January 16, 2014

1 Exercises for Section 1

1.1 Let A be aring, A # 0, and M an A-module with basis (w;)ie;-
(a) Prove that there is a ring homomorphism from A to a field k, and that #1 =
dimy (M @4 k).
(b) Suppose that M is a finitely generated A-module. Prove that #I is finite.

(a) Let m be a maximal ideal of A. Then k := A/m is a field, and the canonical map
A — k is a ring homomorphism, which gives rise to an A-action on k.
Note that M = @,.; Aw;. Define a map

f:Mxk—s k%!

by setting
f (Z a;wj , x) = Z(aix)ei,
finite finite

where (e;)ier is a basis for k1. It is clear that f is A-bilinear. Hence f induces an
A-homomorphism .
f: M@k — kL

Indeed, f is k-linear as f (m,-) is a k-linear map for each m € M. Now consider the
k-linear map
g: kT — Mok

given by
g (Z .732‘61') = Z €; ®$i.
finite finite

It is easy to check that g is the inverse of f , which implies f is a k-isomorphism. Therefore,
dimy, (M @4 k) = dimy, (k%) = #1.

(b) Suppose (un)fl\[:1 is a set of A-generators of M. Since (w;);es is an A-basis of M,
each u,, can be uniquely represented as

l'll

Up = E Ay Wpy
r=1

with o, € A — {0}, wy,r € (w;)icr. Let W be the collection of all such w},. Then W is
finite and forms a basis of M, and M ® 4 k is of dimension #W. But the dimension is
also equal to #1. So #1 coincides with #W and is thereby a finite number.



1.2 (a) Let wi,wy, -+ ,wy, be a basis for M over A, and let
n
UizzaijijM (1§z§n)
j=1

with a;; € A. Prove: vy, va, -+, vy, is a basis for M over A < det((aij)i<ij<n) €
A*.

(b) The trace Tr(C) of an n x n-matrix C' = (c¢;j)1<i,j<n Over A is defined by
Tr(C) = Y, cii. Prove

Tr(CD) = Tr(DO),
Tr(ECE™') = Tr(0)

for n x n-matrices C, D, E over A with det(E) € A*.

(c) Prove that the trace of an A-endomorphism of a finitely generated free module,
as defined in 1.1, is independent of the choice of the basis.

(a) If (v3)7, is an A-basis for, then each w; can be expressed as

n
’LUj = Z bjiUi
i=1
for some unique bj; € A. Together with the assumption that v; = ; @ijw;, we have
n n
Uy = ZZaW-bﬁvi, r=1,---,n.
i=1 j=1

Since each v, is a basis element, by comparing the coefficients, we get

n
> " arjbji = bir.
=1

In other words, the product [a;;][b;;] = id,, and so
det[aij] . det[bij] =1.

This proves det[a;;] is a unit of A.
Conversely, assume det[a;j] € A*. Consider the equation

Zn: vy = 0.
i=1

n
Jj=1

non
Z Z )\,;aijwj = 0,

j=1i=1

Expressing v; in terms of the basis (w;)”_; the equation can be rewritten as



which yields
n
ZAzaz] =0, g=1,---,n
i=1
These equations can be written in the matrix form
A Adllagl=[0 e 0]

Hence it suffices to verify the invertibility of the matrix [a;;]. Recall that for any n x n-
matrix X, we have the matrix identity

X adj(X) = det(X) id,,

in which adj(X) := [(—=1)"™ det(X;;)]T is the adjugate matrix of X, where X;; is the
matrix obtained from deleting the i-th row and the j-th column of X. Now det[a;;] is a
unit in A, by the above matrix identity, madj [a;j] is an inverse of [a;;]. This means
la;;] is invertible and we are done.

(b) Write C' = [¢;;] and D = [d;;]. Then

CD = [i Cirdrj
r=1

The first identity holds since

TI"(CD) = i (i Cz’rdri) = i (i dm;c”> = TI"(DC)
r=1

i=1 \r=1 =1

and DC =

i dircrj] .
r=1

Replacing the pair (C, D) by (EC, E~1) for any invertible matrix E in the first identity,
we get the second one.

(c) Let M be a finitely generated free A-module with basis (w;)?_, and f: M — M
an A-linear map. Suppose that

n
f(wl) == Zﬂijwb 1= 17 , 1.
j=1
By definition, the trace of f with respect to the basis (w;)! is
n
Tr () (f) = D s
i=1

Assume that M has another basis (v;)!_;, and that for each i,

n n
V; = E aijwj and w; = E bijvj,
Jj=1 Jj=1



where [a;;] and [b;;] are mutually inverse, as was shown in part (a). Then,

n n n n n n
F) = aiif(w) = ag > pjrws =Y aiy Y ik Y brivy
=1 k=1 i=1 =1

j=1 k=1

n n n
= g E aijikbrr | vr.

=1 \j=1k=1

So the trace of f with respect to the basis (v;)"; is

Trey(F) =D D ) aijppbe =YY ( bkiaij) Wik
1

i=1 j=1 k=1 j=1k=1 \i=
n n n
=D > Ok = D b
j=1k=1 j=1

This proves the trace map is invariant under a change of basis.

1.3 Let B be an A-algebra that is finitely generated and free as an A-module, with basis
w1, wa, - - - wy. Prove: B is separable over A < det(Tr(wjwj)i<ij<n) € A"

By definition, B is separable over A if and only if the A-linear map
¢ : B — Homu(B, A),
given by ¢(b)(b) = Tr(bb) for b,b € B, is a bijection.
Let (w;)!; be a basis for B over A. Then the A-module Homy (B, A) has a corre-

sponding basis (x;);_;, where x; : B — A is the A-linear map so that x;(w;) = d;;.
Write

n
j=1

In actuality, the a;; above can be expressed explicitly as
n
aij =y apxi(wy) = ¢(w;)(w;) = Tr(wsw;).
=1

Note that ¢ is bijective if and only if ¢(w;),- - , ¢p(wy,) form a basis for Homy4 (B, A); and
this is the case if and only if, by Exercise 2, the determinant det[Tr(w;w;)] is a unit of A.

1.4 Let B be a free separable A-algebra, A’ an A-algebra, and B’ = B ®4 A’. Prove
that B’ is a free separable A’-algebra.



We will adopt the notations used in and apply the result of the previous exercise. Since
the A-algebra B is free separable, B = @' ; Aw; as an A-module, and det[Tr(w;w;)] is
a unit in A.

To show B’ = B®a A’ is free separable A’-algebra, first we check that B’ is finitely
generated and free as an A’-module. In fact, this is true since tensor products commute
with direct sums:

B =By A = (@AwZ) ®4 A’:@(Awi @4 A') ~ @Al(witg)l).
=1

i=1 i=1
This identification (about the A’-module structure) also implies that the collection (w; ®
1), forms an A’-basis for B’. Hence it remains to verify

det[Tr'(w; @ 1)(w; @ 1)] € (4)*,

where Tt stands for the trace map on Hom 4/(B’, B'), as well as the induced map on B’.
Note that (w; ® 1)(w; ® 1) = wjw; ® 1, so what we need to be aware of is Tr'(w;w; ® 1).
More precisely, we have to understand Tr’.

Consider the A’-module Hom 4/ (B® 4 A’, A® 4 A’), in which we write the original A’ as
A®y A, regarded as A’-algebra, for clarity in latter discussion. It has a natural A’-basis
(X;)1q, where x/ is the A’-linear map determined by x}(w; ® 1) = §;;(1 ® 1) = d;; ® 1.
Also, xi(wj) ® 1 = 0;5 @ 1. So for any a} € A', j = 1,--- ,n, by the linearity of x;, we
have

n n n
X 2w @d) | =D dpGlw©1) =) dj(au(w) @1)
J=1 Jj=1 j=1

n n
= ZXi(wj) ®aj = X ij ® aj;
j=1 j=1
that is,
Xi = Xi @ idar.
By the definition of trace, we have Tr'(x}) = 1 ® 1. Together with Tr(x;) = 1, we get
Tr' () = Tr(x; @ idar) = Tr(x;) ® 1
Now, suppose that m,w; = > axq with a; € A. Then
n
Muww;el = Muw;w; @ 1dar = Z arx; ® id)y.

=1
Therefore,

n
Tr'(w,-wj & 1) =T (Z arx; ® idA/>

=1

n n
= ZGZTT(XZ) ®1= Zal ®1
=1 =1

= Tr(ww;) ® 1.



Finally, by the definition of determinant, we have
det[TY' (wjw; @ 1)] = det[Tr(w;w;) ® 1] = det[Tr(ww,)] ® 1.

Since det[Tr(w;w;)] is a unit in A, we know det[Tr(w;w;)] ® 1 is a unit in A ®4 A" = A’
and we are done.

1.5 Let K be an algebraic number field with discriminant A and ring of integers A.
Prove that A[1/A] is a free separable Z[1/A]-algebra.

Let A’ = A[1/A] and Z' = Z[1/A]. Take an integral basis wy,- -+ ,w, of K, i.e. itisa
free Z basis of A. Note that w1, - ,wy, is also a basis of K over Q. By the definition of
the discriminant of K,

A = det(Trg g (wiwj))-
Notice that Tryk /q(wiw;j) = Trar/z (wiw;). Using exercise 1.3 and A is invertible in Z’, A’
is a free separable Z’-algebra.

1.6 Let A be a ring.
(a) Let a € A. Prove that A[X]/(X? —a) is a free separable A-algebra if and only
if 2a € A*.

(b) Let, more generally, f € A[X] be a monic polynomial. Prove that A[X]/(f) is
a free separable A-algebra if and only if the discriminant A(f) of f belongs to
A*.

(a) Let B = A[X]/(X?—a) and [b] = b+ (X2 —a). It is easy to check that {[1], [z]} is a
A-basis of B and thus rank 4(B) = 2. By the definition of m,), we have m,([1]) = [x] and
my([z]) = [2]* = [a]. Then Tr([z]) = Tr(my,) = 0. Clearly, Tr([a]) = ranka(B) - a = 2a.
Using Exercise 1.3, B is a free separable A-algebra if and only if

o (T ()
da.= det <Tr<[x]> Tr([xP)) e

(b) Let B = A[X]/(f), [b] = b+(f) and n = deg(f). It is easy to check that {[1], [z],-- - , [#]*"!}
is a A-basis of B and thus rank,(B) = n. Write

f=a"+ an—liﬁn_l + -+ a1z + agp.
A element ¢, in A (m € Zxo) is defined by using a recursive relations
tm + Gp—1tm—-1+ -+ an+m+1t1 +map—m =0

for 1 <m < n,
tm + ap—1tm—1+ -+ aotim—n =0



for m > n and set tg = n. (Note that this is Newton identities. Originally it give
relations between power sums and elementary symmetric polynomials.) Also, we define
the discriminant A(f) by

to t1 - lpa
t ty - tn
A(fy=det| . 7 Tlea
tn_l tn e t2n—2

By an induction on m, the definition of Trg, 4 (m[m]m) and the recursive relations between
ti and a;, we get Tr(mym) = t,, for all m > 0. Using Exercise 1.3, B is a free separable
A-algebra if and only if

Tr([1]) Tr([fﬁ]2) o ([
A(f) = det Tr(:[x]) Tr([:”ﬁ] ) Tr('] A
Tr([2]*71) Te([2]") - Tr(f2]*?)

1.7 Suppose that the scheme X is the disjoint union of two schemes X', X”. Prove
that the category FEtx is equivalent to a suitably defined “product category”
FEtX/ X FEtXH.

Let ¢ : Z — X = X' 11 X" be a finite étale covering. Consider Z’ = ¢~ 1(X’) and

= ¢ 1(X"). Then, Z' — X" and Z" — X" are flat and unramified because these
are local properties. And they are finitely presented if we consider affine coverings of
X" and X” induced from the affine covering of X. Thus, by 6.9, they are finite étale
coverings. Conversely, given finite étale coverings ¢1 : Z/ — X' and ¢o : Z" — X", we
consider Z = Z'I1 Z" — X. It is finite étale due to the similar reason as above. Consider
F : FETyx x FETx» — FETyx is the functor sends objects as discussion. It sends
morphisms in the natural way. It remains to show F' is fully faithful. Its induced map on
morphisms is injective clearly. Since

Z1HZ2 W1HW2

~,

X110 X,
is commutative, surjectivity is assured.

1.8 Let § = @Si be a projective limit as in 1.7, and define for each j € I the projection
map f; : S — S; by fj((xi)ier) = ;. Prove that the system (5, (f;)jer) has the
following “universal property”:

(i) fijo fi=f; foralli,j € I withi > j;
(ii) if T'is a set and (gj : T — Sj)jer is a collection of maps satisfying fi;09; = g;

(for all 4,5 € I with ¢ > j), then there is a unique map g : 7' — S such that
g;j = fjogforalljel.



Prove further that this universal property characterizes (S, (f;)jer) in the following
sense: if S is a set and (f] : S" — Sj)jer a collection of maps satisfying the
analogues of (i), (ii), then there is a unique bijection f’ : " — S such that
f](:fjof’foralljel.

Recall that the projective limit

S = {(xk;)kej € HSk : fij(z;) = xj for all 4,5 € I with ¢ Zj}.
kel

For any (z)ker € S and any ¢,j € I with ¢ > j, we have

fij o fillzr)rer) = fij(xi) = xj = fi((x)rer)-

This proves (i). Let (g; : T'— 5;)jer be a collection of maps with the property fijog; =
gj for all 4, j € I with ¢ > j. If there is a map g : T'— S such that g;(t) = f;(g(t)) for
allt € T and j € I, then we will have

9(t) = (95(1))jer,

in which (g;(t));er indeed belongs to S because of the the property of (g;)jer. Now define
the map g : T — S by the above formula. Then we obtain both the existence and
uniqueness of g that satisfies the required equations.

The second part that the universal property characterizes projective limits is just a
consequence of the standard formal argument.

1.9 Let the notations be as in 1.7, and S = l'&lSi

(a) Suppose that all sets .S; are endowed with a compact Hausdorff topology, that
all S; are non-empty, and that all maps f;; are continuous. Prove that S is
non-empty and compact. [Hint: Apply Tikhonovs theorem.]

(b) Suppose that all sets S; are finite and non-empty. Prove that S # 0.

(c) Suppose that I is countable, that all S; are non-empty, and that all f;; are
surjective. Prove that S # (.

(d) Let I be the collection of all finite subsets of R, and let I be partially ordered
by inclusion. For each ¢ € I, let S; be the set of injection maps ¢ : i — Z,
and let f;; : S; — S; (for j C i) map ¢ to its restriction ¢|j. Prove that this
defines a projective system in which all S; are non-empty and that all f;; are
surjective, but that the projective limit S is empty.

(a) Define S;; := {(si)ier € [;c7 Sil fij(si) = s;}. We have S = N;>;S5;;. Since each
Sij is closed in [[;c; Si, by Tikhonov’s theorem, [],.; S; is compact, and hence S;; is
compact.

For all I = {i1,...,in} and J = {j1,...,5m}, by I is a projective system, there is
an ig € I such that S;; — S; via f;,; and S;, — S; via f;, ;, respectively. Hence
Niel,jegSi # 0. So S =n;;Si; # 0 by the finite intersection property. (Recall: X is

8



compact Hausdorff space and {F;} a family of closed subsets in X. If for all finite indes
set J C I, we have X N (MiesFi) # 0, then X N (NierF;) # 0.) So S C [],c; Si is closed,
hence compact.

(b) Given discrete topology on each S;; then apply (a).

(c) ...
(d)

I:={iisafinite subset in R },i>j<i2j
Si={p:i—>7Z}

fz‘j:Si — Sj
¢ = 9l

(i) For each i,j € I, set k:=iU j. Then k >4, j
(ii) fii =1id is clear.
(iii) fik = fjxfi; is the compose of restriction map. Hence (i € I,S5;) is a projective
system. S # () is clear and f;; is surjective since we can freely extend all ¢ : j — Z to
Yegt 11— Zif i D j.

To prove limS; is empty, suppose (¢;);cr is an element in limS;. By definition,
¢i : i — Z such that ¢;|; = ¢; for j C i. In particular, all ¢; have the same restriction on
all singleton {z} C R. This says we have an injection R < Z, a contradiction.

1.10 Prove: if 7; is a profinite group for each j in a set J, then Hje] m; is a profinite
group.

1.13 Let p be a prime number, and Z, the ring of p-adic integers. Prove:

(a) Ly, = Lp — pLyp;
(b) each a € Z, — {0} can be uniquely written in the form a = up™ with u € Zj,
n € Z,n > 0;

(c) Z, is a local domain with residue class field F),.

First, we prove that, for each n > 1, there is an exact sequence of abelian groups
0—Zy 2= 2, ™ Z/p"Z — 0,

where 7, sends ((an,)) to ap.

Clearly, m, is surjective. If a = (a,,) belongs to ker(m,), then a,, = 0 (mod p") for
all m > n. This means that, under the isomorphism Z/p™ "Z — p"Z/p™Z, there is a
element b,,_,, of Z/p™ "Z such its image in Z/p™7Z satisfies a,, = p"bym—n. The by define
an element b of Z, such that p"b = a. Obversely, the kernel of 7, contains p"Z, and thus
the above sequence is exact at the middle term. Similarly, the multiplicative map -p™ is
injective.

(a) By the above exact sequence for n = 1, we know that Z,/pZ,, is isomorphic to the
field F,,. This implies that Z; C Zj \ pZ,. On the other hand, if a € Z/p"Z which is not

9



divided by p, then its image in Z/pZ = F, is nonzero thus invertible. Hence there are
b,c € Z/p"Z such that ab =1 — pc. Then

a’b(l _pc)il = ab(l +pc+--- _|_pnflcn71) -1

in Z/p"7Z which proves a € (Z/p"Z)*. In general, for a = (a,) € Zy, \ pZ,, we have
an € Z/p"Z which is not divided by p and thus a, has the inverse in Z/p"Z. By the
uniqueness of inverse elements, we get (a,,') € Z, and hence a € Z,.

(b) For each nonzero a = (a,) € Z,, there is the largest n such that a; = 0 for all
1 < i< n. Since my(a) = 0, we have a = p"u. By the choice of n, u ¢ pZ, ie. u € Zj.
The uniqueness of the decomposition is obvious.

(c) Use (b), we can define the p-adic valuation for Z,:

(@) 400 ifa=0,
vy(a) =
b n ifa=pu,u €Z,.

Then Z, is a discrete valuation ring, i.e.
vp(ab) = vy(a) +vy(b), vp(a + b) = minfvp(a), vy(b) }

and vp(a) = 400 if and only if a = 0. Hence Z, is a local domain with the maximal ideal
{a € Zy|vp(a) > 1} = pZy.

