.

4.42 Let A be a ring, B a finite projective A-algebra, and P a finitely generated projective
B-module. Prove that P , when considered as an A-module, is finitely generated and
projective. Prove also that the map HomA(B,A) ⊗B HomB(P,B) → HomA(P,A)
sending f ⊗ g to f ◦ g is surjective.

Since P is a finitely generated projective B-module, by Exercise 4.3, there exists a
finitely generated B-module Q such that P ⊕ Q ' B⊕n for some finite n. And since
B is a finite projective A-algebra, there is a finitely generated A-module C such that
B ⊕ C ' A⊕m for some finite m, when B is considered as an A-module. Then,

P ⊕Q⊕ C⊕n ' B⊕n ⊕ C⊕n ' (A⊕m)⊕n = A⊕mn,

where Q⊕C⊕n is a finitely generated A-module. Again by 4.3 we know P can be regarded
as a finitely generated projective A-module.

For the second part, let

θ : HomA(B,A)⊗B HomB(P,B) −→ HomB(P,HomA(B,A))

be the map given by
θ(f ⊗ g)(p)(b) = f(g(bp)),

where f ∈ HomA(B,A), g ∈ HomB(P,B), p ∈ P and b ∈ B. One can easily check that
it is a well-defined B-linear map. We claim that θ is an isomorphism. Indeed, if P = B,
then both sides of θ are isomorphic to HomA(B,A), and θ is clearly induced from the
identity map. It can be generalized to the case in which P = B⊕n for some finite n since
finite direct sums commute with both tensor products and Hom functors. It follows that
θ is an isomorphism for any finitely generated projective B-module P since P is a direct
summand for some B⊕n of finite rank.

Now we define

φ : HomB(P,HomA(B,A)) −→ HomA(P,A)

to be the map given by
φ(k)(p) = k(p)(1B),
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where k ∈ HomB(P,HomA(B,A)) and p ∈ P . Then ψ = φ◦θ. Moreover, φ is a surjection
since each h ∈ HomA(P,A) is the image of the B-linear map k : P −→ HomA(B,A)
defined by k(p)(b) = h(bp). Hence ψ is surjective.

4.45 Let B1, B2, . . . , Bn be algebras over a ring A. Prove that
∏n
i=1Bi is a projective

separable A-algebra if and only if each Bi is a projective separable A-algebra.

In Exercise 4.41, we have seen that
∏n
i=1Bi is a finite projective A-algebra if and only

if each Bi is a finite projective A-algebra. It remains to show that the map

φ :
n∏
i=1

Bi −→ HomA

(
n∏
i=1

Bi, A

)

given by φ((bi)1≤i≤n)((b′i)1≤i≤n) = Tr∏Bi/A((bib
′
i)1≤i≤n) is an isomorphism if and only if

each
φi : Bi −→ HomA(Bi, A)

given by φi(bi)(b
′
i) = TrBi/A(bib

′
i) is an isomorphism.

Considering each Bi as an A-module, we have the natural isomorphism
∏n
i=1Bi =∐n

i=1Bi, and hence the canonical

HomA

(
n∏
i=1

Bi, A

)
'

n∏
i=1

HomA(Bi, A).

So it suffices to check that

Tr∏n
i=1Bi/A

((bib
′
i)1≤i≤n) =

n∑
i=1

TrBi/A(bib
′
i).

In fact, for n = 2, it is just the result of Exercise 4.38; by using an induction argument
we can show that the identity holds for a general n.

4.46 Let A be a ring, B a projective separable A-algebra and C a projective separable
B-algebra. Prove that C is a projective separable A-algebra. [Hint: use Exercises
4.42 and 4.44. In 5.12 we shall give a different proof.]

Since B and C are projective separable algebra over A and over B, respectively, we
know they are finite over their base rings; and the maps

φB/A : B −→ HomA(B,A) and φC/B : C −→ HomB(C,B)

defined by φB/A(b)(b′) = TrB/A(bb′) and φC/B(c)(c′) = TrC/B(cc′) are isomorphisms over
A and over B, respectively. By Exercise 4.43, C is then a finite projective A-algebra. It
remains to show that the map

φC/A : C −→ HomA(C,A)

given by φC/A(c)(c′) = TrC/A(cc′) is an A-linear isomorphism.
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Note that φC/A can be factorized as the chain

C = B ⊗B C
φB/A⊗φC/B−−−−−−−−→ HomA(B,A)⊗B HomB(C,B)

ψ−→ HomA(C,A),

where ψ is map f ⊗ g 7→ f ◦ g. In fact, for any c, c′ ∈ C, we have

ψ(φB/A ⊗ φC/B(1⊗ c))(c′) = TrB/A(TrC/B(cc′)) = TrC/A(cc′) = φC/A(c)(c′)

by applying the result in Exercise 4.44. Also, we know that φB/A⊗φC/B is an isomorphism,
and that ψ is a surjection from Exercise 4.42. It now suffices to show that φC/A is injective.
Suppose that φC/A(c) = 0, or that TrC/A(cc′) = 0 for all c′ ∈ C. . . .

4.47 Let A be a ring, B a projective separable A-algebra and C any A-algebra. Prove
that B ⊗A C is a projective separable C-algebra.

It follows from the given condition that B ⊗A C is a finite projective C-algebra by
Exercise 4.33. So now it suffices to check that the map

φ̄ : B ⊗A C −→ HomC(B ⊗A C,C)

given by φ̄(b⊗ c)(b′ ⊗ c′) = TrB⊗AC/C(bb′ ⊗ cc′) is an isomorphism. Let

φ : B −→ HomA(B,A)

be the isomorphism given by the separability of B over A so that φ(b)(b′) = TrB/A(bb′).
Suppose

θ : HomA(B,A)⊗A C −→ HomC(B ⊗A C,C)

is the C-linear map such that θ(f ⊗ c)(b ⊗ c′) = f(b)cc′. We claim that the following
diagram commutes:

B ⊗A C
φ⊗idC //

φ̄ ))

HomA(B,A)⊗A C

θ

��
HomC(B ⊗A C,C)

and that θ is an isomorphism. Indeed, we have

θ((φ⊗ idC)(b⊗ c))(b′ ⊗ c′) = θ(φ(b)⊗ c)(b′ ⊗ c′)
= TrB/A(bb′)cc′

= TrB⊗AC/C(bb′ ⊗ cc′),

where the third equality follows from Exercise 4.36. This proved the commutativity of
the diagram. . . .
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5 Exercises for Section 5

5.1 Let X be a scheme and d : X → Z any continuous function that assumes only non-
negative values. Prove that there exists a finite and locally free morphism Y → X
such that d = [Y : X].

Decompose X into disjoint connected components X = qXi. Then the continuous

function d is constant on each Xi, say di. We simply define Y = q(q1≤k≤diX
(k)
i ), where

X
(k)
i is a copy of Xi, and Y → X maps each X

(k)
i to Xi.

5.2 Let Y → X be a finite and locally free morphism. Prove that the underlying map
sp(Y )→ sp(X) is open and closed.

It is suffice to check locally since Y → X is finite. Let B be a finitely generated
projective A-algebra via φ : A → B, we want to show that f : SpecB → SpecA is open
and closed. We may assume that SpecA is connected, so B has constant rank on A, and
assume that B 6= 0. Hence φ : A→ B is injective.

To show that f is closed, let I be an ideal in B, we claim that f(V (I)) = V (φ(I)). So, if
φ−1I ⊂ p ∈ SpecA, we want to show that there exists I ⊂ q ∈ SpecB such that φ−1q = p.
Since B over A is finite, φ is in fact an integral extension. Hence φ̄ : A/φ−1I → B/I is
also an integral extension, and the closedness of f follows from the going-up property.

To show that f is open, we are going to use several facts.
Fact: A subset of SpecA is open if and only if it is constructible and stable under

generalization.
Fact: (Chevalley’s theorem) If φ : A → B is finitely presented, then the image of a

constructible subset of SpecB is a constructible subset of SpecA.
Fact: Finitely generated projective implies finitely presented. (Theorem 4.6)
Combining these facts, in order show that f is open, it is suffice to show that for any

distinguished open subset D(g) of SpecB, f(D(g)) is stable under generalization, i.e.,
if p ∈ f(D(g)) and p ∈ {p′} (equivalently, p′ ⊂ p), then p′ ∈ f(D(g)). So there exists
g /∈ q ∈ SpecB such that p = φ−1(q). Since φ : A→ B is a finite projective extension, it
is in particular a flat extension. Hence Ap → Bq is also a flat extension. By going down,
there exists q′ ⊂ q such that p′ = φ−1(q′). Since g /∈ q′, this proves the openness.

5.3 Let fi : Yi → X be a morphism of schemes, for 1 ≤ i ≤ n, and f : Y = Y1q· · ·qYn →
X the induced morphism. Prove that Y → X is finite and locally free if and only
if each Yi → X is finite and locally free. Prove also that [Y : X] =

∑n
i=1[Yi : X] if

Y → X is finite and locally free.

Note that if U is an open affine subset of Y = Y1 q · · · q Yn, then U ∩ Yi is a closed
subset of U for all i, hence is also affine. So by Prop. 5.2, the first statement is equivalent
to: Bi is a finite projective A-algebra for all 1 ≤ i ≤ n if and only if B1 × · · · × Bn is a
finite projective A-algebra, which is precisely Exercise 4.41.