1.14 Prove that there is an isomorphism Z = Hp prime Zp of topological rings (definition
obvious).

Recall that Z = @Z/mz and Z, = l'ng/p”Z for any prime p. For any positive
integer m, which admit the prime factorization pi* - - - p;*, the Chinese remainder theorem
gives

Z/mZ =~ LIp{ L % - - - X L[pF L.

Through this isomorphism we have a natural map Hp prime Zyp — Z/mZ for every m € N,
which induces a unique homomorphism of topological rings

f: H Ly — 7
p prime
such that the natural maps mentioned above are factorized over f. On the other hand,
for each prime number p the collection of canonical maps (Z — Z/p"7Z)pen induces a
unique homomorphism
7 — Loy,

over which the canonical maps just mentioned are factorized. This gives rise to the
homomorphism

g: 7 —s H Lop.

p prime

Note for any m € N that the natural map 7 —17 /mZ is factorized over g with the help
of the isomorphism at the beginning. An argument concerning the uniqueness of f and
g subject to their characterizing properties shows that both fog and go f are identities.
Thus f and g are isomorphisms.

10



1.15 Let Zy = lim _ Z/10"Z.

(a) Prove that each a € Zio has a unique representation a = » > ¢,10™ with
cn €40,---,9}.

(b) Prove that there exits a unique continuous function v : Zip — R such that
v(a) = (number of factors 2 in a)~! for each positive integer a.

(c) Let (an)s2, be a sequence of positive integers not divisible by 10 such that the
number of factors 2 in a, tends to infinity for n — co. Prove that the sum of
the digits of a, in the decimal system tends to infinity for n — co.

For any a € Z1g, we may write a = (b,)22, in the product coordinates. Let 32™_4 ¢ 10™
be the decimal expansion of b,. Note that ¢}, stable as n — oco. Let ¢, be the stable
value. Then the representation . °_; ¢, 10™ is what we are looking for and it is unique.

For the statement (b), the image of Z-o in Zjo is dense. (The proof is similar to
1.12) The behavior of a continuous function is totally determined by its value on a dense
subset. So (b) follows.

For (c). Suppose there exists such a sequence {a,} > ; such that the conditions hold
but the sum of digits of a,, does not go to infinity. Let s(a,) denote the sum of digits of
ap. Then by assumption, limsup,,_, . s(a,) = M < co.

Take a sequence {a,}7> ; so that limsup,,_,. $(a,) is minimum. Firstly, observe that
an, — 00. Let b, be the number obtained by removing the first digits from a,,. Then
b, also satisfying the condition since a, — b, = ki, - 10"™). So the number b, must
divisible by 2 sufficiently. And the number b, is non-zero. But limsup,,_, . s(b,) <
limsup,,_, s(an) — 1.

Therefore, such sequence {a,}°° ; does not exist.

1.16 (a) Prove that each a € Z has a unique representation a = Yonl  cpn! with ¢, €

{0,1,...,n}.

(b) Let b € Z,b > 0, and define the sequence (ay)22, of non-negative integers by
ap = b, ant1 = 2. Prove that (a,)52, converges in Z, and that li_>m an €7

n—oo

is independent of b.

(c) Let a = nli_g)loan as in (b), and write a = Y7 | ¢,n! as in (a). Compute ¢, for
1 <n<10.

Throughout the proof we adopt the fact in Problem 1.17(c) that
7.~ Jim Z/mlZ.
m>0

(a) Let S be the collection of formal series Y- | ¢,n! with 0 < ¢, < n. We will show
that there is a bijection between 7 and S. Define for each m a map S — Z/m!Z that
sends 32°° | ¢,n! to 7 e,n! (mod m!). Indeed, these maps form a projective system;
and we have 0 < > ¢,,n! < m! due to the constraint on ¢,. Now we prove the induced
map ¢ : 5 — 7 is bijective by constructing its inverse. Observing that

1 m m—1
cm:% chn!— chn! ,
" \n=1 n=1

11



we define a map v : Z —» S sending each (by, (mod m!))m>0, where 0 < b, < ml, to
the formal series >0 1 (4;(bny1 — bn))n!. It is well-defined since bp4q = by, (mod nl!), i.e.
bnt1—bn € nlZ, according to the property of projective limits; and because of the bounds
of by11 and by, we know %(bn_Fl —by) € {0,1,--- ,n}. Clearly, ¢ and 1) are mutually
inverse and we are done.

(b) It suffices to show that for each N € N, (a,, (mod N)),>n is stable and inde-
pendent of b. We prove this by an induction argument on N. The statement is trivial
for N = 1. For an N > 1, we suppose the statement holds up to N — 1. Now con-
sider a, (mod N). Write N = 2*N’ with N’ odd. By Chinese remainder theorem, it
is sufficient to verify that (a, (mod 2¥)),>n and (a, (mod N’)),>n stabilize and does
not depends on b. In fact, when n > N > k, we have a, = 0 (mod 2¥); also, we have
n—1>N-—12> ¢o(N) > ¢(N'), where ¢ is the Euler function, implying that (a,—1
(mod ¢(N)))n>n is stable and independent of b due to the induction hypothesis. It
follows by Euler’s theorem that (a,, (mod N’)),>x is stable and independent of b.

(c) According to the correspondence ¢ constructed in (a), we first compute a (mod n!)
for n = 1,---,11. Other than Chinese remainder theorem and the fact that a = 2%, in
the calculation we will also need the congruence

"1 =1 (mod p’*),

where p is a prime and r is a nonnegative integer. We prove this by induction on r. If
r = 0, then it is just the Euler’s theorem. Assume the congruence is true up to r — 1 for
some r and a fixed prime p. Then we have 2P 1) = 1 4 ap” for some integer a. Hence

oP"(P=1) — (1 4 ap”)P

=1+ (P)ap" + (D)2 + -+ (P )arp
1 2 P

=1 (mod p"™).

Thus the congruence holds for every nonnegative r. Now we turn to the calculation:

e a =0 (mod 1!); a =0 (mod 2!).

e a =4 (mod 3!), where 3! =2 x 3.

Since 22 = 1 (mod 3), we have a = 22™°42 = 1 (mod 3). Together with the fact
that @ = 0 (mod 2), the result follows.

a =16 (mod 4!), where 4! = 23 x 3.
This follows from a =0 (mod 23) and a =1 (mod 3).

a =16 (mod 5!), where 5! = 23 x 3 x 5.

Since 2* = 1 (mod 5), we have a = 2¢™°44 = 1 (mod 5). Then combining with
a =16 (mod 4!) we get the result.

a =16 (mod 6!), where 6! = 24 x 32 x 5.
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Since 23%2 = 26 = 1 (mod 3?), we have a = 20™°46 = 24 = 7 (mod 9). Also,
we have @ = 0 (mod 2%) and a = 16 (mod 5!). Combining the conditions together
gives us the result.

a =16 (mod 7!), where 7! = 24 x 32 x 5 x 7.

Since 26 = 1 (mod 7), we have a = 20™°46 = 24 = 2 (mod 7). And by a = 16
(mod 6!) we get the result.

a = 25,216 (mod 8!), where 8! =27 x 32 x 5 x 7.
This follows from a =0 (mod 27) and a = 16 (mod 7!).

a = 186,496 (mod 9!), where 9! = 27 x 3* x 5 x 7.

Since 23°%2 = 254 = 1 (mod 3%), we have a = 22 ™4 54 (mod 34). To find a mod 54,
first note that 23°%2 = 218 = 1 (mod 33), and that a 16 (mod 18) because
a = 7 (mod9) and @ = 0 (mod 2). It follows that ¢ = 20418 = 216 = 7
(mod 33). Together with @ = 0 (mod 2) we obtain a = 34 (mod 54). Therefore
a = 20med 5t = 93 = 34 (mod 3*). Combining this with a = 25,216 (mod 8!)
leads us to the result.

a=1,275,136 (mod 10!), where 10! = 28 x 3% x 52 x 7.

Since 2°%* = 220 (mod 52), we have a = 22™°420 (mod 52). Note that a = 16
(mod 20) because a = 0 (mod 4) and @ = 1 (mod 5). Hence a = 2!6 = 11
(mod 52). Together with a = 0 (mod 2%) and a = 186,496 (mod 9!) we get the
result.

a = 26,676,736 (mod 11!), where 11! = 28 x 3% x 52 x 7 x 11.

Since 2! = 1 (mod 11), we have a = 2¢™°410 (mod 11). But @ = 6 (mod 10)
since a = 0 (mod 2) and a = 1 (mod 5), so a = 26 =9 (mod 11). Together with
a=1,275,136 (mod 10!) the result follows.

Then, set by, := a mod m! so that a = (b, (mod m!))m~o. While converting (b,

(mod m!))m>o into the form ) °  ¢,n!, we have been aware from part (a) that ¢, =
(bnt1 — by)/n!. Applying this formula, we know ¢q,--- ,c1g are 0, 2, 2,0, 0, 0, 5, 4, 3, 7,

respectively.

1.17 A subset J of a partially ordered set I is called cofinal if Vi € I : 95 € J such that

J =i
(a) Prove: if J is a cofinal subset of a direct partially ordered set, then J is directed.
(b) Let the notation be as in 1.7, and let J C I be a cofinal subset. Prove that
there is a canonical bijection TgljeJ S; = @iel Si.
(¢) Prove: 7 = fm o Z/n\Z.
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For (a), let 4,j € J C I. I is direct implies 3k € I such that k > ¢ and k > j. By
cofinality, there exists an | € J so that [ > k. Hence [ > ¢ and [ > j. This proves J is
also a direct set.

It now makes sense to talk about the inverse limit Tglje J S;. There are canonical
projections @ie I S; — S for all j € J. The morphisms clearly commute with the
morphisms in the projective system {S; : j € J}. The universal property says that there
exists a morphism 6 : 1'&11,6] S; — yLnjEJ S;.

Firstly, this map is canonical by construction. For the surjectivity, let z = (s;)jes €
@jeJ S;j. For each i € I, we choose j > i by cofinality and define s; := fj;(s;). This
is well-defined. Indeed, if there exists another k € J with £ > ¢. Pick [ € J so that [
dominates j and k.

fii(s5) = fjio fij(s1) = frio fie(s1) = fri(sk)-

By construction, (s;)ier € lim, Sy and 0((si)ier) = x. The injectivity is obvious. These
prove (b).

For the last one, put J = {n!:n € N} and I = N with the usual ordering. Using (b),
we obtain (c).

1.19 Let 7 be a profinite group acting on a set E. Prove that the action is continuous if
and only if for each e € E the stabilizer m. = {0 € m: e = e} is open in 7, and for
finite F if and only if the kernel 7’ = {0 € 7 : 0e = e, Ve € E} of the action is
open in 7.

Let 6 : m x E — E be the action. For each e € E, consider the composition 7 x {e} —
m X E — E. Suppose the later one is continuous. Then the pre-image of {e}, which is
equal to 7., is clearly an open set. Conversely, it suffices to show that for any e € F the
pre-image of {e} is an open set in 7 x E. Now 0~ '({e}) = {(0,2) € 7 x E : 0z = e}. Let
O(e) be the set of G-orbit of e. For any m € E, there exists a g, so that g,,m =e. We
may write

0 ({e}) = H (gmmm x {m}).

meO(e)

Hence it is open.

From now on suppose F is finite. Note that we have ©’ = ) ccE Te- Being an inter-
section of finitely many open sets, 7’ is clearly open. Conversely, assume that 7’ is open.
7/ < 7, for any e € E. . is open in .

1.20 Let G be a group with profinite completion G. Prove that the category finite G-sets
is equivalence to the category of G-sets.

Let C be the category of finite G-sets. Let X be an object in G-sets. This means that
X is a finite set with a continuous G-action. There exists a natural group homomorphism
G — G. Hence X can be viewed as a finite G-set. And G-morphism also can be regarded
as a G-morphism in this way. So we have defined a functor F' from G-sets to C. Tt suffices
to show that F' is essentially surjective and fully faithful.
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Let Y be an object in C, i.e., there is an action of G on Y. Now consider the stabilizer
of Y, denoted by H. Then H is normal and [G : H] < co. Let G — G/H be the
natural projection. This induces an action of GonY. And by construction, the action is
continuous. This proves F' is essentially surjective.

We are going to show that F' is fully faithful. Given two objects X and Y in G’, F
induces a set-theoretic map

Hom (X,Y) — Home (F/(X), F(Y)).

This map is injective by our construction. Given f € Home(F(X),F(Y)). fis a G-
equivariant map from X to Y. By construction, the map f can also be viewed as a G
equivariant map, say f’. Then we have F(f’) = f. This shows F is fully faithful.

1.21 (a) Prove that the cateogry Z-sets is equivalent to the category whose objects are
pairs (E,0), with E a finite set and o a permutation of E, a morphism from
(E,0) to (E',0") being a map f: E — E’ satisfying fo = o'f.
(b) Construct a profinite group 7 containing 7 as a closed normal subgroup of
index 2, such that the category m-sets is equivalent to the category whose
objects are triples (E, 0, 7), with E a finite set and ¢ and 7 permutations of E
for which 0? = 72 = idg, a morphism from (E, o, 7) to (E’,¢’,7') being a map
f: E — FE' satisfying fo =o'f and fr=17'f.

(a) By Exercise 1.20, the category of Z-sets is equivalent to the category of finite Z-sets.
Since Z is generated by 1, it suffices to consider how 1 acts on E, which should be
a one-to-one map since (—1) acts reversely, and thus bijective as F is a finite set.
So, 1 corresponds to some permutation o € S™ if |E| = n. And the condition for
morphisms is exactly the same condition for morphisms on finite Z-sets.

(b) Construct 7 as follows: consider the category S consisting of objects (E, o, 7), where
E is a finite set and 02 = 72 = 1. Also any morphism f(E) = E’ should satisfy
fo=0df, fr=7'f. Then, S can be regarded as the category finite P-sets, where
P is a noncommutative group generating by s and ¢ with s> = t> = 1. Suppose
¥ : S — Z—sets defined by Y(E,o0,7) = (E,o7). We should check 1 is surjective
to claim st is of infinite order. If it is the case, then by Exercise 1.20, the category
finite P-sets is equivalent to m-sets, where m = P. 7 hence contains Z, which is of
index 2 since Z = (st) is a normal subgroup of P of index 2. And Z is necessary
closed followed from Exercise 1.11 (b).

To show all permutations can be the product of two order 2 permutations, simply

notice that
p+g=m+2 p+g=m+1
(12"'m)=( 11 (pq))( 11 (pq)),

p<q p<q

and the two factors satisfy the equation 22 = 1 in the permutation group.

1.24 Let it given that under the equivalence of categories in 1.14 finite coverings and
finite sets correspond to each other. Deduce from this and Exercise 1.20 that the
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profinite group 7(X) occuring in 1.15 is the profinite completion of the group 7(X)
occuring in 1.14, if X is as in 1.14.

By 1.14 and finite correspondence mentioned above, given X satisfying the conditions
in 1.14, category of finite coverings of X is equivalent to the category of finite m(X)-

—

sets. And by Exercise 1.20, thus equivalent to the category of 7(X)-sets. Since 7(X) is

determined uniquely up to isomorphism, 7(X) = 7(X).

1.25

1.26

(a)

Let X be the topological space {0, 1,%,3}, the open sets being 0, {0}, {2}, {0,2},
{0,1,2}, {0,3,2}, X. Prove: #(X) = Z.

(a) Let 7 be a profinite group such that 22 = 1 for all # € 7. Prove that 7 is
isomorphic to (Z/2Z)™ for a uniquely determined cardinal number n, which is
equal to the Z/2Z-dimension of the group of continuous group homomorphisms
T — 7/27.

(b) Let G be the additive group of a Z/2Z-vector space of dimension k, where k
is an infinite cardinal. Prove: G = (Z/ 2Z)2k as profinite groups.

(¢) Construct a profinite group that is not isomorphic to the profintie completion
of any abstract group

G consists only of involutions and thus G is Abelian. Given any open normal sub-
group N, G/N = (Z/27)™ for some positive integer n. Let Nj - - - N,, be open normal
subgroups with index 2 such that G/N = G/N; x --- x G/N,, and N = ()| N;.
Consider the group of all continuous group homomorphism in the form G — Z/2Z,
and this group naturally has Z/2Z-vector space structure. Fix a basis of the vector
space, call it . Then the canonical homomorphisms 7; : G — G/N; = Z/27 have
decompositions: m; = > fi; where f;; € 3. Then ), ; ker fi; C ()=; N; = N. So,
finite intersections of ker(f;) where f; € 3 form a cofinal subset of all open normal
subgroups of G. On the other-hand, we have canonical projections py : (Z/2Z)* —
ZJ2Z (f denoted as an element of ¥), and similarly the finite intersections of kernel
of ps also form a cofinal subset of all open normal subgroups of (Z/2Z)*. Given
fio fa €%, (Z)22)% ) N, ker(f;) = (Z/2Z)" and [G : N, ker(f;)] = 2™ (where
m < n). Let us verify that m = n. Suppose not, let v;---v,, be a basis of
G/ Nz, ker(f;). Define A € Myxn(Z/2Z) by Ai; = fj(vi). Because m < n,
there exists a nonzero vector © € Z/2Z" such that A-x = (0)mx1. But fi--- fy
are Z/2Z-linearly independent, there exists g € G such that > x;fi(g) = 1,
where z = (21, ,z,)". Say g = >y a;jv; in G/ (i, ker(f;). This then implies
(a1, -+ ,am) - A-x = 1, contradiction. Also we have a canonical injective group
homomorphism G/, ker(f;) — (Z/2Z)" by g — (fi(g9), -, fa(g)). But as
7./ 27-vector space, they have same dimension; therefore, above mapping is actually
isomorphic. Such isomorphisms are compatible with restriction maps; therefore,
G = (Z/27)%.

Let us estimate the dimension of I', the Z/2Z vector space of all continuous group
homomorphism G — Z/27Z, and then apply (a).
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1.27

Since the image of the canonical injective group homomorphism G — G is dense
in G, a continuous group homomorphism G — 7./27 is determined by a group
homomorphism G — Z/27Z. Thus the case is reduced to compute the dimension of
the dual space of G, which is 2¥. This means G = (Z/27)%".

From (b), the cardinality of completions of such abstract groups are either finite or
greater than or equal to the cardinality of R. Therefore, (Z/27)% is not completion
of any abstract group.

Let X be an infinite topological space whose closed sets are exactly the finite subsets
and X itself.

(a) Prove that every covering of X is trivial (see the Introduction), that X is
connected, and that the group #(X) from 1.15 is trivial.

(b) Suppose that X is countable. Prove that X is not pathwise connected.

(c) Suppose that #X > #R. Prove that X is locally pathwise connected and
semilocally simply connected, and that 7(X) is trivial.