For the second statement, suppose that SpecA is an connected open affine subset of
X. Then its preimage is SpecB1q· · ·qSpecBn, where Bi is a finite projective A-algebra
of constant rank for all 1 ≤ i ≤ n, and the rank of B1× · · · ×Bn is simply the sum of the
ranks of all Bi.
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5.4 Let (Xi)i∈I be a collection of schemes, and Yi → Xi a finite and locally free mor-
phism, for each i ∈ I. Prove that the induced morphism qi∈IYi → qi∈IXi is finite
and locally free, and that each finite and locally free morphism Y → qi∈IXi is ob-
tained in this way. Prove also that [qi∈IYi : qi∈IXi] equals [Yj : Xj ] when restricted
to sp(Xj), for each j ∈ I.

Only the statement “each finite and locally free morphism Y → qi∈IXi is obtained
in this way” is less obvious. Decompose Y into qYi according to its image, we want to
show that each Yi → Xi is finite and locally free. By Prop. 5.2, it is suffices to show that
for any affine open subset SpecA of Xi, its preimage is also affine, say SpecB, and B is
a finite projective A-algebra. But this follows from Y → qXi is finite and locally free.

5.5 Let f : Y → X be a finite and locally free morphism of schemes, and let W → X
be any morphism of schemes.

(a) Prove that p : Y ×X W →W is finite and locally free.

(b) Prove the diagram

sp(W ) //

[Y×XW :W ] ""

sp(X)

[Y :X]||
Z

is commutative.

(c) Suppose that Y → X is surjective. Prove that Y ×X W →W is surjective.

(a) There exists an open affine cover {Ui = SpecAi} of X such that f−1(Ui) = SpecBi
is affine and Bi is a free Ai-module of finite rank. And there is an affine open cover
{Vj = SpecCj} of W such that every f(SpecCj) is contained in some SpecAi. So
p−1(SpecCj) = Spec(Bi⊗Ai Cj) is affine and Bi⊗Ai Cj is a free Cj-module of finite rank,
which is the rank of Bi over Ai.

(b) follows from the proof of (a).
(c) Surjectivity is stable under base change in general case. It is suffice to prove the

following claim:
Claim: Given fiber product

Y ×X W
p //

q

��

W

g

��
Y

f
// X,

we have g−1(f(Z)) = p(q−1(Z)) for any Z ⊂ Y .
By definition, x ∈ g−1(f(Z)) if and only if there exists y ∈ Z such that g(x) = f(y).

So it is suffice to prove the following claim:
Claim: If x ∈ W, y ∈ Y satisfies g(x) = f(y) = s, then there exists u ∈ Y ×X W such

that p(u) = x, p(u) = y.
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We have the following diagram:

Spec(k(x)⊗k(s) k(y)/m) //

��

Spec(k(x))

��

//W

��

Spec(k(y)) //

��

Spec(k(s))

%%
Y // X

where m is any maximal ideal of k(x)⊗k(s) k(y).
So this induces a morphism from Spec(k(x)⊗k(s)k(y)/m) to the fiber product Y ×XW ,

and the image of this morphism gives the desired u ∈ Y ×X W .

5.7 Let Y → X and Z → X be finite and locally free morphisms of schemes.

(a) Prove that Y ×X Z → X is finite and locally free.

(b) Prove that [Y ×X Z : X] = [Y : X] · [Z : X].

(c) Prove that Y ×X Z → X is surjective if Y → X and Z → X are surjective.

(a) follows from Exercises 5.5(a) and 5.6.
(b) [Y ×X Z : X] = [Y ×X Z : Z] · [Z : X] = [Y : X] · [Z : X] by Exercises 5.5(b) and

5.6.
(c) follows from Exercise 5.5(c).

5.8 Do Exercise 5.1-5.7 with everywhere “finite and locally free” replaced by“finite
étale”.

The construction of 5.1 is still valid. 5.2 is still true. In 5.3, we should replace the usage
of Prop. 5.2 by Prop. 5.8. Then it is suffices to show that Bi is a projective separable
A-algebra for all 1 ≤ i ≤ n if and only if B1×· · ·×Bn is a projective separable A-algebra,
which is precisely Exercise 4.45. The argument of 5.4 is still valid, after replacing Prop.
5.2 by Prop. 5.8. For 5.5(a), we need to show that if B is a projective separable A-algebra,
then B ⊗A C is a projective separable C-algebra, which is Exercise 4.47. And 5.5(b)(c)
are still true. For 5.6, we have to show that if B is a projective separable A-algebra and
C a projective separable B-algebra, then C is a projective separable A-algebra, which is
Exercise 4.46. Finally, the argument of 5.7 is still valid.

6 Exercises for Section 6

6.1 A module M over a domain A is called torsionfree if for every non-zero a ∈ A and
every non-zero x ∈M one has ax 6= 0.

(a) Prove that a flat module over a domain is torsionfree.

(b) Let A be a Dedekind domain. Prove that any torsionfree A-module can be
written as an injective limit of finitely generated projective A-modules, and
that an A-module is flat if and only if it is torsionfree.
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(a). Let M be flat, so the functor M⊗A is exact. Let a 6= 0, a ∈ A, consider the
module homomorphism A→ A via r 7→ ar. This is injective by A is a domain. Tensoring
the functor, by M is flat, we have again an injection:

M ⊗A A→M ⊗A A

via m 7→ am. So M is torsion free.
For (b), let A be Dedekind. We have to prove if M is a torsion free A-module, then

M is flat. Since any element x ∈ M is contained in a finitely generated submodule of
M (e.g. Ax ≤ M), and {Mi ⊆ M | Mi a finite generated submodule }i∈I with respect to
inclusion form an injective system, hence M = lim−→i

Mi. Now by A is Dedekind and Mi is
finitely generated torsionfree for all i ∈ I. Hence Mi are projective, hence flat. By taking
direct limit is an exact functor in module theory, we get M is flat.

6.2 Prove Proposition 6.3: Let f : Y → X be a morphism of schemes. Then the
following four assertions are equivalent:

(i) f is flat;

(ii) for any pair of open affine subsets V = SpecB ⊂ Y , U = SpecA ⊂ X with
f [V ] ⊂ U the induced ring homomorphism A→ B is flat;

(iii) there is a covering of Y by open affine subsets Vi = SpecBi such that for each
i there is an open affine subset Ui = SpecAi ⊂ X with f [Vi] ⊂ Ui for which
the induced ring homomorphism Ai → Bi is flat;

(iv) for every closed point y ∈ Y the induced ring homomorphism OX,f(y) → OY,y
is flat.

(i)⇒ (ii) OY |V ∼= B and OX |U ∼= A. Then, the statement is equivalent to Proposition
6.2 (iii) ⇒ (i).

(ii) ⇒ (iii) X is a scheme covered by open affine subsets Ui = SpecAi. Consider the
open subset f−1(Ui), which can be also covered by affine subsets Vij . Since the collection
of f−1(Ui) covers Y , all Vij form an affine open covering of Y satisfying the condition
f [Vij ] ⊂ Ui. Then, by (ii), the statement that the induced ring homomorphism is flat
immediately follows.

(iii) ⇒ (iv) ⇒ (i) Equivalent to Proposition 6.2 (i) ⇒ (iv) ⇒ (ii).

6.3 Let f : Y → X be a morphism of schemes. Prove that f is finitely presented (as in
6.4) if and only if for every open affine subset U = SpecA ⊂ X the open subscheme
f−1[U ] ⊂ Y is affine, f−1[U ] = SpecB, where B is an A-algebra that is finitely
presented as an A-module.

The “if ” part follows from definition. Now suppose that there exists a covering of X
by open affine subsets Ui = SpecAi, such that for each i the open subscheme f−1(Ui) =
SpecBi, where Bi is an Ai-algebra that is finitely presented as an Ai-module.

Let U = SpecA ⊂ X be an affine open subset of X. For each Ui, U ∩ Ui can be
covered by distinguished open sets {Spec(Ai)fj |j ∈ J} for some fj ∈ Ai and index set J .
Observe that f−1(Spec(Ai)fj ) = Spec(Bi)φ(fj), where φ is the map from Ai to Bi induced
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by f . Also observe that (Bi)φ(fj) is finitely presented (Ai)fj -module. So we have reduce
to proving the statement for X is affine, say X = SpecA.

Ui = SpecAi can be covered by distinguished open subsets SpecAf , observe that if
φ : A → Ai is the map induced by the inclusion Ui → X, then Af ∼= (Ai)φ(f). Using the
fact that the underlying topology of an affine scheme is quasi-compact, we have reduce to
proving the following statement: Let X = SpecA, X = ∪1≤i≤nUi, where Ui = SpecAfi
(so f1, · · · , fn generates A), f−1(Ui) = SpecBi, and Bi is a finitely presented Afi-module.
Aim to show that Y is affine(say SpecB), and B is a finitely presented A-module.

To show that Y is affine, we use the affineness criterion in [Hartshorne, Algebraic
Geometry]: Let B = Γ(Y,OY ). Then Y is affine if and only if there exists g1, · · · , gm ∈ B
such that Ygi := {y ∈ Y |(gi)y /∈ my} are affine for all 1 ≤ i ≤ m, and g1, · · · , gm generates
B.

Let φ : A→ B be the map induced by f : Y → X, we define gi = φ(fi).
Claim: Ygi = SpecBi.
y ∈ SpecBi if and only if f(y) ∈ SpecAfi if and only if fi /∈ f(y) if and only if

(fi)f(y) /∈ mf(y) if and only if (gi)y /∈ my. The last “if and only if ” is because the induced
map between local rings is local homomorphism.