Since obviously X is irreducible, use [1.28].

Suppose not. Then given any two distinct points p, g, there exists continuous func-
tion f :[0,1] — X such that f(0) = p, f(1) = ¢. Then im(f) is a finite subset or
a countably infinite subset of X. It suffices to consider that im(f) is of countably
infinite. Say im(f) = U2, pi- Then [0,1] = U2, f~(p:), which is a countably
infinite union of closed disjoint intervals, which is disconnected. Contradiction.

Assume the axiom of choice is true. Recall the definition of locally path connected
and semi-locally simply connected:

Locally path connected: for every point p and open set U containing p, there exist
open path connected V such that pe V C U.

Semi-locally simply connected: Every point in X has a neighborhood U with the
property that every loop in U can be contracted to a single point.

Proof of locally path connected: Since cardinality of X is greater than R, there
exists a surjective map F' : X — R. Let open subset U containing p, since X \ U
is a finite set, ¥ := R\ F(U) is a set of finitely many points. Because cardinality
of U is greater than R, F'|y is not injective. We can always manually adjust F|y so
that F|y : U — R is surjective. Now, we may assume F : U — R is surjective. Let
p, q be distinct points in U, and F(p) < F(q). By axiom of choice, we can define
a function f : [F(p), F(q)] — U by defining f(F(p)) := p, and f(F(q)) := ¢ and
for y € (F(p), F(q)), let f(y) be an element of F~1(y). Given any closed subset
of im(f), that is, a finite subset of im(f), the pre-image is a set of finitely points
in [F(p), F(q)], which is closed. Therefore, f is continuous. Suppose F'(p) = F(q).
Then adjust F' by: picking any x € R such that z # F(q) and redefine the value of
q, F(q) := x. Then we can apply similar argument. Therefore, U is path connected,
and actually X is a path connected space.

Proof of semi-locally simply connected: Let f:[0,1] — X be a loop, ...
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1.28 Let X be an irreducible topological space. Prove that the group 7(X) from 1.15 is
trivial.

Let f : Y — X be any covering where Y is a connected topological space. Then
construct a function by sub-covering g : Z C Y — X by: Pick any point p € X and
an open neighborhood N of p such that f|s;-1(y) is a trivial covering. Fix a piece of
YN, N. Then for any other points of X, z ¢ N, and any trivial neighborhood N,
N.NN # ) and N, NN # () is also a trivial neighborhood. Then there exists exactly one
piece of f~1(N,) whose intersection with N is nonempty. Let Z := J SEN N.UN. Then
f restricted to Z is a homeomorphism to X, but Y is connected. This implies Y = Z and
Y is a trivial covering.

1.29 Put A = Z[/-3], B=Z[X]/(X*+ X%+ 1) and 8 = (X mod X*+ X% +1) € B.
View B as an A-algebra via the ring homomorphism A — B mapping v/—3 to
B — L. Prove that B is a free separable A-algebra.

First, we check that B is a free A-module with a basis {1, 5}. Note that the inverse
of Bis —B(B? +1). Clearly, the A-module B is generated by 1,3, 3% 33. By a direct
computation, we have 52 = 1+ /=33, 8% = V=3 — 26 and * = —2 + /=35. Also,
1, 8 are linearly independent over A by comparing the degree in Z[X]. Hence B is a free
A-module of rank 2.

Under the basis {1, 5}, we have

mi= (1 g el = (A 5 ):

det( g(%)) TT;((Q) ) = det < \/% ‘/_? ) = 1.

By the exercise 1.3, B is a free separable A-algebra.

Then

2 Exercises for Section 2

2.2 Let K C L be a Galois extension of fields, and I any directed set of subfields £ C L
with K C E Galois for which |Jp.; E = L. Prove that there is an isomorphism of
profinite groups Gal(L/K) = m ., Gal(E/K). (N.B.: the groups Gal(E/K) need
not be finite here, they are merely profinite.)

The natural map Gal(L/K) — Gal(E/K) is given by o — o|g. This is well-defined
since E is Galois over K. So we obtained a morphism

0:Gal(L/K) — Jm Gal(E/K).

0 is injective, since if o|p = idg for all such E, then o = id;. For the surjectivity, let
(0E)Eer € @Ee] Gal(E/K). Construct an element ¢ € Gal(L/K) as follow: If a € L,
then a € E for some E since L = (Jpc; £. Then define €(a) := op(a). This is again
well-defined by our assumption (0g)per € lim, Gal(E/K). And € — (0g)Eer-
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2.3 (a) Let K C L be a Galois extension of fields, with Galois group G. View G as
a subset of the set LY of all functions L — L. Let L be given the discrete
topology and L* the product topology. Prove that the topology of the profinite
group G coincides with the relative topology inside L.

(b) Conversely, let L be any field and G C Aut(L) a subgroup that is compact
when viewed as a subset of L (topologized as in (a)). Prove that L& C L is
Galois with Galois group G.

(c) Prove that any profinite group is isomorphic to the Galois group of a suitably
chosen Galois extension of fields.

For (a), if U is an open set in L¥, we may assume that U = [],; U; with Uy = {sx}
for finitely many k£ € L and U; = L for the remaining. The intersection U N G is the set
of all automorphisms o such that o(k) = sj for those k. Let X C L be a finite Galois
extension over K ontaining all such k. Let 7 € Gal(X/K) with 7(k) = si. Such 7 exists
provided that U N G is non-empty.

Let I be the direct set given by finite Galois extensions with the usual inclusion maps.
Define V =[] pc; Ve C [1ge; Gal(E/K) with Vx = {7} and Vg = Gal(E/K) for E # X.
Visopen in [[pe; Gal(E/K) and VNG =UNG.

So for any open set U in LY, GNU is open in G.

For the opposite direction, any open set in G is of the form G NV with V open in
[I1zer Gal(E/K). We may assume V' = [[5c; Ve with Ve = {og} for finitely many E
and Vr = Gal(F/K) for the remaining. Since an automorphism is completely determined
by its behavior on generators. Hence it is an intersection of G' with some open set in L.

To prove (b), it suffices to show that L over L® is algebraic. Take any I € L. G -1 is
compact in L. Hence it is a finite set. Let {l1,---,Iy} be the image. Then

N

f@@) =[]z - 1) € L.

i=1

So LY C L is an algebraic extension.

Finally, let G be any profinite group. G = limie ; G; for some finite groups G;. G;
can be embedded into S, for some n;. Let X; be the set of n; indeterminantes. .Sy, acts
on X; by permutation. This induces an action G; x X; — X;. Let X = Hz‘el X, and
L = C(X). Then G acts on L. G is profinite = G is compact, and hence by (a), the
hypothesis of (b) holds. Therefore, L is a Galois extension of L& with Galois group G.

2.6 Let K C L be a Galois extension of fields, and H ¢ H C Gal(L/K) closed
subgroups with index[H : H'] < co. Prove that L < L' is finite, and that
[LP" . L] = index[H : H']. Which part of the conclusion is still true if H, H' are
not necessarily closed?

Firstly, we prove that [L?' : L¥] < [H : H'] and hence it is finite. Let n = [H : H'].
Suppose the contrary that there exist n + 1 elements which are linearly independent over
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LY say ui, -+ ,unyp1. Let {7i}?, be a complete representative of left coset of H' in H.
Let us consider the following linear equations.

Tl(ul)a:l + 7'1(U2)1‘2+ R Tl(un+1)a:n+1 =0
Tg(u1)$1 + Tz(u2)$2+ R Tz(un+1)a?n+1 =0
Tn(u1)r1 + To(u2)ze+ -+ Tn(Uny1)Tnyr = 0.

There exists a non-zero solution to this system. Choose one, say x; = a;, so that the
number of non-zero elements in the a;’s are minimum. Then I will try to construct
another solution with more zeros in the a;’s.

Firstly, after multiplying by a non-zero constant and rearrange the variables, we may
assume that a; =1, a3 #0, -+, ap # 0, and ag11 = -+ -anr1 = 0. Also, I may assume
7 = idgs. The first equation reads

u1ry + -+ Upp1Tpe1 = 0.

Since u;’s are linearly independent over LY, there exists at least one a;, say ag, such that
ag € L' — L. Choose an automorphism o € H such that o(ag) # as. Now I consider
the system equations

JT1<’U,1)$1 +0'71(U2>.I'2+ "'+UT1(un+1)xn+1 =0
or(ur)xy + ome(ug)ra+ -+ + o2 (Unt1)Tpt1 =0
oTn(u1)x1 + o7 (u2)x2+ - 4+ 0T (Unt1)Tpy1 = 0.

o(ay) = o(l) = 1, o(az) # az,---o(ant1) is a solution to this system. But since o7;
are a complete representatives of left cosets of H' in H, we have o7;(us) = 7;(us) for
some j, i.e., the new system is identically equal to the original one. Now a; — o(a;) =0,
ag —o(az) #0, -+, any1 — o(ap4+1) is a non-zero solution to the system with more zeros
than a;’s.

This proves [L7' : L] < [H : H].

Let K C E C F C L be fields. I claim that [E' : F'] < [F : E] if [F : E] < oo, where
E’ means the automorphism groups of L fixing E.

Use induction on n := [F': E]. The case n =1 is obvious. Suppose n > 1. Choose an
element u € F — E. Consider E(u). If [E(u) : E] < [F': E]. Then by induction, we have
[E": E(u)'] <[E(u): E] and [E(u)": F'] < [F : E(u)]. So the result follows.

We may assume E(u) = F. Let f be the minimal polynomial of v over E. We will
construct an injection from the coset space E’/F’ to the set of roots of f in L, say S.

Let 7F'" be a coset. 7 € Aut(L/E). Consider 7(u). This definesamap T': E'/F' — S.
It is not hard to check it is well-defined. Suppose 7(u) = 7/(u). Then 7~!7/(u) = u. Hence
7717/ fixed F. So T is injective.

Now by Galois theory, since the groups are closed, (L) = H and (L") = H'. So
we have

[H:H]<[L" . L) <[H: H.
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We remark that the closeness of H and H’ are only used in the last step. Without
assuming H, H' are closed, we still can show that

L L") < [H : H'.

2.7 Let K, L, F be subfields of a field €2, and suppose that K C L is Galois and that
K C F. Prove that F' C L F is Galois, and that Gal(L- F/F) = Gal(L/LNF) (as
topological groups).

Define
I'={K CECL:[E:K]is finite and E/K is Galois extension}.
Then L/K is Galois implies L = |Jpc; E. Also we have L - F = Jpe; E - F and
Gal(E-F/F)=Gal(E/ENF)=Gal(E-(LNF)/LNF).

On the other hand, E- (LN F) is a Galois extension over LNF and L = Jpe; E-(LNF).
Therefore, L/L N F is a Galois extension. Moreover,

Gal(L - F/F) = lim Gal(E - F/F) = lim Gal(E - (LN F)/L N F) = Gal(L/L N F).
Eel Eel

2.8 Let K be a field. Prove that for every Galois extension K C L the group Gal(L/K)
is isomorphic to a quotient of the absolute Galois group of K.

Every Galois extension of K is a subfield of K, containing K and corresponds to a
closed normal subgroup of Gal(K/K). By (Thm2.3), done.

2.9 (a) Suppose that H is a finite subgroup of the absolute Galois group of a field K.
Prove that #H < 2 and #H = 1 if char(K) > 0. [Hint: [15, Theorem 56].]

(b) Let K be a field with separable closure Ky, and o € K, o ¢ K. Let E be
a subfield of K, containing K that is maximal with respect to the property
of not containing a. Prove that Gal(K,/FE) = Z /27 or Gal(K,/K) = Z, for
some prime number p.

(a) Let ¥ be the set of all open normal subgroups of G with finite index. Because G
is compact, elements of ¥ are automatically closed subsets of G. Besides, [y N =€
(where e is identity element); therefore, e is closed in G. Let g € H. Then the canonical
translation map g : G — G is a homeomorphism implies that g(e) = ¢ is closed in G.
Therefore, as a finite union of closed subsets, H is closed. Then by Main theorem of
Galois theory, K/ K is Galois with Gal(K,/K) = H. So K,/K is a finite extension.
Quote a theorem on this situation:

Theorem 56 (Fields and Rings, by Irving Kaplansky (1969; 2nd ed. 1972))

Theorem 1. Let K be a field, not algebraically closed. If K has a finite extension L,
which is algebraically closed. Then K is an ordered field and L = K (1).
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If charK = 0, then K, = K (i), so #H = 2. If charK > 0, then H = {e}; otherwise,
KH is an ordered field.

(b) There are two cases: K/FE is a finite extension or not. By 2.9(a), if K/F is finite,
then Gal(K,/FE) = Z/2Z. In the following proof, assume K/FE is infinite extension. The
condition that E is maximal with respect to the property not containing o implies that
for any proper extension H/FE, E(a) C H.

Step 1: E(«)/E is Galois extension of degree p, for prime number p.

Suppose E(a)/E is not Galois. Let E(a) C L be a Galois closure of E,. Then
Gal(L/E(«)) is not a normal subgroup in Gal(L/K). So there exists a distinct sub-
group with same index as Gal(L/E(«)), but this implies L has a nontrivial subfield not
containing E(a). Contradiction.

Also, Gal(E(«)/F) has no proper subgroups. So Gal(E(«)/E) = Z/pZ.

Step 2: Any finite Galois extension H/E is of degree p™ for some positive integer n.

Suppose not. Let #Gal(H/E) = p"m where (m,p) = 1. Consider the p-Sylow
subgroup I' of Gal(H/E). Then [H' : E] = m, which is impossible to contain F(a).
Contradicition.

Step 3: For any positive integer n, there exists a unique finite Galois extension H/E
such that [H : E] =p". ...

2.10 A Steinitz number or supernatural number is a formal expression a = Hp pP) where
a(p) € {0,1,2,..., 0o} for each prime number p. If a =[], p®®) is a Steinitz number,
we denote aZ the subgroup of Z corresponding to I, p*P)Z, (with p*Z, = {0})
under the isomorphism Z = [[,Z, (Exercise 1.14).

(a) Prove that the map a — aZ from the set of Steinitz number to the set of closed
subgroups of 7 is bijective. Prove also that aZ is open if and only if a is finite
(ie., > ,a(p) < o00).

(b) Let F, be a finite field, with algebraic closure F,. For a Steinitz number a,
let Fya be the set of all z € F, for which [F,(x) : F,] divides a (in an obvious
sense). Prove that the map a — Fg is a bijection from the set of Steinitz
numbers to the set of intermediate fields of F, C F,. [Ernst Steinitz, German
mathematician, 1871-1928.]

(a) Injectivity of such map is obvious. For subjectivity: Recall (ex1.11). A closed
subgroup of [[,Z, is of the form [[,m, where m, is a closed subgroup of Z, and

closed subgroups of Z, is of the form p®P)Zp for some a(p) € N. Recall that
an subgroup is open if and only if it is closed with finite index. The index of
[Z:aZ) =[]],Zp : 11, pP7Z,) = I, p®P), Therefore, aZ is open if and only if a is
finite.

(b) Discard the original notation.

Define ¢ : Steinitz numbers — collection of subsets of F; by

#(a) :={x € F, | [Fy(z) : F,] divides a}.
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2.11

Step 1. For any Steinitz number a, ¢(a) is a field containing F,.

Let z € ¢(a)\ {0}. Then 27! is in the subfield of Fy(z)/F,. Therefore [F,(z71) : F,]
divides a. Let y € ¢(a). Because F, is a finite field, there exists a unique extension
of IF, with degree n, for any n € N, and every finite extension is Galois whose Galois
group is cyclic. Therefore

[Fg(z,y) : Fg] = Lem([Fq(z) : Fyl, [Fq(y) : Fyl),

which also divides a. Therefore, ¢(a) is closed in addition and multiplication. So
¢(a) is a field containing F,.

Step 2. If a is finite, set a € N, then ¢(a) = Fga.
The reason is already stated in Step 1, it comes from the properties of a finite field.

Step 3. ¢ : Steinitz numbers — collection of intermediated fields of F,/F, is a bi-
jective map. Gal(F,/F,) = Z. By 2.10(a), the closed subgroups has a 1-1 cor-
respondence with Steinitz number. By Main theorem of Galois theory, there is a
correspondence between intermediate field and closed subgroups; therefore, every
intermediate field is of the form ng. In the following, b is regarded to be a finite
number dividing a.

Fe = = R = R, = o) =
b b b

Let G be a profinite group. We call G procyclic if there exists o € G such that
the subgroup generated by o is dense in G. Prove that the following assertions are
equivalent:

(i) G is procyclic;

(ii) G is the projective limit of a projective system of finite cyclic groups;
(iii) G = Z/aZ for some Steinitz number a (Exercise 2.10);
)

(iv) for any pair of open subgroups H, H' C G with index|[G : H] = index|[G : H'|
we have H = H'.

Prove also that the Steinitz number a in (iii) is unique if exists.

Given a direct system I with restriction maps fj; : G; — G; where j > ¢ and G;
are cyclic. Let G = limG;. Without loss of generality, assume for every j > 1,
fji + Gj — G is surjective. Let S; be the set of generators of G;. Then S; form a
projective system because f; ; are surjective. Because S; are finite and nonempty,
their inverse limit is not empty. Now there exists an element ¢ € G given by
o= l'mi o; where each o; is a generator of G;. Now it is obvious to see that every
open subset of G has non trivial intersection with (o).

Consider the group homomorphlsm o: 7 — G which sends 1 to sigma. It is obvious
that ¢ is continuous. Because Z is compact and G is Hausdorff, ¢(Z) is closed in G
and containing (o). Therefore, ¢ is surjective. Since ker ¢ is closed in 7, ker o= aZ.
for some Steinitz number a. So G = Z/aZ
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(€)= (d)
(d)=(b)

2.12

From (c), G =[], Z,/p*P)Z,. Then (d) is obvious.

Step 1: Every subgroup of G with finite index is a normal subgroup.

Given a subgroup N, and any g € G, gNg~ ! is also subgroup having the same index

with N. Therefore, gNg~!' = N for every g € G.
Step 2: Let N be a subgroup with finite index. Then G/N is cyclic. Let

n:=#G/N = prl
i=1

If n is prime, then G/N is cyclic. Assume n is not prime. From condition (d), every
cyclic subgroup of G/N is unique. So the collection of all cyclic subgroups of G/N
can be endowed a partial order by the order of cyclic subgroups.

Suppose G/N is not cyclic. Then there does not exist an element with order n. But
since G/N is a finite group, every element has a finite order. ...

Let K be a field with separable closure K. Prove that the absolute Galois group
of K is procyclic (see Exercise 2.11) if and only if K has, for any positive integer n,
at most one extension of degree n within K; and that it is isomorphic to 7 if and
only if K has, for any positive integer n, exactly one extension of degree n within
K.