These g1, · · · , gn generates B since f1, · · · , fn generates A. Hence the affineness cri-
terion is checked, so Y = SpecB. Finally, we reduce to proving the following algebraic
problem: Let f1, . . . , fn genereates A, M a A-module. If Mfi is finitely presented for
every i, then so is M .

Claim: If Mfi are finitely generated, then so is M .
Let xi1 , . . . , xiki ∈M generates Mfi , we claim that these xij generates M . Given any

y ∈M , there exists N large enough such that fNi y are generated by xij for all i. Observe
that fN1 , . . . , f

N
n also generates A, which proves the claim.

By simple diagram chasing, one can show that if N is finitely presented A-module,
then for any A⊕n → N → 0, the kernel is finitely generated. Apply to our case, we
already know that M is finitely generated, write K → A⊕l → M → 0, we want to show
that K is finitely generated. Localize to each fi, by the diagram-chasing-fact that just
mentioned, Kfi is finitely generated, hence by our claim again, K is finitely generated.
Hence M is finitely presented.

6.8 Let A =
∏
i∈I ki be the product of an infinite collection (ki)i∈I of fields, and a =

{(xi)i∈I ∈ A : xi = 0 for almost all i ∈ I}. Prove that the morphism SpecA/a →
SpecA is finite and étale, but not finite étale.

Certainly, A/a is a finitely generated A-module generated by 1 + a. However, the
kernel a has infinitely many independent generators ej with xi = δji , so there is no
possibility for a to be finitely generated. Hence, A/a is NOT finitely presented and the
morphism is NOT finite étale. It remains to show the morphism is flat and unramified.
(A/a)p/a ∼= (A− p)−1(A/a) ∼= A/a⊗A Ap

∼= Ap/aAp, ∀ p ∈ SpecA⇒

Ap/p ∼= (Ap/aAp)/(p(Ap/aAp))

So, the morphism is certainly unramified. To show flatness, we need the following lemma
from [Stack]: (Equational criterion for flatness) A module M over A is flat if and only if
every relation in M is trivial.

56

http://stacks.math.columbia.edu/tag/00HK


Given
∑n

i=1 ai(bi + a) = a, where ai, bi ∈ A. We have
∑n

i=1 aibi =
∑m

j=1 sjej ∈ a,
where sj ∈ kj and ej as defined before. Let the j-th component of bi be (bi)j ∈ kj .
Assume b′i = bi −

∑m
j=1(bi)jej ∈ A. Then, bi + a = b′i(e+ a), where e is the identity. And∑n

i=1 aib
′
i = 0. Therefore, the relation is trivial.

6.9 Let A be a ring, M and N two finitely generated free A-module, and f : M → N
an A-linear map. Prove that f is an isomorphism if and only if for each p ∈ SpecA
the induced map M ⊗A k(p)→ N ⊗A k(p) is an isomorphism.

Since isomorphism between modules is a local property, it is suffice to show the follow-
ing statement: Let (A,m) be a local ring, M and N two finitely generated free A-modules.
Then f : M → N is an isomorphism if and only if f̄ : M/mM → N/mN is an isomor-
phism.

The “only if ” part is obvious since a free basis of M(resp. N) over A gives a basis
of M/mM (resp. N/mN) over A/m. For the “if ” part, we choose a free basis of M , by
using f̄ is isomorphism and Nakayama lemma, the image of this basis under f generates
N , i.e., f is surjective.

Note that f̄ is an isomorphism implies M and N have the same ranks, hence we can
compose f with an isomorphism from N to M . So it is suffice to show that if an A-linear
map g : M →M is surjective, then it is an isomorphism.

We can view M as a finitely generated A[X]-module by setting X ·m = g(m) for m ∈
M . Then XM = M since g is surjective. By Nakayama lemma, there exists Y ∈ A[X]
such that (1 + XY )M = 0. Now if u ∈ ker(g), then 0 = (1 + XY )u = u + Y f(u) = u.
Hence g is an isomorphism.

6.11 Let A be a ring, B a separable A-algebra (see 6.10), and C an A-algebra. Prove
that B ⊗A C is a separable C-algebra.

B a separable A-algebra ⇒ B is a projective B⊗AB-module. Given (B⊗AB)⊗A C-
modules M,N with surjective homomorphism M // // N . M,N can be seen as B⊗AB-
modules by the natural map B ⊗A B → (B ⊗A B)⊗A C. Hence, we have

B
∃

~~ ��
M // // N

Similarly, C is a projective C-module and M,N can be viewed as C-modules. We obtain
the following diagram by the universal property.