~ The first statement is equivalent to (2.11 (d)). If Gal(K,/K) = Z, then Gal(K,/K) =
Z is pro-cyclic (2.11(c)).
Let

I' = {n € N|K has a finite extension with degree n within K}.

Then Gal(K/K) = Hm Gal(K,/K) = fm Z/nZ = 7 implies T = N. Conversely,

if K

has for any positive integer n, exactly one extension with degree n within K.

Then Gal(K,/K) satisfies (2.11(d)). So Gal(K,/K) = Z/aZ for some Steinitz number
a. Suppose a # pr‘x’, and let a(p) < co. Then K does not have a finite separable

extension with degree p®®)*1 contradiction. So Gal(K,/K) = Z.

2.17

(Kummer theory.) Let K be a field with algebraic closure K, and m a positive
integer. Suppose that K contains a primitive m-th root of unity (,,, and let E,, C
K* be the subgroup generated by (,,,. Prove that there is a bijective correspondence
between the collection of subfields L C K for which

L/K is Galois, Gal(L/K) is abelian, Vo € Gal(L/K) : ¢™ =idy,

and the collection of subgroups W C K* for which K*™ C W; this correspondence
maps L to L*™ N K* and W to K(W?'/™). Prove also that if L corresponds to
W, there is an isomorphism of topological groups Gal(L/K) = Hom(W/K*™ E,,)
mapping o to (aK*™ — o(a’/™)/a/™); here Hom(W/K*™, E,,) has the relative
topology in (E,,)V/K™™  where each E,, is discrete.
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Let W be a subgroup of K* containing K*™ and let L = K(W'/™). Note that L/K
is Galois because L is the splitting field of separable polynomials X™ — a, a € W (here
we use assumptions that m primes to char(K) and K contains ().

First, we shall construct a bijection between Hom (W /K*™, E,,) and the Galois group
G := Gal(L/K). Define a pairing

GxW —= E,,

by mapping (o, @) to a(a/™)/al/™, denoted it by (o, ). Clearly, (o, ) is independent
of the choice of an m-th root a*/™ of «, and the map is bilinear i.e.

o((@B)'™)/(aB)/™ = (a(aV™) [V ™) (o (8Y™) /51

Suppose that (o,a) =1 for all « € W. Then o induces the identity on W™ and thus on
L. Hence the kernel on the left is 1. Let « € W and suppose that (o,«a) =1 for all o € G.
If o!/™ is not in K, there is an automorphism of the subfield K(a!/™) over K which is
not identity. Extend this automorphism to L, and call it 0. Then clearly (o, a) # 1.
Hence the kernel on the right is K*™. Therefore the bilinear paring induces the bijection

G = Hom(W/K*" E,,)

which maps o to (aK*™ — a(a/™)/a!/™). Note that the extension L/K is finite if and
only if W/K*™ is finite and in particular we have the equality [L : K] = [W : K*™].

We shall prove that the correspondence between subfields L C K and subgroups
W C K* is injective. Let W1, W5 be subgroups of K* containing K*™. If Wy C Ws, then
K(Wll/m) C K(W;/m). Conversely, if K(Wll/m) C K(W;/m) we wish to prove Wy C Wh.
For each a € W1, we have

o™ e Ko™ C K(W;/m).

Then o!/™ is contained in a finitely generated subextension of K (VV21 / ™) and thus we
may assume that Wy/K*™ is finite. Let W3 be the subgroup of K* generated by Wo
and o. Then K (W21 / " =K (ng / ™) and from what we saw above, we get the equality
Wy : K*™] = [W5 : K*™] and thus Wy = W3. This proves that W; C Wh.

In order to prove the surjectivity, let L/K be an abelian (Galois) extension of exponent
m. Any finite subextension is a composite of cyclic extensions of exponent m because
any finite abelian group is a product of cyclic groups. Notice that m is a multiple of
the degree of a finite cyclic extension. Since m is prime to char(K) and ¢, € K, by
a theorem of finite cyclic extension fields (cf. Hilbert 90), any finite cyclic extension of
exponent dividing m equals K (a'/™) for some o € K*. Hence L can be obtained by
adjoining a collection of m-th roots {o&/m}AeA with ay € K*. Let W be the subgroup of
K* generated by K*™ and {ay}xea. Hence K(W1/m™) = K({o& " en) = L.

Finally, since each continuous bijection from a compact space to a Hausdorff space is a
homeomorphism, the continuous bijection G = Hom(W/K*™, E,,) is an isomorphism of
topological groups. We remark that this also can be proved by the following isomorphisms
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of profinite groups:
G~lim, Gal(E/K)
~ 1 / *m
~lim Hom(W'/K*™ E,,)

o~ Hom(ligw,ej W'/K*™ Ep) ~ Hom(W/K*" E,,),

where I is the set of subfields E of L for which E/K is finite Galois and J is the set of
subgroups W’ of W for which K*™ C W' and W'/K*™ is finite.

2.18 (Artin-Schreier theory.) Let K be a field with algebraic closure K, let p =
char(K) > 0. Prove that there is a bijective correspondence between the collection
of subfields L C K for which

K C L is Galois, Vo € Gal(L/K) : o =idg,

and the collection of additive subgroups W C K for which p[K] C W, where
@ : K — K is defined by p(z) = 2P —z; this correspondence maps L to p[L]N K and
W to K(p~'[W]). Prove also that if L corresponds to W, there is an isomorphism
of topological groups Gal(L/K) — Hom(W/p[K],F,) mapping o to (o + p[K]
o(5) — B, where p(8) = a).

Let W be a subgroup of K containing p[K] and let L = K(p~![W]). Note that L/K
is Galois because L is the splitting field of separable polynomials X? — X — o, « € W.

First, we shall construct a bijection between Hom(W/p[K],F,) and the Galois group
G := Gal(L/K). Define a pairing

GxW =T,

by mapping (o, «) to o(8) — 8 where p(8) = «, denoted it by (o, ). Clearly, (o, a) is
independent of the choice of a § which satisfies p(f) = a, and the map is bilinear since
char(K) = p.

Suppose that (o, a) = 0 for all « € W. Then o induces the identity on o~*(W) and
thus on L. Hence the kernel on the left is 1. Let « € W and suppose that (o,a) = 0
for all ¢ € G. If p~'a is not contained in K, there is an automorphism of the subfield
K(p~'a) over K which is not identity. Extend this automorphism to L, and call it o.
Then clearly (o,a) # 0. Hence the kernel on the right is p[K]. Therefore the bilinear
paring induces the bijection

G = Hom(W/p[K],F,)

which maps o to (a + p[K] — o(8) — ), where p(8) = a. Note that the extension
L/K is finite if and only if W/p[K] is finite and in particular we have the equality
L K] = [W: p[K]). B

We shall prove that the correspondence between such subfields L C K and subgroups
o[K] C W C K is injective. Let Wy, Wa be subgroups of K containing p[K]|. If W3 C W,
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then K(p~[W1]) C K(p 1[Wa]). Conversely, if K(p 1[Wi]) C K(p '[Ws]) we wish to
prove W7 C Ws. For each a € W7, we have

pla C K(pla) C K(p~'[Wa]).

Then o~ la is contained in a finitely generated subextension of K (p~![W3]) and thus we
may assume that Wy /p[K] is finite. Let W3 be the subgroup of K generated by Wy and
o la. Then K(p~1[W3]) = K(p~}[W3]) and from what we saw above, we get the equality
(W p[K]] = [W3 : p[K]] and thus Wy = W3. This proves that W; C Wa.

In order to prove the surjectivity, let L/K be an abelian (Galois) extension of exponent
p. Any finite subextension is a composite of cyclic extensions of exponent p because any
finite abelian group is a product of cyclic groups. Notice that p is the degree of a finite
cyclic extensions of exponent p. Since char(K) = p, by a theorem of finite cyclic extension
fields of degree p (cf. additive Hilbert 90), any finite cyclic extension of exponent p equals
K(p~'a) for some a € K. Hence L can be obtained by adjoining a collection of “p-th
roots” {p tay}rea with oy € K. Let W be the subgroup of K generated by p[K] and
{az}rea. Hence K(p~'W) = K(Uxeap tay) = L.

Finally, since each continuous bijection from a compact space to a Hausdorff space is
a homeomorphism, the continuous bijection

G = Hom(W/p[K],Fp)

is an isomorphism of topological groups. We remark that this also can be proved by the
following isomorphisms of profinite groups:

G~ Hm ., Gal(E/K)
=l Hom(IV'/6[K], %))
~ Hom(th/GJ W//Q[K], Fp) ~ HOIH(W/@[K], ]Fp),

where [ is the set of subfields F of L for which E/K is finite Galois and J is the set of
subgroups W’ of W for which p[K] C W' and W'/p[K] is finite.

2.23 (a) Let A be a local ring and x € A such that 22 = . Prove that x = 1 or x = 0.

(b) Prove that any ring isomorphism [[;_, A; = [['_, B;, where the A; and B;

are local rings and s,t < oo, is induced by a bijection o : {1,2,---,s} =
{1,2,---,t} and isomorphisms A4; — By, 1 <i < s.

For (a), (1 —z) = 0. In a local ring, at least one of x and 1 — z is a unit. Indeed,
if z € m (resp. 1 —x € m), the unique maximal ideal, then 1 — x ¢ m (resp. = ¢ m). So
1—x (resp. ) is aunit. = 1—xz=0o0r x =0.

To prove (b), since A;, Bj’s are local, the number of maximal ideals of A := [[]_; 4;
(resp. B := H;zl Bj) is exactly s (resp. t). A= B implies s = t. Further, A; is an ideal
in A. So its image in B under the isomorphism ¢ : A = B is also an ideal of B. Hence it
is isomorphic to a direct product of ideals in Bj, 1 < j <t. Write 4; = J; x -+ x J; for
Jip < Bg. Let ¢; : Ay & A — B. ¢i(1) is a unit in B. It is of the form (uq,--- ,us) with
u;’s being units in B;. So either J, = By, or Jp = 0. It is impossible that there are more
than one Jj # 0 since A; contains no idempotent other than 0 and 1. Hence A; = B; for
some j. Induction on s =t proves the result.
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3 Exercises for Section 3

3.1 (Left limits and right limits [12].) A directed graph D consists of a set V = Vp
of wvertices, a set £ = Ep of edges, a source map s = sp : £ — V and a target map
t=tp: E — V;each e € F is to be thought of as an arrow from s(e) to t(e). Let
D be a directed graph and C a category. A D-diagram in C is a map that assigns
to each v € V an object X, of C and to each e € E' a morphism fe from X
to Xy() in C. A morphism from a D-diagram ((Xy)vev, (fe)ecr) to a D-diagram
((Yy)vev, (ge)ecr) is a collection of morphisms (h, : X, = Y, )pev in C such that
ht(e)fe = gehs(e) forall e € E.

(a) Show that the D-diagrams in C form a category. We denote this category by
cP.
(b) Show that there exists a functor I' : C — CP” mapping an object X to the

constant D-diagram with X, = X for allv € V and f. = idx for all e € F/, and
mapping a morphism h : X — Y to the morphism (hy),cy with all h, = h.

(c) A left limit of a D-diagram A in C is an object @A of C such that
Homg(—, 1&n A) = Homen (I'(—), 4)

as functors on C. Prove that I.&HA is unique up to isomorphism if it exists,
and that the notion of a left limit generalizes that of a projective limit (see 1.7
and Exercise 1.8).

(d) Show that C admits left limits of all D-diagrams in C if and only if the functor
I': C — CP has a right adjoint 1£1 :CP = O,

Home(—, lim(~)) = Homgp (I(-), -).

If this right adjoint exists, we say that C admits left limits over D.
(e) A right limit of a D-diagram A in C is an object liglA of C such that

Homc(ligl A, —) = Homgp (A, T'(—))

Formulate and prove the analogues of the assertions in (c¢) and (d). If I has a
left adjoint hg : CP — C we say that C admits right limits over D.

(a) Let D-diagrams be class of objects, and class of morphisms be defined in the state-
ment. We have to check three conditions:

(i) Composition of morphisms: Let a,b,c be objects and f € Hom(a,b) g €
Hom(b, ¢), the canonical composition g o f € Hom(a, c).

(ii) identity morphism idy : X — X. Canonically, a collection of morphisms
(idy, : X, — X,). Associativity is obvious.

(b) This is a covariant functor.
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3.2

3.3

Let L1, Ly be two left limits for A € CP and f; : T'(L;) — A be the canonical
morphisms, 1 =1,2. ...

Let (I, <) be a directed poset and G; be objects in the set category and restriction
maps f;; : Gj — G; with j > ¢ satisfying

(1) fu =idg,
(2) fi = fijo fjx forall k > j > .

Then (I, <) can be thought of as a directed graph D and the projective system as
a D-diagram. Then the universal property of l'miE s G; is the definition of the left
limit of the D-diagram.

This follows directly from the definition of left limits.

Prove that liﬂA is unique up to isomorphism if exists, and that the notion of a
right limit generalizes that of a injective limit.

Let Ry, Ry be two right limits for A € CP, and g; : A — I'(R;) be the canonical
morphisms, 1 =1,2. ...

(Left limits in axiom G1.) Let C be a category.

(a) Prove that C admits left limits over the empty directed graph (with V = F =
() if and only if C has a terminal object.

(b) Prove that C admits left limits over the directed graph - ——-<——- if and
only if the fibres product of any two objects over a third one exists in C.

Suppose CP has a left limit over empty graph A. For every K € Ob(C), The set
Homep (T'(K), A) = {0} has a unique element. Then Hom¢ (K, lim A) also has an
unique element, which implies lim A is the terminal object of C. Conversely, let T
be the terminal object of C. Both Homqp (I'(K), A) and Hom¢ (K, T) has unique
element for every K € Ob(C).

Therefore, Home (K, T) = Homeo (I'(K), A), so T is the left limit over empty graph.

The universal property of the product of any two objects over a third one coincides
with that of the left limitof . . . _ .

(Equalizers and finite left limits.) Let C be a category. An equalizer of two
morphisms f,g : X — Y in C is a left limit of the D-diagram f,g : X = Y
with D = o:o. We say that C has equalizers if it admits left limits over
D= o 3 o . We say that C has finite products if it admits left limits over any
D with V finite and E = (). We say that C has finite left limits if it admits left
limits over any finite D (i.e., with both V' and F finite).

(a) Suppose C satisfies G1 (see 3.1), and let f, g : X — Y be morphisms in C. Let
X Xy X be formed with respect to f and g. Prove that there exists a natural
morphism X xy X — X x X and a diagonal morphism X — X x X such that
X Xxxx (X xy X) is an equalizer of f,g.
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(b) Prove that C satisfies G1 if and only if it has equalizers and finite products,
and if and only if it has finite left limits.

3.4 (Right limits in axiom G2.) Let C be a category.

(a) Prove that C admits right limits over the empty directed graph if and only if
C has an initial object.
(b) Prove that the following three assertions are equivalent.
(i) finite sums exists in C;
(ii) any two objects X,Y of C have a sum X ITY in C, and C has an initial
object;
(iii) C admits right limits over any directed graph D with V finite and F empty.

(¢) Show how the quotient X /G of an object X by a finite subgroup G C Aut(X)
can be interpreted as a right objects.

a) Similar to (3.2(a)).
b)
(i)=(ii) Uses (a).
(ii)=-(iii) Do this by induction. Assume C' has right limits over any directed graph D
with #V(D) = n and E(D) = (. Let X;---X,,11 be objects of C. Let B

be the right limits over X1,---, X,. Let us verify that A := B U X,,;1 with
morphisms v; : X; = A is the right limit of Xy, , X;,41.

(
(

Given an object K with morphisms k; : X; — K,i = 1,...,n. k; induce a
morphism b : B — K, which further induces by : A — K such that by ov; = k;
for any i. So A with morphisms v; implies that Homg (A, -) & Homeo (D, T(+)).
So A is the right limit over Xq,--- , X,11.

(iii)=(i) Definition of finite sums.

(c) Let G be a finite subgroups of Aut(X), and G={idx,01---0,}. Let A be the

right limit of the graph X X and let p: X — A be the canonical
N L
X

morphism such that p = p o gy, and let Y with morphism f : X — Y satisfying
f=foo; wherei=1---n.

N

A g>Y

Then f induces a morphism g : X/G — Y such that f = gop. So A satisfies the
definition of the quotient X/G.
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3.5 Let f: X — Y be a morphism in a category C. Prove that f is an epimorphism if
and only if Y, together with idy : Y — Y and f : X — Y, is a right limit of the
diagram Y <—— X ——Y in which both arrows equal f.

Assume Y, together with idy and f : X — Y is the right limit of Y S X R Y.
Then given an object Z with morphisms g:Y — Zand h: Y — Z such that gof = ho f.
Then it induces a morphism p : Y — Z such that g = poidy = h.

Therefore, f is epimorphism. Now reverse the argument and assume f is epimorphism.
Then it can be easily seen that Y, together with idy and f : X — Y is the right limit of

vl x .y,

3.6 Let C be a category satisfying G1, and F a covariant functor from C to the category
of sets

(a) Prove that F' satisfies G4 if and only if it commutes with equalizers and with
finite products, and if and only if it commutes with arbitrary finite left limits.

(b) Suppose that F satisfies G4 and G6, and let f,g: X — Y be morphisms in C
with F(f) = F(g). Prove that f = g.

(a) Restatement of (ex3.3(b)).

f
(b) Let A with morphism u : A — X be the equalizer over X : Y . Since F(f) =
9

F(g) and F commutes with finite left limits, F(A) ~F(®) F(X). So u is an isomor-
phism. So u is epimorphism. Then f owu = g o w implies f = g.

3.7 Let C be a category and F' a covariant functor from C to the category of sets.
Suppose that F' commutes with finite right limits. Prove that F' satisfies G4. [Hint:
Exercises 3.4 and 3.5.]

This is just the restatement of (ex3.4, ex3.5)

3.18 (Injective limits.) An injective system of sets consists of a directed partially
ordered set I, a collection of sets (S;)icr and a collection of maps (fi; : S; —
S})ijeri<j satisfying the conditions

fii = (identity on S;) for each I € I,
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fit = fijro fiy foralli,jkel withi<j<k.

Call z € S; equivalent to y € S; if there exists k € I with £ > ¢,k > j and
fir(@) = fix(y) in Sk

(a) Prove that this is an equivalence relation on disjoint union of the sets S;. The
set of equivalence classes is called the injective limit of the system, notation:

lim 5; or limy,/ S;-
(b) Prove that injective limit can be expressed as a right limit (Exercise 3.1).

(c) Suppose I # (), that all S; are groups and that all f;; are group homomor-
phisms. Show that ligSz- has a natural group structure.

(d) Let I be the set of positive integers, ordered by divisibility. For n,m € I, n
dividing m, let Z/nZ — Z/mZ be the group homomorphism by mapping (1
mod n) to (m/n mod m). Prove that lignZ/nZ ~ Q/Z.

(a) fi; =id is clear, so x ~ z. x ~ y implies y ~ x is trivial. For z ~ y and y ~ z, we
have fix(x) = fir(y) and fj(y) = frn(z) for some k,l € I. Choose t > k,l. Then

fit(x) = feefie(®) = frefin(y) = fie(y) = fufi(y) = fufu(z) = fu(2).
Sox ~ z.

(b) We have a commutative

S, fij s
PN
lim 5
for all ¢, 5. Denote S = hﬂ Si. Then S satisfies the universal property: Let T be an

object such that
f

N
T

for all ¢, j. Then there exist an unique u : S — T such that uo ¢; = 1; for all ¢, i.e.,
if [x € S;] € S, then u([z]) := ¥;(x;). Conversely, given an u : S — T, let uo ¢; =
1;, we recover the morphisms above. So we have a bijection Hom gpr)(S,T) =
Hom gpryp ((Si, I, fij), T'(T)). This map is functorial, so lim S is a right limit.

S;

(c) Define an operation “+” on S = lim S;: Let [z],[y] € S, so z € S;, y € S} for some
i,j. Pick k > i,j. Then we define [z] + [y] = [fix(x) + fjrx(y)] € S. This is well
defined. Since if [z] = [2/], i.e., ' € Sy. So 3" > 4,4 such that fyn(x) = fum(2).
We have two kinds result of [z] + [y]:

[fir(@) + Fie@)]s Lfow () + Fire ()],
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for k > 14,5 and ¥’ >4’,j. Choose | > k,k’. Then

(2] + [y] = [fir () + fir(y)] [frafin(x) + frafin(y)]
[fu(z) + fu(y)]

[fu(@)] + [f1 )]

[firj fir ()] + [fen fin ()]
[

[

[

fintfirin (@] + e fin (y)]
fin(@)] + [fu()]
'] + [y]

so this is independent of choice of z, similar argument holds to y. The identity
element is [eg,], and the inverse element of [z] is [—z].

(d) We have a diagram

Z/nZ Z]mZ
k "bm
Q/z
where ¥, (1) := 2 = L™ — 4 (™) 50 the diagram commutes. This induces an

unique map imZ/nZ — Q/Z by [a € Z/mZ] — [a/m]. The map is 1-1 since
l[a/m] = 0 in Q/Z implies a = 0 (mod m). The map is onto since for all * is
mapped from n € Z/mZ.

4 Exercises for Section 4

4.6 Let K be afield and G a finite abelian group of order not divisible by char(K’). Prove
that K[G] is isomorphic to the product of a finite number of fields, and deduce that
every K[G]-module is projective.

Use Thm(2.6). There is a ring isomorphism K[G| = [[*; B;. Here B;’s are K-
algebra that are local with nilpotent maximal ideals. It suffices to show that KI[G] is
reduced. Then by theorem (2.7), B;’s are finite separable field extension of K. Let
G =1{g1, - ,9n}. Since g = 1, g; are diagonalizable over some algebraical closure of K,
say K, as a linear map K[G] — K|[G]. Since g;’s commute to each other, they can be
diagonalized simultaneously. So are g for all elements in K[G]. Now Vg € K[G], we may
assume ¢ is diagonal. ¢" = 0 implies g = 0. Hence K|[G] is reduced. Hence each B; is a
field.

For the second statement, if R is a finite direct product of fields, then any R module
M is projective. Indeed, the localization of R at any prime ideal must be a field. So
the localization of M is free, and hence projective. The result follows from the fact that
projectivity is a local property.

4.7 Let A be a ring and G a finite abelian group for which #G -1 € A*.
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(a) Suppose that f: M — N is a homomorphism of A[G]-modules, and g : N — M
an A-linear map with fg = idy. Define ¢/ : N — M by ¢'(z) := (#G - 1)~}
>peco - g(o™t - x). Prove that ¢’ is a homomorphism of A[G]-modules and
that fg' — idy.

(b) Let P be an A[G]-module. Prove that P is projective as an A[G]-module if
and only if P is projective when considered as an A-module. (See the following
exercise for a converse.)

For (a), let 7 € G.

(1) |G\ZU glo™tra) = |G\2Th g(hz) = 74 (2). (1)

oeG heG

And note that f is already an A[G]-linear map. f commutes with G-actions. So

'(x) ‘G’;;U fg(o™ 1) ]G! |Glx = x.
For (b), note A[G] is a free A-module. So if P is a projective A[G]-module, it is
a direct summand of a free A[G]-module. Therefore, it is a direct summand of a free
A-module, i.e., P is projective A-module.
Suppose P is a projective A-module. Assume P can be fitted into a split exact
sequence of A[G]-modules

!

0 K F P 0,

with F' a free A[G]-module. Now regard this sequence as an A-module exact sequence.
Then there exists a A-linear splitting g : P — F. (a) says we can modify g into an
A[G]-linear map ¢’ with f¢’ = idp. We obtain a A[G] splitting, i.e., P is a projective
A[G]-module.

4.8 Let A be a ring and G a finite abelian group. Consider A as an A[G]-module by
letting every o € G act as the identity on A. Prove that A is projective as an
A[G]-module if and only if #G -1 € A*.

If |G| -1 € A*, consider A[G] — A by
(aa)aeG — Z Ay € A.
oeqG

The map has a splitting A — A[G] by a — (a/|G|)sec. Note that these maps are

A[G]-linear. Hence A is a direct summand of a free A[G]-module. So A is a projective
A[G]-module.
Conversely, assume that A is a projective A[G|-module. Define f : A[G] — A by

Zagg — Zag.

geG geG
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It is surjective and A[G]-linear. By projectivity, there exists a splitting g : A — A[G] so
that fg =id 4. Then splitting must be of the form

9(@) = 3 h(a)k

keG

by A[G]-linearity. fg =ida = 1 = |G|h(1). Therefore, |G| € A*.

4.12 Let A be a Dedekind domain and (1,,)22, a sequence of fractional A-ideals. Prove
that ;2 gl, = ©5LyA as A-modules, and deduce that every projective A-module
that is not finitely generated is free.

Let {x1,z9,...} be a countable set of generators of ©2° I, (Generators may have
relations, but the construction below still work). Try to build a sequences of submodules
{K;}52, of &2l such that

(i) K1 C Ky C ...
(ii

) K is free for all j
(iii) K41 is the direct sum of K; and a free module
)

(iv) @92l is the direct sum of K; and a module L; which is an infinite direct sum of
finitely generated module of rank one

(v) UpZiKn = &3%01n

(i)~(v) implies that &2 I, is free.

Take K7 = (0), and suppose K, has been constructed. Let y denote the first of the
x;’s which is not in K., and z is the L, component of y with respect to K, ® L, = ©;2 1.
By assumption, L, ~ @2, F;, where P, <A is an invertible ideal. Suppose z € Pi ®...® Ps
and write I := P P,...P;.

By A is Dedekind,

Pt ®Pyyo~ AP Py Pyo~ IV ®IP, 1 Pyyo =GO H,

where G := ! and H := I P, P2, respectively. Then the module P, @ ... ® P, & G ~
Po..oP o Pfl...PS_1 ~A®..0 Ais afree A-module, and we set K11 := P, & ... 8
PG K,,and L1 := H® Psy3®.... Hence K, and L, satisfying (i) ~ (iv), the
final (v) is trivial, hence we are done.

(The construction can be found in I.Kaplansky’s paper: “Modules over Dedekind
Rings and Valuation Rings”.)

Let P be a projective module over a Dedekind ring A which is not finitely generated.
Then P®Q = F for some module () and free module F'. By A is Dedekind, A is hereditary,
so P ~ @2y, for I, be ideals in A (ex.4.9(a)). So P is free by above argument.

4.13 Let A be a domain with field of fractions K and I C K an A-module.

(a) Prove that I is projective if and only if it is invertible, and that it is free if and
only if it is principal. [Hint: map a free module onto I.]
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(b) Prove that invertible ideals are finitely generated.
(c) Prove that A is a Dedekind domain if and only if all ideals of A are projective.

For (a), suppose I is invertible, I = A, 1 = 3" ¢;b; for some ¢; € [7! = {x €
Q(A)|zI C A} and b; € I. Define maps f; : a € I — ac; € A, so f; € Homy (I, A).
Hence for all a € A, a =) ,(ac;)b; = >, fi(a)bi, so by dual basis lemma, I is projective.
(Recall the dual basis lemma: A module M is projective if and only if I{xy}tacr € M
and {x}}aer € M* such that Vo € M, z}(x) = 0 for all but finitely many « and
A

Conversely, suppose I < A is projective, the dual basis lemma asserts that 3{bs }aca
generators of I, 3{ fa}aer C Homa(l, A), such that for each a € I, fo(a) = 0 for all
but finitely many « and a = ) fa(a)bo. Note that if f € Homa(I, A) and I < A be
fractional, then f : a + b~!f(b)a for all b € I \ {0}. Fix b € I\ {0}, since f,(b) = 0 for
almost all « except some v = 1,2,....;m and a = > cp fa(a)ba = > oy b1 fo(b)aby, so
1=3" b fa(b)by. Since b1 f,(b)a € A for all a € I, so define ¢, := b1 f,(b) € I71.
Hence 1 = 3" | caba, co € I71 and b, € I, so I is invertible.

If the fractional ideal is principle, then it is clearly free. Conversely, if I C K = Q(A)
is free, choose x, = ‘g—z and xg = Z—Z be A-linearly independent for some aq, ag, by, and

bsg in A\ {0}. Then

Qo

ag
ba

+ (aabg) bg

(—agba)ra + (anbp)zs = (—asba)

So by A-linearly independence, —agb, = aqbg = 0, means A has zero divisors, a contra-
diction. So I has at most one (free) generator.
(b) Let I7'I = A, so 3c; € I"! and b; € I such that Yoy cibi=1. So for all b e I,

n

b=b-1= bzn:cibi => (bei)bi €1
=1

=1

where be; € A since ¢; € 171,
(c) The definition of A to be Dedekind is that every fractional ideals in Q(A) is
invertible. So by (a), all ideals in A are projective.

4.14 Let A be a local ring with residue field k.

(a) Suppose ai,ag,...,a, € A are such that none of the a; belongs to the ideal
generated by the others, and let a = (a;)}; € A". Let f : A — A" be an
A-linear map with f(a) = a. Prove that f ®idy is the identity mapping on k",
and f is invertible.

(b) Let F be a free A-module, P a direct summand of F', and a € P. Prove that
there exists a free direct summand of P containing a. [Hint: Choose a basis
of F' on which a has the smallest possible number of non-zero coordinates, say
ai,asz,...,an, and apply (a) to a suitable map A" — P — A" ]

(c) Prove that countably generated projective A-module is free.
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(a) Let {e1,...,en} be standard basis of A" and f(e;) = >°7_; bije; for alli=1,....n.
I need to show that (b;;) is invertible. By f(a) = a, Y707 aie; = Y1  a; )0, bijej =
> =1 (Ooiey aibij)ej. So I get aj =1L, abij for all j, hence
(1 — bjj)aj = alblj 4+ ...+ aj?)jj 4+ ...+ anbnj

forall j =1,...,n. By a; not liesin (a1, ..., aj—1, @j41, ..., an), (1—b;;) and b;; are nonunits.
(1 —bj;) is nonunit means that it lies in the Jacobson radical of A, so bj; =1 — (1 — bj;)
is an unit in A. So the determinant of (b;;) is det(b;;) = [[;_; bj; + (nonunits) is an unit
in A. Hence (b;;) is invertible.

f®idg =id. ...

(b) Let B = {e;}icr be a free base of F' such that a = Y ;" | a;e; and the number n
is the smallest. This implies that a; not lies in the ideal (a1, ...,a;—1,@it1, ..., ay), for if
aj = Z;;j a;b; for some b; € A, then replace e; by e; + bjej,i = 1,...,n,i # j, and other
e; (i not in {1,...,n} \ {j}) unchanged. Then we get a new base with shorter expression
in a.

Let ¢ = yi + 2, yi € Pand z; € Q,i = 1,..,n. Then I get a = > | a;y; +
Yoiiaizi € Pyso )t jaiz =0€ PNQ = {0}. Define N := spany(y1,...,yn) C P.
Then a =", a;y; € N.

I show that N is free, the strategy is to show {y1,...,yn} U (B \ {e1,...,en}) is a free
base. Write y; = Z?zl hijej + ti, i = 1,...,n, where t; are combinations of {e;};j>n+1.

Plug Y into a = Z?:l a;e; = Z?:l a;y; = a, So

n n

n n n
Z aj€; = Z az(z hijej + ti) = Z aihijej + Z aiti.
7=1 7j=1 =1

i=1 i,j=1

By {e;} are free basis, we get a; = Y . a;h;;. From our choice of a;’s and similar
arguments in (a), (h;;) is invertible, so the map F' — F via e; — y; for i = 1,...,n, and
e; — e; for i > n + 1 is invertible, ...

(c) Let P be countably generated and projective. Then P®(Q = F for some A-module
@ and free A-module F'. Let {x;}3°, be generators (not free) of P. I construct a sequence
of free submodules of P; (which are all free and @2, P; ~ P) as follows: By (b), let P; be
a free direct summand of P contains x1, so we furnish P;. Suppose we have constructed
Py, .-, Ps such that &;_, P; contains 1, - - - ,zs and &;_, P; is free, by (b), let Ps11 be a
free direct summand of P/ &5_; P; such that P,y contains the element 74(xs41), where
s : P — P/ @5 | P; is the canonical projection. So we construct all P;’s by induction.

By our construction, @2, P; is free and it contains {z;}:2,, so P = &2, P;.

4.16 Deduce from 4.14 and 4.15 that any projective module over a local ring is free.

Let P be projective, so P ® Q = F for some free I’ and Q). By F is free, we can write
F = @)ep F) where F), is countably generated for all \. Then by ex.4.15(c), P = @)Py
where P is countably generated for all A (and P, is also projective). So by ex.4.14(c),
P,y is free for all A. So P is free.

4.17 Let an ideal a of a ring A called almost nilpotent if for every sequence (a;);2,, of
elements of a there exists n with []" ;a; = 0.
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(a)
(b)

(c)

4.18

4.19

(a) Prove that a nilpotent ideal is almost nilpotent.
(b) Prove that a finitely generated almost nilpotent ideal is nilpotent.

(c¢) Let K[X1,Xq,...] be the polynomial ring in countably many variables over a
field K, and I be the ideal generated by {Xj - [\, Xf(l) sk > 1,a(i) >
000 <i<mn),y . a(i) > k}. Prove that K[Xi,Xs,...]/I is a local ring
whose maximal ideal is almost nilpotent but not nilpotent.

If a is nilpotent, then there exists n € N such that a” = 0. Done.

If a is almost nilpotent and finitely generated. Let a1, ..., a, generates a. Then it
suffices to prove that every a; is nilpotent. Consider sequences a;, a;,a;---. Then
a; is nilpotent.

To prove that K[X1, Xo,...]|/I is alocal ring, it suffices to prove that for any element
r € K[X1, Xs,...]/I whether r or 1 —r is unit. Furthermore, it suffices to prove that
14 g(X1,...X,) is a unit where g(Xj,...,X,,) is any polynomial without constant
term and n any positive integer. Let g(Xi,...,X,) = Z?jlzn kil,.‘.,inXil o X,
g" =0, s0 1+ g is unit. K[X1,Xs,...]/I is a local ring with the maximal ideals
m := {f € K[X;,X>,...]/I|f has no constant term}. Given a sequence {f;}°;,
fiem let fi = (X1, Xn) = 20 ki 0, X1 Xiro Then [[ fi = 0

because each term of H?jll (fi) has degree larger than n+1. So m is almost nilpotent.

Suppose m is nilpotent. Let m" = 0. But x% 41 € m is nonzero. Contradiction.

Let A be a local ring whose maximal ideal m is almost nilpotent.

(a) Prove that any A-module M with mM = M is zero.

(b) Let F be a free A-module. Prove that a subset of F' is an A-basis if and only
if it yields an A/m-basis for F'®4 A/m. Prove also that any generating set for
F' contains a basis.

Suppose mM = M # 0. Let J := Anna(M). Then m\ J # 0 because M # 0.
Choose any a1 € m\ J. Then a1 M = aymM # 0. So aym\ J # (.

Then there exist ag € m '\ J such that ajas € m\ J. By induction, we can form an
infinite sequence in m, but there exists finite integer n such that [[;",a; =0 € J,
contradiction.

Let = be a basis of F. Then obviously = ®4 1 generates F ®4 A/m. Given
{mi...my,} C F and {a1...a,} C A/m such that >.' ; a;m; ®4 1 = 0. Then
o, aim; C mE, which implies a; = 0 mod m.

Conversely, if Z®4 1 is a basis of F' ®4 A/m, ...

Let  be a generating set of F'. Then Q®4 1 contains a basis for F'® 4 A/m, because
every generating set of a vector space contains a basis. By previous argument, such
subset of ) is actually a basis of F'.

Let A be a local ring whose maximal ideal m is not almost nilpotent.
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(a) Construct a countably generated nonzero A-module M with M = mM. [Hint:
Consider a suitable injective limit A - A -+ A — ... ]

(b) Let f: F — M be A-linear, with F free and M asin (a). Prove that ker(f)UmF
generates F' but does not contain a basis.

(a) There exists a sequence (a;)5%;, a; € m such that [[;a; # 0 for any

integer n. Consider the injective system A —"> A4 —2s... Let M :=
lim A = @2, A/(~) be the injective limit with respect to above system
where (~) is the submodule of ®$°; A generated by canonical relations.
Then M is countably generated. Let u; : A — M be the canonical ho-
momorphism into the i-th component. Suppose M = 0. Then u;(1) =0
implies [, a; = 0 for some integer n. Contradiction.

Let m € M. Then m = u;(m;) for some integer i. So m = a;11u;1+1(m;) €
mM. SomM = M.

(b) M = mM implies that cokerf = mcokerf. ...

4.20 Let M, N be modules over a ring A, with M finitely presented, and let S C
A be a multiplicative subset. Prove that the obvious map S~ Homy (M, N) —
Homg 14(S71M,S7IN) is an S~tA-module isomorphism.

Since M is finitely presented, there exists an exact sequence

A™ A" M 0.