C
∃

~~ ��
=⇒

B ⊗A C
∃

zz ��
M // // N M // // N

Therefore, B ⊗A C is a projective (B ⊗A B) ⊗A C ∼= (B ⊗A B) ⊗A (C ⊗C C) ∼= B ⊗A
(B ⊗A C)⊗C C ∼= B ⊗A C ⊗C (B ⊗A C)-module ⇒ B ⊗A C is a separable C-algebra.
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6.12 Let A be a ring and B1, B2, ..., Bn algebras over A. Prove that
∏n
i=1Bi is a separable

A-algebra if and only if each Bi is a separable A-algebra.

First prove the if part. Since Bi is projective Bi ⊗A Bi-module for all i, we view any
(⊕Bi)⊗A (⊕Bi)-module diagram

⊕Bi
?

|| ��
M // // N

as Bi ⊗A Bi-module diagram. Then, for each i we have

Bi

∃fi

��

��
⊕Bi

?

|| ��
M // // N

We can really find a map from ⊕Bi to M by summing up fi, which is a (⊕Bi)⊗A (⊕Bi)-
module homomorphism. On the other hand, if ⊕Bi is a separable A-algebra, we consider
any Bi ⊗A Bi-module diagram

⊕Bi

∃f

��

��
Bi

?

|| ��
M // // N

as a (⊕Bi)⊗A (⊕Bi)-module by the natural map

(⊕Bi)⊗A (⊕Bi)→ Bi ⊗A Bi

Then, we can choose the map from Bi to M be f |Bi to make the diagram commute. So,
Bi is a separable A-algebra.

6.13 Let K be an algebraically closed field and B a finite dimensional K-algebra that is
a local ring. Prove that the residue class field of B is K, and that B⊗K B is a local
ring.

Assume B has the unique maximal ideal m. Then, B/m is a B-module and thus a
K-module, which is necessarily a finite dimensional K-algebra. However, B/m is a field
K ′ and hence finite extension of K. By K = K̄, K ′ = K. Now consider B ⊗K B. Follow
by 2.6, we know m is the unique prime ideal and hence equal to nil(B). So, m⊗K B and
B ⊗K m are also nil ideals. And thus they are lie in radical. To show B ⊗K B is local,
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it then suffices to show B ⊗K B/(m⊗K B +B ⊗K m) is local. However, the latter one is
isomorphic to K ⊗K K ∼= K.

A more general discussion about whether tensor products of local rings are local or
not can be referred to [Sweedler] and [Lawrence].

6.14 Let X be a topological space that can be written as the union of open irreducible
subsets. Prove that X can be written as the disjoint union of open irreducible
subsets.

We first claim X1 ∪X2 is open and irreducible if so are X1 and X2 and they are not
disjoint. Open is clear. To show it is irreducible, we consider any two open subsets and
assert they cannot have nonempty intersection. If U, V are two open subsets in X1 ∪X2,
then by irreducibility, U ∩ (X1 ∩ X2) and V ∩ (X1 ∩ X2) are nonempty. So, again by
irreducibility, U ∩ V ∩ (X1 ∩X2) 6= ∅ ⇒ U ∩ V 6= ∅.

Now, consider X is the union of open irreducible subsets Uα, α ∈ Λ. Consider

P = {V | V =
⋃

β∈Ξ⊂Λ

Uβ, V is connected and irreducible}.

Then, P is a nonempty poset and every chain {Vγ}γ∈Γ in P has an upper bound, that is,
W =

⋃
γ∈Γ Vγ will also be irreducible and connected: If X1, X2 are open subsets of W ,

then there exists γi with Xi ∩ Vγi 6= ∅. If, without lost of generality, say Vγ2 ⊂ Vγ1 , then
X1 ∩X2 ∩ Vγ1 6= ∅ by the claim. So, W is also irreducible. Similar argument works for
connectedness. Hence, by Zorn’s lemma, ∀Uα, it is contained in some Wα =

⋃
β∈Ξ⊂Λ Uβ,

which is connected, irreducible and maximal. That is, ∀Uα′ , α′ /∈ Ξ, Wα ∪ Uα′ cannot be
connected or irreducible. However, if it is connected, it needs to be irreducible by claim
again. So, every two Wα are either disjoint or the same and X = qWα.

6.15 Let A be noetherian ring for which SpecA is connected, and suppose that Ap is
a domain for all p ∈ SpecA. Prove that A is a domain. [Hint: if ab = 0 for all
non-zero ideals a, b of A, choose a, b as large as possible and prove that a + b = A.]