Because Hom4 (-, N) functor is right-exact, applying Homy4(+, V) to above sequence,
we have

0 —— Homy4 (M, N) —— Hom4 (A", N) — Homy(A™, N)

and recognise Hom (A", N) = N™. Furthermore, S~! localisation is an exact functor,
apply to above sequence, we have:

0 —— S !Homus(M,N) ——= S7IN" —= S~IN™,
On the other side, back to the original sequence, and apply S~! functor first then
Hom571A(_7571N)

SlAm — > 8 1A" — -~ SN — 0,

0 ——> Homg-14(S7'M,S7!N)) —= S~ IN" —= S~IN™,
Putting identity maps in vertical maps between the last two and check the commuta-
tivity
S~ Homy (M, N) STIN? — §IN™
|
0 ——=Homg 14(S7'M,S7!N)) —= S~ IN" — = S=IN™

where 7 : S~ Homa (M, N) — Homg-14(S™1M,S71N)) is the canonical map. We con-
clude that 7 is isomorphism by five lemma.
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4.21 Let A be a ring, (fi)ier a collection of elements of A with ) ._; f;A = A, and M an
A-module.

(a) Suppose that My, =0 for all 4 € I. Prove that M = 0.
b) Suppose that M/, is a finitely generated A r-module for each ¢ € I. Prove that
fi fi
M is finitely generated.

(a) Let fi...fn € I such that > ja;f; = 1 for some ai...a, € A. Given m €
M. Since My, = 0, there exists integers n; such that f/"m = 0.

i aifim = (30, aifi)z?ﬂ Mim = 0.

Then m =

(b) Same notation as above > " ; a;f; = 1. Let {n;éll .., Zm be a generating set of
My,. Then {™*,..., ™=} also generates My,. Then there exists integer N; such
that

leim € A[m“ e mm'm]

(where A[m;, ...m;;, ] is a A-module generated by {m;1 ...m;;,,}). Then choose an
integer N large enough, we have m = (37", aifi)Nm € Amyy ... M1, - M-

4.22 Let M = {q € Q : ¢ has a squarefree denominator}, considered as a module over
A = Z. Prove that M, is Ap-free module of rank 1 for every prime ideal p of A, but
that M is not projective over A.

If p > 0, observe that M, = %Ap. If p = 0, then M, = Q. Then M, is a free A,
module of rank 1 for every prime ideal p. Since Z is PID, a module over Z is projective
if and only if it is free. Let us prove that M is not a free Z module.

Suppose E C M is a basis of M, and E only contains one element, say % generates

M. But prime numbers are infinitely many, so there exists prime g such that % ¢ 7 —
module generated by %.

So F contains more than one element. Let %, g € E. But pb% — qag = 0. Contradic-
tion. Therefore, M is not projective.

4.23 Let V be an infinite set and A = FY be a ring.

(a) Prove that A has a maximal ideal n that is not principal.

(b) Let M = A/n, with n as in (a). Prove that M is finitely generated, that My, is
Ap-free of rank < 1 for all maximal ideal m of A, but that M is not projective.

(a) Let n := ©yevFa<aA ~ ], oy Fo be an ideal; it is not principle. This n is maximal
since every non-zero element f +n in A/n is of the form f+n=1+ (f — I) + n, where
f(xz) = 1 for all but finitely many z € V and I denotes the function “z +— 1 for all
x € V”. By definition, (f —I) € n, so A/n has only two elements: 0 + n and I + n. So
it is isomorphic to a field Fy. So n is maximal.

(b) Let n as in (a). Then the A-module A/n is finitely generated (in fact, it has only
two elements). By A is a Boolean ring, localization of A/n at any maximal ideal m < A
gives an Fao-module, hence a vector space (of dimension < 1), hence free. ...

Suppose M := A/n is projective. The the exact sequence 0 - n — A — A/n splits,
so we get A~ A/n @ n as A-module. ...
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4.24 Let A be a ring and P a finitely generated projective A-module. Prove that A can
be written as the product of finitely many rings, A = A; x --- x A,, such that
P = P; x --- x P, where each P; is a finite generated projective Aj-module of
constant rank.

(Reference: http://www.maths.ed.ac.uk/~aar/papers/kbook.pdf)

Let A be a ring and P a finitely generated projective A-module. The map r =
rank o(P) : Spec A — Z is locally constant and hence continuous. Since SpecZ is quasi-
compact, the image of r is also quasi-compact, and so r takes on only finitely many
values, namely my, - ,my. Now each V; := r~!(m;) is closed and open due to the
discrete topology on Z. It follows that

SpecA=ViU---UV,.

We want to write each V; as Spec A such that A = A x--- x A,,.

To do this we may assume that the ring A is reduced. In fact, if N is the nilradical
(the ideal of all nilpotent elements in A), then A/N is reduced. Also, we have Spec A/N =
Spec A; and by idempotent lifting we know there is an equivalence between the category of
finitely generated projective A-modules and the category of finitely generated projective
A/N-modules.

Now, let I; = ﬂpevj p be the ideal of V; and write A; = A/I;. Then for any i,j
with ¢ # j, we have V(I; + I;) = V(I;) NV (I;) = 0. It follows that I; + I; = A, and
L1, = ﬂj I; = 0. By the Chinese remainder theorem, we have

A~Ai x---x A,
Pick P; := P ®4 Aj. Then we obtain the desired decomposition.

4.25 Let A be a ring and P a finitely generated projective A-module. Prove that the
following four properties are equivalent:

(i
(ii

(iii

P is faithfully projective;
the map A — Endyz(P) giving the A-module structure is injective;
P is faithful, i.e., an A-module M is zero if and only if M @ P = 0;

P is faithfully flat, i.e., a sequence My — My — M, of A-modules is exact if
and only if the induced sequence My ® P — My ® P — M> ® P is exact.

~— — ~— —

(iv

(iv)=-(iii)) 0 = M — 0 is exact & 0 - M ® P — 0 is exact.

(iii)=(ii) The map A — Endz(P) is clearly defined by a [P$ P ] Let z € A
such that zP = 0. Consider Az as A-module. Then, Az ® P = 0 implies Az = 0 and
1€ A gives x = 0.

(ii)=(i) If not, dp € SpecA such that B, = 0. Since P is finitely generated, let {p;}}
be generators. Then, % = 0 implies dx; € A — p such that x;p; = 0. Thus, P = 0 for
=]z € A—p (= z #0), contradiction.
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(i)=(iv) Using the facts that localization is an exact functor (and Vp localization of the
sequence is exact implies exact) and it commutes with tensor product and also P, is a
free Ap-module, we obtain:

My® P —— M; ® P—— My ® P is exact
& (Mo)y ® (Ap)" —— (M), @ (Ap)" —— (Ma)p ® (Ap)™ is exact Vp
& (Mo)y — (M1)y — (M2)y is exact Vp
& (Mo)y — (My)y, — (M2), is exact Vp
& My —— M7 —— My is exact
4.26 Let P and P’ be finitely generated projective modules over a ring A, and k € Z,
k > 0. Prove that the A-modules P& P’, P ® P/, Homyu (P, P'), P* = Homy (P, A),

/\k P, P%F are finitely generated projective, and the ranks of these modules are
given by

rank(P @ P') = rank(P) + rank(P’),

(
rank(P ® P') = rank(P) - rank(P’),
rank(Hom 4 (P, P')) = rank(P) - rank(P’),
rank(P*) = rank(P),

k
rank(/\ P) = (ranllz(P))
rank(P®*) = rank(P)*

as functions on SpecA.

Note that the ranks can be easily computed once we prove that they are finitely
generated projective modules, since they are free A,-modules for every prime p. We only
need to prove for P @ P', P ® P', P*, \*P, since Homu(P, P') = P* ® P'.

To prove a module P is finitely generated projective, one only needs to find a module
Q such that P @ Q is free of finite rank (converse is also true). Now suppose P and P’
are finitely generated projective modules. Then there exists Q and @’ such that P @& Q
and P’ @& Q' are free of finite ranks. Then (P @ P') ® (Q @ Q') is free of finite rank.

PeQ)e(PaQ)=(PP)a[(QeP)d(PeQ)® (Q®Q") is free of finite
rank.

(P Q)* = P*® Q" is free of finite rank.

N(PaeQ) =N\NPao [@1§l§k(/\k_l P ® N\ Q)] is free of fintie rank.

4.27 Let P be a fintiely generated A-module such that for each p € Spec A the Ay-module
P, is free of finte rank r(p), where r : Spec A — Z is continuous. Prove that P is
finitely generated projective.

We first try to prove the following statement: V maximal ideal mof A, 3 f € A —m
such that Py is a free Ay-module of finite rank. If this is true, consider the ideal I

42



generated by all such f. Then, I ¢ m, V m implies I = A and therefore exists f; € I and
a; € A such that > 7 | a;f; = 1. By 4.6 (iii), we obtain the desired result.

To show this statement, consider a maximal ideal m of A. Suppose r(m) = n and let
{yi}!_, be the basis of P,. We can then find {z;}]", C P such that z; = b;y; for some
invertible element b; in Ay,. Let {e;} be the standard basis of A™ and n : A™ — P such
that n(e;) = x;. Because P is finitely generated, so is @) = cok(n). Then, by Qn = 0 and Q
is finitely generated, we are able to find f € A —m such that fQ =0 = @ = 0. In other
words, 3 f makes the induced map 7y surjective. We conclude that 7y, is also surjective
for all g € A —m and by hypothesis, 3g € A — m such that 7(Ay) = n, Vp' € D(fg).
Now, replace f by fg, we obtain (ny)y : (A})y — (Py)y is a surjective homomorphism
and (A%)y, (Py)y are free modules of the same rank n for all p’ in Ay. We then conclude
(nf)y is a bijective homomorphism for all p” and hence so is 7.

4.28 Let P be a fintiely generated module over a ring A. Prove that P is projective of
rank 1 if and only if P is invertible, i.e., if and only if P®Q = A for some A-module
Q. [Hint for the “only if” part: take @Q = P*.]

Suppose that P is finitely generated projective module of rank 1. Define f : P® P* —
Aby (x® f — f(z)), where x € P,f € P*. By Exercise 4.26, P* is also a finitely
generated projective module of rank 1, so both F, and By are free Ap-module of rank 1
for any p € Spec A, and thus f, is an isomorphism, which proves that P is invertible.

Conversely, suppose that P ® Q = A for some A-module Q. Localizing this isomor-
phism to each prime ideals, then passing to the residue fields, we can see that P,/pP, is
a 1-dimensional k(p)-vector space for any p € Spec A. By Nakayama lemma, P, can be
generated by a single element. This element is not a torsion since we have P, ® Q, = A,.
Hence P, is free of rank 1. And by Exercise 4.27, P is projective.

4.29 For a ring A, let Pic(A) be the set of isomorphism classes of finitely generated
projective A-modules of rank 1. Prove that Pic(A) is an abelian group with operation
® 4, the Picard group of A. Express the function Homg(—, —) : Pic(A) x Pic(4) —
Pic(A) in terms of the group operation.

For any two finitely generated projective A-modules P, Q of rank 1, PRQ is also finitely
generated projective of rank 1 by Exercise 4.26. The identity element in Pic(A) is A. The
existence of an inverse element is followed by Exercise 4.28. And Homy (P, Q) = P~'®Q
clearly.

4.30 Let A be aring. The group KA is defined by generators and relations. There is one
generator [P] for each finitely generated projective A-module P (up to isomorphism),
and one relation [P & P'] = [P] + [P'] for each pair P, P’ of such modules.

(a) Prove that [P] = [P'] if and only if P and P’ are stably isomorphic, i.e., if and
only if P® A" = P' ¢ A™ for some n > 0.

(b) Prove that ®4 induces a multiplication on KyA that makes KyA into a com-
mutative ring with unit element [A].
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(c) Show that there are group homomorphisms ¢ : Pic(A) — (KpA)* and 9 :
KyA — Pic(A) (the latter from an additive group to a multiplicative group)
with ¢ = idpicay. [Hint: put ([P]) = [/\rank(P) P], to be defined in a
suitable way if rank(P) is non-constant.]

(a) If [P] = [P’], then there exists finitely generated projective A-modules Q1, ..., Qm,
such that P& Q1P - @ Qm E P ® Q1P - -® Q. And there exists a finitely generated
projective A-module @ such that Q ® Q1 P --- B Qp, = A™ for some n > 0, which proves
that P and P’ are stably isomorphic. The converse is obvious.

(b) Define [P] - [Q] [P ® Q]. Firstly, we need to check that if [P] = [P'], then
[P® Q] =[P ®Q]. By (a), P® A" = P' @& A™ for some n > 0. Hence

[PeQ=[(PoA")eQ-[A"2Q]=[PeoA")eQ]-[A"®Q] =[P ®qQ]

so the map is well-defined. The fact that ® 4 gives a commutative ring structure with
unit element [A] is easy to see.

(c) The map ¢ is defined to be the obvious one. Note that ¢ is in fact injective, i.e.,
stably isomorphic implies isomorphic in rank 1 case. This is a special case of a statement
that will be proved later.

To define v, given a finitely generated projective module P, consider its rank function
Spec A — Z. Spec A will decompose into finitely many components, where the rank
function is constant on each components. Every component is closed in Spec A, so we
may write down the decomposition as Spec A = Spec(A/I1)11--- 11 Spec(A/I,). Suppose
that P has constant rank k; on the component Spec(A/I;). Then we define ¢(P) :=
N (P/ILP) x - x N"(P/L,P). (If kj = 0 for some j, put A/I; at the j-th place.)
Then t(P) is finitely generated, and for any prime ideal p of A, suppose that p is in
Spec(A/1I;). Then ¢ (p), = /\kj(P/IjP)p is a free (A/I;), = Ap—module of rank 1 (since
N (P/I;P), = 0 = (A/I;), for i # j). Hence 1(P) € Pic(A).

Firstly, we show that this definition is independent of the decomposition of Spec A,
i.e., if P has constant rank k on Spec A, and we also have A = (A/I1) x --- x (A/I},)
then we show that A*(P/I,P) x --- x N¥(P/I,P) = N\ P.

Expand the right hand side, A\* P = A*(P/I,P x --- x P/I,,P), so we have to show
that the “mixed terms” like A*1(P/I, P) @ A'(P/I3P) are all zero. This follows from a
simple observation: I; + Is = A. Suppose that this is false. Then I; + I is contained in
some maximal ideal, which contradict to Spec A/I; and Spec A/l are disjoint.

Now we show that 1 is well-defined on KA, i.e., if P& A" = P' @ A", then ¢(P) =
1 (P’). Note that P and P’ have the same rank, so it is suffices to check on each component.
This reduces to the case that, if P and P’ are of constant rank k and P ® A" = P’ ¢ A",
we claim that A¥P = AFP’. Take the determinant line bundle, A¥™™(P @ A™) =~
AP @ A" A" = AF P, which proves the claim.

Finally, we claim that v is a group homomorphism, i.e., (P @ Q) = ¥ (P) ® ¥(Q).
We can find I,..., I, such that both P and @ are of constant rank on each Spec A/I},
say the ranks are k; and [;. We have to prove that

ki+l kn+ln

N (PeQ/hPaQ) x - x N\ (PeQ)/L(PaQ)
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is isomorphic to

k1 kn 5 In
(/\(P/hP) X e /\(P/InP>> ® (/\(Q/hQ) X oo X /\(Q/In@) :

Observe that A" " (P @ Q)/L (P ® Q)) = N*(P/IiP) ® N"(Q/I;Q), and the “mixed
terms” A*(P/1P) @ N2(Q/LQ) =0by I, + I, = A.
Note that ¢¢ = idp;c(a) by our construction.

4.31 Let A be a ring, and HypA the ring of continuous functions Spec A — Z.

(a) Prove the rank: KoA — HpA is a ring homomorphism.
(b) Construct a ring homomorphism X : HyA — KpA such that rank o\ = idg, 4.

(c) Let K’NOA = ker )\ Prove that KgA = HyA @® KoA. Remark. It can be proved
that KA is the nilradical of KyA; see [4, Proposition IX.4.6].

(a) This is a direct result followed by Exercise 4.26.

(b) Since Spec A is quasicompact for any commutative ring A, it has only finite con-
nected components U;. Because every element in HygA is a continuous function, each
U; corresponds to an integer d;. Follow by Exercise 4.24, we know A has decomposi-
tion as [[;"; A/I; by Chinese Remainder Theorem, such that U; = Spec(A/I;). Now,
consider A defined by [U; +— d;] + [, (A/L;)%. Then, clearly, rank o\ = id, a.

(c) Since the exact sequence
0> KoA — KoA — HyA — 0
splits by (b), the claim holds.

4.32 (a) Prove that KpA = 0if A is a field, or a local ring, or a principal ideal domain,
or a semilocal ring (i.e., a ring with only finitely many maximal ideals).

(b) Prove that KogA = Pic(A) = CI(A), the ideal class group of A, if A is a
Dedekind domain.

Note that a general element in KyA can be written as [P] — [Q], where P and Q are
finitely generated projective modules with the same rank function.

(a) If A is a field, then the statement is obviously true since P and @ are simply vector
spaces with the same finite dimension. If A is a local ring, then P and @ are free modules
with the same finite rank, so we still have KgA = 0. If A is a PID, we have the structure
theorem for finitely generated modules. Projectivity of the module implies that it does
not have torsion part, so finitely generated projective modules over PID are free modules
of finite rank, hence KoA = 0.

Let A be a semilocal ring, with maximal ideals m1, ..., m;. Then A can not be written
as a direct product of more than k nonzero rings, so we may write A = A; x --- x A,,

! KoA = ker(rank).
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where each A; is an indecomposable ring (i.e., with only trivial idempotents). Then each
Aj is still semilocal. We may write P = P; X --- x P., where P; is a finitely generated
projective Aj-module of constant rank, and A;- P; = 0 for i # j (c.f. the proof of Exercise
4.30).

Claim: Let A be a semilocal ring, P a finitely generated projective A-module of
constant rank n. Then P = A",

Note that if this claim is true, then the isomorphic class of P = P; X --- X P, only
depends on the rank, which proves that KyA = 0 in the semilocal case. Now back to the
claim. For any m;, pick x;1,...,z;, € P such that they form a free basis of Py,. Then
by Chinese Remainder Theorem, we can find z1,...,z,, such that z; = x;; (mod m;P).
Hence xz1,...,x, form a basis of P, for every maximal ideal m. Now we define A" — P
which sends the basis e; to x;. This map is an isomorphism on every maximal ideal, hence
an isomorphism.

(b) By the structure theorem for finitely generated modules over Dedekind domains,
P decomposes into torsion part and torsion-free part. The torsion part vanishes due to
the projectivity, and the torsion-free part is precisely controlled by the class group, i.e.,
a finitely generated torsion-free module of rank n is isomorphic to A1 @ I, where I is a
rank one projective module. (c.f. 4.4 Example (d)) The map KoA — Pic(A) ...