Since A is noetherian, SpecA is a noetherian topological space. There are only finitely
many irreducible components, say X1, ..., Xn. Then, X1 ∩ Xj 6= ∅ for some j because
SpecA is connected. Consider x ∈ X1 ∩ Xj . Since irreducible components correspond
to the unique generic points, which are minimal prime ideals, say p1 and pj , satisfying
x ⊃ p1 and x ⊃ pj . Then, consider the corresponding prime ideals in Ax and denote them
by p′1 and p′j , still minimal. The nilradical of Ax is contained in p′1 ∩ p′j , which is not a
prime ideal unless p′1 ⊂ p′j or p′1 ⊃ p′j . In other words, p1 ⊂ pj or p1 ⊃ pj , implying X1

and Xj cannot be distinct irreducible components. So, nilradical of Ax is necessarily not
prime, which contradicts the assumption Ax is a domain. On the other hand, reduceness
is a local property. So, SpecA is irreducible and reduced, and thus integral ([Hartshorne,
Proposition II.3.1]).

6.16 Let X be a locally noetherian scheme all of whose local rings are domains. Prove
that X is the disjoint union of a collection of integral schemes. [Hint: use Exercises
6.14 and 6.15.]
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Let Xi be connected components of X. Consider X = ∪ SpecAα with Aα noetherian.
Since Spec(Aα)fαβ form the base of X and Xi is open, Xi is the union of some affine open
subset, called SpecAij , where Aij is noetherian since localization of a noetherian ring is
still noetherian. Then, by Exercise 6.15, Aij is a domain, hence a reduced ring. Finally,
any two open subsets D(f), D(g) of SpecAij has intersection D(fg) and this intersection
is not empty unless fg ∈ nil(Aij ) = {0} ⇒ f = 0 or g = 0⇒ D(f) = ∅ or D(g) = ∅. So,
every open subset is dense and SpecAij is necessarily irreducible. By Exercise 6.14, we
obtain what we want.

6.18 Let K be a field, L a finite extension field of K, and x ∈ L. Let
∑n

i=0 aiX
i be the

irreducible polynomial of x over K, with an = 1. Prove that TrL/K(x) = −[L :
K(x)] · an−1.

Let {v1, · · · , vk} be a basis of field extension L over K(x). Then {xjvi|0 ≤ j ≤
n − 1, 1 ≤ i ≤ k} is a basis of L over K. For any 1 ≤ i ≤ k, < vi, xvi, · · · , xn−1vi > is
invariant under multiplying x, and its trace is given by −an−1 by direct computations.
Hence TrL/K(x) = −k · an−1 = −[L : K(x)] · an−1.

6.19 Let K be a finite field and C the K-algebra K#K+1. Prove that there does not
exist γ ∈ C with C = K[γ].

Suppose that C = K |K|+1 = K[γ] for some γ ∈ C. Since K is a finite field, we have
γ|K| = γ. Hence dimKK[γ] ≤ |K| < |K|+ 1 = dimKK

|K|+1, contradiction.

6.20 Let A be a domain with field of fractions K, and L an algebraic field extension of
K. Prove that for every x ∈ L, there exists a ∈ A, a 6= 0 such that ax is integral
over A.

By x is algebraic over K, xn + an−1

bn−1
xn−1 + · · ·+ a0

b0
= 0 for some coefficients ai, bi ∈ A.

Let a := (bn−1bn−2 · · · b0)n. Then aaibi ∈ A and hence the element ax satisfying a monic
polynomial with coefficient in A, so ax is integral over A.

6.21 Let f : Y → X be a continuous surjective map from a topological space Y to a con-
nected topological space X, and assume that every x ∈ X has an open neighborhood
U for which f−1(U) is connected. Prove that Y is connected.

Suppose that Y is not connected, write Y = Y1 q Y2, where Y1 and Y2 are disjoint
nonempty open subsets of Y .

Claim: f(Y1) and f(Y2) are both disjoint.
If not, say x ∈ f(Y1) ∩ f(Y2). For any open neighborhood U of x, f−1(U) is not

connected since it has nonempty intersections with both Y1 and Y2, this proves the claim.
So we have X = f(Y1)q f(Y2) since f is surjective.

Claim: f(Y1) and f(Y2) are both open.
Suppose that f(Y1) is not open. Then there exists x ∈ f(Y1) such that for any open

neighborhood U of x, U has nonempty intersection with f(Y2), but this implies that
f−1(U) is not connected, which proves the claim.

So X can be written as a disjoint union of two nonempty open subsets, contradiction.
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6.23 Let A be a ring and B a finitely generated A-algebra that is integral over A. Prove
that B is a finitely generated as an A-module.

By assumption, we may assume B = A[u1, ..., um], ui’s may have relations. For each
i, by integral assumption, there exists ni ∈ N such that unii ∈ A+Aui+ ...+Auni−1

i ⊆ B.
So for any element u ∈ B, u is an A-linear combination of the monomials

∏m
i=1 u

ti
i

and 0 ≤ ti ≤ ni − 1, these monomials form a finite collection, say {w1, ..., wk}. So
B =

∑k
j=1Awj .