4.33 Let A be aring, B an A-algebra and P a projective A-module. Prove that P®4 B
is a projective B-module, and that the diagram

Spec B Spec A
rankB(PQmR AA (P)

Z

commutes if P is finitely generated.

P is a projective A-module = 3 @ an A-module such that P @ Q is a free A-module
= (P®Q)®4B=(P®4B)®(Q®aB) is a free B-module = P®4 B is a projective B-
module. If P is finitely generated as an A-module, so is P® 4 B as a B-module. Consider
p is a prime ideal of B. We would like to prove that (P ®4 B)y is a free By-module of the
same finite rank as the free Aj-module Fy, where q is the inverse of p. As in the proof of
Exercise 4.27, we are able to find the basis {z;}}_; C P for the A-module P,. It is then
natural to claim that {z; ® 1}} is the basis for (P ® B), = P; ®4, By,. However, this
is certainly true because every element of Py ®4, By has an unique representation in the
form > | x; ® b;. (This can be obtained by some elementary argument. See [Keith].)

4.34 Prove that any ring homomorphism f : A — B induces a ring homomorphism
KyA — KyB via — ®4 B, and that K| is a functor.

Let P be a finitely generated projective A-module. First we claim that P ® 4 B is a
finitely generated projective B-module. Note that there exists an A-module @) such that
P& Q is a free A-module of finite rank. Hence (P®4 B)® (Q ®4 B) is a free B-module of
finite rank, which proves our claim. Since — ® 4 B commutes with direct sum, it gives a
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well-defined map KgA — KoB. We have (P4 P')®@4 B = (P®4B)®p(P'®4 B), hence
the map is a ring homomorphism. Also, given another ring homomophism g : B — C, we
have Ko(go f) = Ko(g) o Ko(f), since (P®4 B)®@pC = P®4 C. Hence Kj is a functor.

4.35 Let P be a free A-module with basis wy, ws, ..., wy,, and define w} € P* = Homy (P, A)
by w}(w;) =11if i = j and w}(w;) = 0if i # j.
(a) Prove that P* is a free A-module with basis w}, ws, ..., w}.
(b) Let f : P — P be A-linear, f(w;) = Y7, ajjw; with a;; € A. Prove that
o~ Hf) = > @ijw; @ wj, where ¢ : P* @4 P — Homa (P, P) is as in 4.8.
(c) Prove that the traces defined in 1.1 and 4.8 coincide.

(a) Consider any T' € P* such that T'(w;) = a;. Then, it is clear that T = """ | a;w}.
If > byw} = 0 for some b; € A, we have 0 = O(w;) = > bjw}(w;) = b; showing
the linear independence.

(b) Since ¢ is an isomorphism, it suffices to show ¢(3_; ; ajjw; ® w;) = f, which is
clearly true by definition.

(c) Followed by 4.8, Tr(f) = >, ; aijwy (w;) = 370, ais.

4.36 Let A be a ring, B an A-algebra and P a finitely generated projective A-module.
Prove that the diagram of natural maps

Enda(P) 2% Endp(P @4 B)
TrP/A\L J(TrP(@AB/B

A B

is commutative.
Note that End4(P) = P*® P. Given f € P*,p € P,

fep——(fol)®(Ppal)

| I

f(p)——=9¢(f(p) = flp) ®1

4.37 Let A be a ring and P a finitely generated projective A-module.

(a) Suppose that P has constant rank n. Prove that Trp 4(idp) =n-1 € A.

(b) In the general case, prove that Trp,4(idp) is the image of rank(P) under the
natural map HyoA — I'(Spec A, O) = A; here HpA is as in Exercise 4.31, the
sheaf O is the natural sheaf of rings on Spec A (see [10, Chapter II, Section 2]),
the map HopA — I'(Spec A, O) is induced by the ring homomorphisms Z — A,,
and I'(Spec 4, 0) = A is the isomorphism from [10, Chapter II, Proposition
2.2].
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For (a), if P has constant rank n, then for any prime ideal p, we have rank(FP,) = n.
Note that now P, is a free Ap-module of rank n. Using the previous exercise (Exercise
4.33) with B = Ay, we have that Trp/,(idp) equals to n in every localization A,. So
TI"p/A(idp) =nec€ A.

Let @ : HyA — I'(Spec A, O). Note that Trp,4(idp) and ®(rank(P)) are elements in
A. To prove they are equal, it suffices to show that they are equal under every localization
Ap. Suppose P has constant rank. Then (b) follows from (a). If P does not have constant
rank, then use Exercise 4.24. This completes the proof.

4.38 Let A be aring, 0 - Py - P — P>, — 0 an exact sequence of A-modules in
which P; and P; are finitely generated projective, and g : P, — P; an A-linear map
with g[Py] C Py. Denote by h the induced map P, — P». Prove that Py is finitely
generated projective and Trp, /4(g) = Trp /a(g | Po) + Trp,/4(h).

Since Ps is projective, the exact sequence splits. Hence there exists an exact sequence
0P — P —F—0.

So P, is finitely generated. It is projective since it is a direct summand of a projective
module. For the trace formula, we firstly localized at p. We may assume P;’s are free.
Thus, the assertion follows from the standard fact from linear algebra.

4.39 Let P and (Q be two finitely generated projective A-modules, and f : P — @,
g:Q — P two A-linear maps. Prove that Trg/a(f o g) = Trp/a(go f).

Since the trace map commutes with localization, we may prove this equality under
localization at arbitrary prime ideal p. We may assume A is local. But then P = A™ and
@ = A™. Now this is a consequence in linear algebra.

4.40 (a) Let P be a finitely generated projective A-module. Prove that the map 9 :
End(P) — End4(P*) defined by ¥(f)(g) = g o f is an anti-isomorphism of
not necessarily commutative rings, and that Trp. /4 (¥(f)) = Trp/a(f).

(b) Let f : P — P and g : @ — @ be endomorphisms of finitely generated
projective A-modules P and Q. Prove that Trpgg/a(f ®@ g) = Trp/a(f) -

Tro,a(9)-

As in the previous exercise, we may assume A is local, so P and P* are free A-modules.
Let eq, - - - ey, be a basis of P and e],--- , e}, be the dual basis of P*. So under the matrix
representation, f corresponds to a matrix M and ¢(f) = M!. Now the result follows
from a direct computation. This proves (a).

For the statement (b), let ey, - , e, be a basis of P and dy,--- ,d,, be the one of Q.
Under these bases, f has a matrix representation M and g has a matrix representation
N. Then f ® g has a matrix representation M ® N. Now the theorem follows from a
basic fact from linear algebra.

4.41 Let By, By, ..., By be algebras over a ring A. Prove that [[;; B; is a finite projec-
tive A-algebra if and only if each B; is a finite projective A-algebra.
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It is clear that [[;", B; is a finite A-algebra if and only if each B; is. It remains to
show that, when regarded as A-modules, []7_; B; is projective if and only if so is each B;.

Let Bi,---, B, be projective. For any A-epimorphism f: M — N and any A-linear
map ¢ : [[;_; Bi — N, consider the map g|p, : B; — N which is A-linear. By the
projectiveness of B; there is an A-linear map h; : B; — M such that g|p, = f o h;.
Setting h = [ h;, we have g = f o h. Hence [[}'_; B; is projective.

Now we suppose that [[;"; B; is projective. Let f: M — N be an A-epimorphism
and g; : Bj — N an A-linear map. Define gl [[i-;Bi — N as ¢ = gj o pj, where
p; : [[;=, Bi — Bj is the natural projection. Since [[;"; B; is projective, there exists
an A-linear map h’ : [[;-; Bi — M such that ¢’ = fohJ. Note that in the category
of A-modules, finite products coincide with finite sums. Let ¢; : B; — [[;_; B; be the
inclusion. Choose h; = I,jOhj . Then we have g; = foh;. This shows each B; is projective.

4.42 Let A be aring, B a finite projective A-algebra, and P a finitely generated projective
B-module. Prove that P, when considered as an A-module, is finitely generated and
projective. Prove also that the map Hom (B, A) ® g Homp(P, B) — Homy (P, A)
sending f ® g to f o g is surjective.

Since P is a finitely generated projective B-module, by Exercise 4.3, there exists a
finitely generated B-module ) such that P @& Q ~ B®" for some finite n. And since
B is a finite projective A-algebra, there is a finitely generated A-module C such that
B® C ~ AP™ for some finite m, when B is considered as an A-module. Then,

P®Q®C% ~ B g OO ~ (AFM)En = g&mn,

where Q ®C®" is a finitely generated A-module. Again by 4.3 we know P can be regarded
as a finitely generated projective A-module.
For the second part, let

0 : Homy (B, A) ® p Homp (P, B) — Homp(P, Hom (B, A))

be the map given by
0(f @ 9)(p)(b) = f(g(bp)),

where f € Homa(B, A), g € Homp(P,B), p € P and b € B. One can easily check that
it is a well-defined B-linear map. We claim that 6 is an isomorphism. Indeed, if P = B,
then both sides of € are isomorphic to Homy4 (B, A), and 6 is clearly induced from the
identity map. It can be generalized to the case in which P = B®" for some finite n since
finite direct sums commute with both tensor products and Hom functors. It follows that
# is an isomorphism for any finitely generated projective B-module P since P is a direct
summand for some B®" of finite rank.
Now we define

¢ : Homp(P,Homa(B, A)) — Homa (P, A)

to be the map given by
¢(k)(p) = k(p)(1B),
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where k € Homp(P,Hom4 (B, A)) and p € P. Then ¢) = ¢of. Moreover, ¢ is a surjection
since each h € Homu(P, A) is the image of the B-linear map k : P — Homu(B, A)
defined by k(p)(b) = h(bp). Hence 1 is surjective.

4.45 Let By, By, ..., By, be algebras over a ring A. Prove that [[", B; is a projective
separable A-algebra if and only if each B; is a projective separable A-algebra.

In Exercise 4.41, we have seen that [[;" | B; is a finite projective A-algebra if and only
if each B; is a finite projective A-algebra. It remains to show that the map

(25 : ﬁBz — HOII]A <ﬁBl,A>
=1 =1

given by ¢((bi)1<i<n)((b))1<i<n) = Tr Bi/A((bib/i)ISiSn) is an isomorphism if and only if
each
¢i : Bz — HOII]A(BZ',A)

given by ¢;(b;)(b;) = Trp,/4(b;b}) is an isomorphism.
Considering each B; as an A-module, we have the natural isomorphism [}, B; =
[T, Bi, and hence the canonical

Hom 4 <ﬁ Bi,A> ~ ﬁHomA(Bi,A).

i=1 =1

So it suffices to check that
n
Trppe pya((0bh)i<icn) =Y Trp, a(bidh).
i=1
In fact, for n = 2, it is just the result of Exercise 4.38; by using an induction argument
we can show that the identity holds for a general n.

4.46 Let A be a ring, B a projective separable A-algebra and C a projective separable
B-algebra. Prove that C' is a projective separable A-algebra. [Hint: use Exercises
4.42 and 4.44. In 5.12 we shall give a different proof.|

Since B and C' are projective separable algebra over A and over B, respectively, we
know they are finite over their base rings; and the maps

¢p/a: B —> Homy(B,A) and ¢¢/p: C — Homp(C, B)
defined by ¢p/4(b)(b') = Trp 4(bb") and ¢c/p(c)(c’) = Treyp(cc’) are isomorphisms over

A and over B, respectively. By Exercise 4.43, C is then a finite projective A-algebra. It
remains to show that the map

bcya s C — Homy(C, A)

given by ¢c/a(c)(c’) = Trgya(ed) is an A-linear isomorphism.
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Note that ¢c/4 can be factorized as the chain

$B/A®bC)B
—

C=B®gC Homy (B, A) @ Homp(C, B) l>H0mA(C,A),

where ¢ is map f ® g — fog. In fact, for any ¢, ¢ € C, we have

V(pp/a @ po/p(1 @) () = Trp a(Trep(cd)) = Trejaled) = deyale)(d)

by applying the result in Exercise 4.44. Also, we know that ¢ p/4®¢ ¢/ p is an isomorphism,
and that ¢ is a surjection from Exercise 4.42. It now suffices to show that ¢/ 4 is injective.
Suppose that ¢c/a(c) = 0, or that Trga(cc’) =0 forall ¢ € C. ...

4.47 Let A be a ring, B a projective separable A-algebra and C' any A-algebra. Prove
that B ®4 C is a projective separable C-algebra.

It follows from the given condition that B ® 4 C' is a finite projective C-algebra by
Exercise 4.33. So now it suffices to check that the map

é B C — HomC(B ®A C,C)
given by ¢(b®c)(V @ ¢) = Trpg,c/c (b ® cc’) is an isomorphism. Let
¢ : B — Homu(B, A)

be the isomorphism given by the separability of B over A so that ¢(b)(b') = Trg, 4(bb).

Suppose
0 : Homa(B,A) ®4 C — Homg (B ®4 C,C)

is the C-linear map such that 6(f ® ¢)(b® ') = f(b)ec’. We claim that the following
diagram commutes:

BoaC —22C . Homu(B,A) @4 C
> [
x l
Homg (B ®4 C,C)

and that 6 is an isomorphism. Indeed, we have

0((p ®idc) (b @ ))(W @ ) = 0(p(b) @ c) (¥ ® ()
= Trp/a(bb)cd
= T‘I'B(X)AC/C(bb, X CC/),

where the third equality follows from Exercise 4.36. This proved the commutativity of
the diagram. ...
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5 Exercises for Section 5

5.1 Let X be a scheme and d : X — Z any continuous function that assumes only non-
negative values. Prove that there exists a finite and locally free morphism Y — X
such that d = [Y : X].

Decompose X into disjoint connected components X = I1X;. Then the continuous
function d is constant on each X;, say d;. We simply define Y = H(ngkgdiXi(k))7 where
X% s a copy of X;, and Y — X maps each Xi(k) to X;.

1

5.2 Let Y — X be a finite and locally free morphism. Prove that the underlying map
sp(Y) — sp(X) is open and closed.

It is suffice to check locally since Y — X is finite. Let B be a finitely generated
projective A-algebra via ¢ : A — B, we want to show that f : Spec B — Spec A is open
and closed. We may assume that Spec A is connected, so B has constant rank on A, and
assume that B # 0. Hence ¢ : A — B is injective.

To show that f is closed, let I be an ideal in B, we claim that f(V(I)) = V(¢(1)). So, if
¢~ I C p € Spec A, we want to show that there exists I C q € Spec B such that ¢~!q = p.
Since B over A is finite, ¢ is in fact an integral extension. Hence ¢ : A/¢~'T — B/I is
also an integral extension, and the closedness of f follows from the going-up property.

To show that f is open, we are going to use several facts.

Fact: A subset of Spec A is open if and only if it is constructible and stable under
generalization.

Fact: (Chevalley’s theorem) If ¢ : A — B is finitely presented, then the image of a
constructible subset of Spec B is a constructible subset of Spec A.

Fact: Finitely generated projective implies finitely presented. (Theorem 4.6)

Combining these facts, in order show that f is open, it is suffice to show that for any
distinguished open subset D(g) of Spec B, f(D(g)) is stable under generalization, i.e.,
if p € f(D(g)) and p € {p’} (equivalently, p’ C p), then p’ € f(D(g)). So there exists
g & q € Spec B such that p = ¢~!(q). Since ¢ : A — B is a finite projective extension, it
is in particular a flat extension. Hence A, — By is also a flat extension. By going down,
there exists q' C q such that p’ = ¢~'(q’). Since g ¢ ¢, this proves the openness.

5.3 Let f; : Y; — X be a morphism of schemes, for1 <i<n,and f:Y =Y 1I.--11Y,, —
X the induced morphism. Prove that ¥ — X is finite and locally free if and only
if each Y; — X is finite and locally free. Prove also that [Y : X| = >"" |[Y; : X] if
Y — X is finite and locally free.

Note that if U is an open affine subset of Y = Y1 II---11'Y,,, then U NY;j is a closed
subset of U for all 4, hence is also affine. So by Prop. 5.2, the first statement is equivalent
to: B; is a finite projective A-algebra for all 1 < ¢ < n if and only if By X --- X By is a
finite projective A-algebra, which is precisely Exercise 4.41.

For the second statement, suppose that Spec A is an connected open affine subset of
X. Then its preimage is Spec By I1- - - 11 Spec B,,, where B; is a finite projective A-algebra
of constant rank for all 1 <4 <n, and the rank of By X --- X By, is simply the sum of the
ranks of all B;.
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5.4 Let (X;)ier be a collection of schemes, and Y; — X; a finite and locally free mor-
phism, for each 7 € I. Prove that the induced morphism IT;c;Y; — ;<7 X; is finite
and locally free, and that each finite and locally free morphism Y — Il;c; X; is ob-
tained in this way. Prove also that [IT;crY; : ;e X;] equals [Y; : X;] when restricted
to sp(Xj), for each j € I.

Only the statement “each finite and locally free morphism Y — ;7 X; is obtained
in this way” is less obvious. Decompose Y into I1Y; according to its image, we want to
show that each Y; — X; is finite and locally free. By Prop. 5.2, it is suffices to show that
for any affine open subset Spec A of X;, its preimage is also affine, say Spec B, and B is
a finite projective A-algebra. But this follows from Y — I1.X; is finite and locally free.

5.5 Let f:Y — X be a finite and locally free morphism of schemes, and let W — X
be any morphism of schemes.

(a) Prove that p:Y xx W — W is finite and locally free.

(b) Prove the diagram

sp(W) sp(X)
[Yxxwm %X}
Z

(c) Suppose that Y — X is surjective. Prove that Y xx W — W is surjective.

is commutative.

(a) There exists an open affine cover {U; = Spec A;} of X such that f~1(U;) = Spec B;
is affine and B; is a free A;-module of finite rank. And there is an affine open cover
{V; = SpecCj} of W such that every f(SpecC};) is contained in some Spec A;. So
p~1(Spec C;) = Spec(B; @4, C;) is affine and B; ®4, Cj is a free Cj-module of finite rank,
which is the rank of B; over A;.

(b) follows from the proof of (a).

(c) Surjectivity is stable under base change in general case. It is suffice to prove the
following claim:

Claim: Given fiber product

we have g~ (f(Z)) = p(¢ 1(2)) for any Z C Y.

By definition, x € g7'(f(Z)) if and only if there exists y € Z such that g(z) = f(y).
So it is suffice to prove the following claim:

Claim: If z € W,y € Y satisfies g(z) = f(y) = s, then there exists u € Y xx W such
that p(u) =z, p(u) = y.

93



We have the following diagram:

Spec(k(z) @(s) k(y)/m) —— Spec(k(z)) —=W

i |

Spec(k(y)) —————— Spec(k(s))

| o~

Y X

where m is any maximal ideal of k(z) @) k(y).