6.26 Let X be a connected scheme. Prove the following properties are equivalent:

(a) X is locally noetherian, and every local ring of X is a discrete valuation ring
or a field;

(b) there is a covering of X by open affine subsets Ui = SpecAi where each Ai is
a Dedekind domain or a field;

(c) for each open affine subset U = ∅ of X we have U = SpecA, where A is a
Dedekind domain or a field.

(c) implies (b) is clear. (b) implies (a) follows from the fact that the localization of a
Dedekind domain at a prime is either a discrete valuation ring (localize at maximal ideals)
or a field(localize at zero ideal). So it remains to prove (a) implies (c). Let U = SpecA
be an open affine subset of X. By the conditions of (a), A is noetherian and Ap is a DVR
or a field for every prime p.

Observe that U = SpecA is connected, since X is connected. Assume that A is not a
field, otherwise we are done. Suppose that A is an integral domain. Then A is a Dedekind
domain if and only if the localization Am at every maximal ideal is DVR, which follows
from the conditions of (a), since Am is not a field. So it remains to prove the following
statement: Let A be a noetherian ring, such that Ap is integral domain for every prime
p, and SpecA is connected. Show that A is an integral domain.

Suppose that there exists a, b ∈ A such that ab = 0, a 6= 0, b 6= 0. Since Ap is integral
domain, ap or bp must be zero. Hence Ann(a) +Ann(b) = A since the left hand side does
not contained in any prime ideals. So there exists u ∈ Ann(a) and a1 ∈ Ann(b) such
that u + a1 = 1. Hence a = a(u + a1) = aa1. So we get an element a1 ∈ A such that
a1b = 0, a1 6= 0, b 6= 0, with equation a = aa1. We can use this process to produce the
next a2, a3, and so on.

So we have (a) ⊂ (a1) ⊂ (a2) ⊂ · · · . Since A is noetherian, there exists (an−1) = (an),
write an = an−1c for some c ∈ A. Then a2

n = anan−1c = an−1c = an, i.e., an is an
idempotent element, which is not 0, 1. This contradicts to SpecA is connected, which
proves that A is an integral domain.

6.32 Let B be a ring and I ⊂ B a nilpotent ideal. Prove that the set of idempotents of B
maps bijectively to the set of idempotents of B/I, under the natural map B → B/I.

Let e ∈ B be an idempotent. (e + I)2 = e2 + I = e + I is also an idempotent.
e+ I = e′ + I ⇒ e− e′ ∈ I ⇒ (e− e′)n = 0, ∀n ≥ N for some N ∈ N. Pick 2 - n. Then,
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by e2 = e, e′2 = e′ and the binomial theorem, 0 = (e− e′)n = en − (e′)n = e− e′. Finally,
if x+ I is an idempotent, x2 − x ∈ I. Let x1 = x, xi+1 = 3x2

i − 2x3
i . Then

x2
i+1 − xi+1 = (x2

i − xi)2(3− 2xi)(2xi + 1) ∈ I2i ⊂ I,

which will be zero for sufficiently big i. Moreover, let yi = x2
i − xi ∈ I. Then

xi+1 − xi = 3(xi + yi)− 2(xiyi + xi + yi)− xi = yi − 2xiyi ∈ I.

Thus, xi + I = x+ I for all i.

6.33 Let p be a prime number and n ∈ Z, n > 0. Prove that the ring homomorphism
Zp → Z/pnZ induces an isomorphism π(SpecZ/pnZ)

∼−→ π(SpecZp).

Spec(Z/pnZ) contains one element thus must be connected. By 6.24, consider Fp be its
residue class field, we have π(SpecFp)

∼−→ π(SpecZ/pnZ) induced by natural ring homo-
morphism Z/pnZ→ Fp. Finite extensions of Fp are Fpn and indeed they are all separable.
By 6.18 (or [E. Weiss, Algebraic Number Theory, Section 3-2]), the ring homomorphism
Zp → Fp, which is the composition of Zp → Z/pnZ and Z/pnZ → Fp, is exactly the
residue class map and induces the equivalence of category FEtSpecFp → FEtSpecZp and

thus induces the isomorphism π(SpecFp)
∼−→ π(SpecZp). Thus, the ring homomorphism

Zp → Z/pnZ induces an isomorphism π(SpecZ/pnZ)
∼−→ π(SpecZp).

6.35 Prove that π(SpecZ[i]) and π(SpecZ[(1 +
√
−3)/2]) are trivial.

Observe that Z[i] and Z[(1 +
√
−3)/2] are rings of integers of Q(i) and Q(

√
−3),

respectively. By Corollary 6.17, it is suffices to show that Q(i) and Q(
√
−3) have no

unramified extensions, . . .
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