So this induces a morphism from Spec(k(x) ®ys) k(y)/m) to the fiber product ¥ x x W,
and the image of this morphism gives the desired u € Y xx W.

5.7 Let Y — X and Z — X be finite and locally free morphisms of schemes.

(a) Prove that Y xx Z — X is finite and locally free.
(b) Prove that [Y xx Z: X|=[Y : X]-[Z: X].
(c) Prove that Y xx Z — X is surjective if Y — X and Z — X are surjective.

(a) follows from Exercises 5.5(a) and 5.6.

(b) [Y xx Z:X]=[Y xx Z:2]-[Z:X] =[Y : X] - [Z : X] by Exercises 5.5(b) and
5.6.

(c) follows from Exercise 5.5(c).

5.8 Do Exercise 5.1-5.7 with everywhere “finite and locally free” replaced by “finite
étale”.

The construction of 5.1 is still valid. 5.2 is still true. In 5.3, we should replace the usage
of Prop. 5.2 by Prop. 5.8. Then it is suffices to show that B; is a projective separable
A-algebra for all 1 < i < nif and only if By X --- X B, is a projective separable A-algebra,
which is precisely Exercise 4.45. The argument of 5.4 is still valid, after replacing Prop.
5.2 by Prop. 5.8. For 5.5(a), we need to show that if B is a projective separable A-algebra,
then B ®4 C' is a projective separable C-algebra, which is Exercise 4.47. And 5.5(b)(c)
are still true. For 5.6, we have to show that if B is a projective separable A-algebra and
C a projective separable B-algebra, then C' is a projective separable A-algebra, which is
Exercise 4.46. Finally, the argument of 5.7 is still valid.

6 Exercises for Section 6

6.1 A module M over a domain A is called torsionfree if for every non-zero a € A and
every non-zero x € M one has azx # 0.
(a) Prove that a flat module over a domain is torsionfree.

(b) Let A be a Dedekind domain. Prove that any torsionfree A-module can be
written as an injective limit of finitely generated projective A-modules, and
that an A-module is flat if and only if it is torsionfree.
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(a). Let M be flat, so the functor M®4 is exact. Let a # 0, a € A, consider the
module homomorphism A — A via r — ar. This is injective by A is a domain. Tensoring
the functor, by M is flat, we have again an injection:

MRQUA—MeuA

via m — am. So M is torsion free.

For (b), let A be Dedekind. We have to prove if M is a torsion free A-module, then
M is flat. Since any element x € M is contained in a finitely generated submodule of
M (e.g. Az < M), and {M; C M| M; a finite generated submodule };c; with respect to
inclusion form an injective system, hence M = hﬂz M;. Now by A is Dedekind and M; is
finitely generated torsionfree for all © € I. Hence M; are projective, hence flat. By taking
direct limit is an exact functor in module theory, we get M is flat.

6.2 Prove Proposition 6.3: Let f : Y — X be a morphism of schemes. Then the
following four assertions are equivalent:

(i) f is flat;
(ii) for any pair of open affine subsets V' = Spec B C Y, U = Spec A C X with
f[V] € U the induced ring homomorphism A — B is flat;

(iii) there is a covering of Y by open affine subsets V; = Spec B; such that for each
i there is an open affine subset U; = Spec A; C X with f[V;] C U; for which
the induced ring homomorphism A; — B; is flat;

(iv) for every closed point y € Y the induced ring homomorphism Ox ¢,y — Oy,
is flat.
(i) = (ii) Oy|v = B and Ox|y = A. Then, the statement is equivalent to Proposition
6.2 (iii) = (i).

(ii) = (iii) X is a scheme covered by open affine subsets U; = Spec A;. Consider the
open subset f~1(U;), which can be also covered by affine subsets Vij. Since the collection
of f~1(U;) covers Y, all V;; form an affine open covering of Y satisfying the condition
f1Vij] € U;. Then, by (ii), the statement that the induced ring homomorphism is flat
immediately follows.

(iii) = (iv) = (i) Equivalent to Proposition 6.2 (i) = (iv) = (ii).

6.3 Let f:Y — X be a morphism of schemes. Prove that f is finitely presented (as in
6.4) if and only if for every open affine subset U = Spec A C X the open subscheme
f7YU] C Y is affine, f~'[U] = Spec B, where B is an A-algebra that is finitely
presented as an A-module.

The “if” part follows from definition. Now suppose that there exists a covering of X
by open affine subsets U; = Spec A;, such that for each i the open subscheme f~!(U;) =
Spec B;, where B; is an A;-algebra that is finitely presented as an A;-module.

Let U = Spec A C X be an affine open subset of X. For each U;, U N U; can be
covered by distinguished open sets {Spec(A4;)y,[j € J} for some f; € A; and index set J.
Observe that f~*(Spec(4;)y,) = Spec(Bi)g(s,), Where ¢ is the map from A; to B; induced
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by f. Also observe that (B;)g(y,) is finitely presented (A;)s,-module. So we have reduce
to proving the statement for X is affine, say X = Spec A.

U; = Spec A; can be covered by distinguished open subsets Spec Ay, observe that if
¢ : A — A; is the map induced by the inclusion U; — X, then Ay = (A;)4(s). Using the
fact that the underlying topology of an affine scheme is quasi-compact, we have reduce to
proving the following statement: Let X = Spec A, X = Uj<;<,U;, where U; = Spec Ay,
(so fi,--+ , fn generates A), f~1(U;) = Spec B;, and B; is a finitely presented Af,-module.
Aim to show that Y is affine(say Spec B), and B is a finitely presented A-module.

To show that Y is affine, we use the affineness criterion in [Hartshorne, Algebraic
Geometry|: Let B =T(Y,Oy). Then Y is affine if and only if there exists g1, , gm € B
such that Yy, := {y € Y|(¢i)y ¢ my} are affine for all 1 < i < m, and g1, - - , gn, generates
B.

Let ¢ : A — B be the map induced by f:Y — X, we define g; = ¢(f;).

Claim: Y, = Spec B;.

y € Spec B; if and only if f(y) € SpecAy, if and only if f; ¢ f(y) if and only if
(fi) f(y) & My (y) if and only if (g;)y & my. The last “if and only if” is because the induced
map between local rings is local homomorphism.

These ¢1,--- , g, generates B since f1,--- , fn generates A. Hence the affineness cri-
terion is checked, so Y = Spec B. Finally, we reduce to proving the following algebraic
problem: Let fi,..., f, genereates A, M a A-module. If My, is finitely presented for
every %, then so is M.

Claim: If My, are finitely generated, then so is M.

Let z;,,. .., Tiy, € M generates My,, we claim that these z;; generates M. Given any
y € M, there exists N large enough such that fy are generated by z;; for all i. Observe
that le ..., [N also generates A, which proves the claim.

By simple diagram chasing, one can show that if N is finitely presented A-module,
then for any A®"™ — N — 0, the kernel is finitely generated. Apply to our case, we
already know that M is finitely generated, write K — A% — M — 0, we want to show
that K is finitely generated. Localize to each f;, by the diagram-chasing-fact that just
mentioned, Ky, is finitely generated, hence by our claim again, K is finitely generated.
Hence M is finitely presented.

6.8 Let A = [[,c; ki be the product of an infinite collection (k;);cs of fields, and a =
{(zi)ier € A : x; = 0 for almost all ¢ € I}. Prove that the morphism Spec A/a —
Spec A is finite and étale, but not finite étale.

Certainly, A/a is a finitely generated A-module generated by 1 + a. However, the
kernel a has infinitely many independent generators e; with z; = ¢/, so there is no
possibility for a to be finitely generated. Hence, A/a is NOT finitely presented and the
morphism is NOT finite étale. It remains to show the morphism is flat and unramified.
(A/a)y/a = (A—p) H(AJa) = AJa®a Ay = Ap/ad,, Vp € Spec A =

Ap/p = (Ap/ady)/(p(Ap/aAp))

So, the morphism is certainly unramified. To show flatness, we need the following lemma
from [Stack]: (Equational criterion for flatness) A module M over A is flat if and only if
every relation in M is trivial.
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Given >, ai(b; + a) = a, where a;,b; € A. We have Y " | a;b; = 273"21 sjej € a,
where s; € k; and e; as defined before. Let the j-th component of b; be (b;); € kj.
Assume b} = b; — >0 (bi)je; € A. Then, b; +a = bj(e + a), where e is the identity. And
Sy abl = 0. Therefore, the relation is trivial.

6.9 Let A be a ring, M and N two finitely generated free A-module, and f: M — N
an A-linear map. Prove that f is an isomorphism if and only if for each p € Spec A
the induced map M ®4 k(p) = N ®4 k(p) is an isomorphism.

Since isomorphism between modules is a local property, it is suffice to show the follow-
ing statement: Let (A, m) be a local ring, M and N two finitely generated free A-modules.
Then f : M — N is an isomorphism if and only if f : M/mM — N/mN is an isomor-
phism.

The “only if” part is obvious since a free basis of M (resp. N) over A gives a basis
of M/mM (resp. N/mN) over A/m. For the “if” part, we choose a free basis of M, by
using f is isomorphism and Nakayama lemma, the image of this basis under f generates
N, i.e., f is surjective.

Note that f is an isomorphism implies M and N have the same ranks, hence we can
compose f with an isomorphism from N to M. So it is suffice to show that if an A-linear
map g : M — M is surjective, then it is an isomorphism.

We can view M as a finitely generated A[X]-module by setting X -m = g(m) for m €
M. Then XM = M since g is surjective. By Nakayama lemma, there exists Y € A[X]
such that (1 + XY )M = 0. Now if u € ker(g), then 0 = (1 + XY)u = u+ Y f(u) = u.
Hence g is an isomorphism.

6.11 Let A be a ring, B a separable A-algebra (see 6.10), and C' an A-algebra. Prove
that B ®4 C is a separable C-algebra.

B a separable A-algebra = B is a projective B ® 4 B-module. Given (B®4 B) ®4 C-
modules M, N with surjective homomorphism M ——s N . M, N can be seen as B® 4 B-
modules by the natural map B®y B — (B®4 B) ®4 C. Hence, we have

B

M ——

Similarly, C' is a projective C-module and M, N can be viewed as C-modules. We obtain
the following diagram by the universal property.

C B®AC

M—N M N

Therefore, B ®4 C' is a projective (B ®4 B) @4 C =2 (B®4 B) ®4 (C ®c C) =2 B®y
(B4C)@cC=B®sCQc (B®aC)-module = B®4 C is a separable C-algebra.
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6.12 Let A be aring and By, B, ..., By, algebras over A. Prove that [["_; B; is a separable
A-algebra if and only if each B; is a separable A-algebra.

First prove the if part. Since B; is projective B; ® 4 B;-module for all 4, we view any
(®B;) ®4 (®B;)-module diagram

®B;
£ v
M ——N

as B; ® 4 B;-module diagram. Then, for each i we have

B;

e, @B,

;;,l

M——N

We can really find a map from @B; to M by summing up f;, which is a (&B;) ®4 (®B;)-
module homomorphism. On the other hand, if ©B; is a separable A-algebra, we consider
any B; ® 4 B;-module diagram

oD,
M —— N

as a (bB;) ®4 (®B;)-module by the natural map
(®B;) ®a (®B;) — B; ®4 B;

Then, we can choose the map from B; to M be f|p, to make the diagram commute. So,
B; is a separable A-algebra.

6.13 Let K be an algebraically closed field and B a finite dimensional K-algebra that is
a local ring. Prove that the residue class field of B is K, and that B®g B is a local
ring.

Assume B has the unique maximal ideal m. Then, B/m is a B-module and thus a
K-module, which is necessarily a finite dimensional K-algebra. However, B/m is a field
K’ and hence finite extension of K. By K = K, K’ = K. Now consider B ®x B. Follow
by 2.6, we know m is the unique prime ideal and hence equal to nil(B). So, m ®x B and
B ®k m are also nil ideals. And thus they are lie in radical. To show B ®g B is local,
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it then suffices to show B ®x B/(m @k B + B @ m) is local. However, the latter one is
isomorphic to K g K = K.

A more general discussion about whether tensor products of local rings are local or
not can be referred to [Sweedler] and [Lawrence].

6.14 Let X be a topological space that can be written as the union of open irreducible
subsets. Prove that X can be written as the disjoint union of open irreducible
subsets.

We first claim X; U X5 is open and irreducible if so are X; and Xo and they are not
disjoint. Open is clear. To show it is irreducible, we consider any two open subsets and
assert they cannot have nonempty intersection. If U, V' are two open subsets in X7 U Xo,
then by irreducibility, U N (X; N X3) and V N (X1 N X3) are nonempty. So, again by
irreducibility, UNV N (X1 NX2) 0D =UNV £ 0.

Now, consider X is the union of open irreducible subsets U,, a € A. Consider

P={V|V= U Up,V is connected and irreducible}.
BEECA

Then, P is a nonempty poset and every chain {V,},cr in P has an upper bound, that is,
W = U'yEF V., will also be irreducible and connected: If X7, X5 are open subsets of W,
then there exists v; with X; NV, # 0. If, without lost of generality, say V,, C V,, then
X1 NXoNnV,, # 0 by the claim. So, W is also irreducible. Similar argument works for
connectedness. Hence, by Zorn’s lemma, VU, it is contained in some W, = |J BezCA Us,
which is connected, irreducible and mazimal. That is, VU,, o ¢ =, W, U U, cannot be
connected or irreducible. However, if it is connected, it needs to be irreducible by claim
again. So, every two W, are either disjoint or the same and X = I W,.

6.15 Let A be noetherian ring for which Spec A is connected, and suppose that A, is
a domain for all p € Spec A. Prove that A is a domain. [Hint: if ab = 0 for all
non-zero ideals a, b of A, choose a, b as large as possible and prove that a4+ b = A/]

Since A is noetherian, Spec A is a noetherian topological space. There are only finitely
many irreducible components, say X1, ..., X,. Then, X; N X; # ( for some j because
Spec A is connected. Consider € X; N Xj;. Since irreducible components correspond
to the unique generic points, which are minimal prime ideals, say p; and p;, satisfying
x D p1 and O p;. Then, consider the corresponding prime ideals in A, and denote them
by py and p’, still minimal. The nilradical of A, is contained in pj N p’, which is not a
prime ideal unless pj C p} or pj D p. In other words, p1 C p; or p1 D p;, implying X;
and X; cannot be distinct irreducible components. So, nilradical of A, is necessarily not
prime, which contradicts the assumption A, is a domain. On the other hand, reduceness
is a local property. So, Spec A is irreducible and reduced, and thus integral ([Hartshorne,
Proposition I1.3.1]).

6.16 Let X be a locally noetherian scheme all of whose local rings are domains. Prove
that X is the disjoint union of a collection of integral schemes. [Hint: use Exercises
6.14 and 6.15.]
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Let X; be connected components of X. Consider X = U Spec A, with A, noetherian.
Since Spec(Aa)y,; form the base of X and X; is open, X; is the union of some affine open
subset, called Spec A;;, where A;; is noetherian since localization of a noetherian ring is
still noetherian. Then, by Exercise 6.15, A4;, is a domain, hence a reduced ring. Finally,
any two open subsets D(f), D(g) of Spec 4;; has intersection D(fg) and this intersection
is not empty unless fg € nil(4;;) = {0} = f =0o0rg=0= D(f)=0or D(g) =0. So,
every open subset is dense and Spec A;; is necessarily irreducible. By Exercise 6.14, we
obtain what we want.

6.18 Let K be a field, L a finite extension field of K, and = € L. Let > 1 ;a; X" be the

irreducible polynomial of z over K, with a, = 1. Prove that Try g () = —[L :
K(x)] - an-1.

Let {vi,---,v;} be a basis of field extension L over K(x). Then {z7v;j0 < j <

n—1,1<i<k}isa basis of L over K. For any 1 < i < k, < v;,zv;,- - L,z > s

invariant under multiplying x, and its trace is given by —a,_1 by direct computations.
Hence Try /x(z) = =k - ap—1 = —[L : K(x)] - an-1.

6.19 Let K be a finite field and C the K-algebra K#X+1 Prove that there does not
exist v € C with C' = K[y].

Suppose that C' = KIKI*1 = K[4] for some v € C. Since K is a finite field, we have
AEl =~ Hence dimg K[y] < |K| < | K|+ 1 = dimg KK+ contradiction.

6.20 Let A be a domain with field of fractions K, and L an algebraic field extension of
K. Prove that for every x € L, there exists a € A,a # 0 such that az is integral
over A.

By z is algebraic over K, 2™ + b” Lyt 32 = 0 for some coefficients a;,b; € A.
Let a := (bp—1bp—2---bo)™. Then a“l € A and hence the element ax satisfying a monic
polynomial with coefficient in A, so az is integral over A.

6.21 Let f: Y — X be a continuous surjective map from a topological space Y to a con-
nected topological space X, and assume that every x € X has an open neighborhood
U for which f~1(U) is connected. Prove that Y is connected.

Suppose that Y is not connected, write Y = Y7 II Yo, where Y; and Y5 are disjoint
nonempty open subsets of Y.

Claim: f(Y7) and f(Y2) are both disjoint.

If not, say € f(Y1) N f(Y2). For any open neighborhood U of z, f~'(U) is not
connected since it has nonempty intersections with both Y; and Y5, this proves the claim.
So we have X = f(Y7) Il f(Y2) since f is surjective.

Claim: f(Y1) and f(Y2) are both open.

Suppose that f(Y1) is not open. Then there exists z € f(Y7) such that for any open
neighborhood U of x, U has nonempty intersection with f(Y3), but this implies that
f~YU) is not connected, which proves the claim.

So X can be written as a disjoint union of two nonempty open subsets, contradiction.
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6.23 Let A be a ring and B a finitely generated A-algebra that is integral over A. Prove
that B is a finitely generated as an A-module.

By assumption, we may assume B = Afuq, ..., uy,|, u;’s may have relations. For each
i, by integral assumption, there exists n; € N such that u;" € A+ Au; + ... —i—Au;”*l C B.
So for any element u € B, u is an A-linear combination of the monomials []", ufz
and 0 < t; < n; — 1, these monomials form a finite collection, say {wi,...,wg}. So

k
B= Zj:l ij.
6.26 Let X be a connected scheme. Prove the following properties are equivalent:

(a) X is locally noetherian, and every local ring of X is a discrete valuation ring
or a field;

(b) there is a covering of X by open affine subsets U; = Spec A; where each A; is
a Dedekind domain or a field;

(c) for each open affine subset U = () of X we have U = Spec A, where A is a
Dedekind domain or a field.

(c) implies (b) is clear. (b) implies (a) follows from the fact that the localization of a
Dedekind domain at a prime is either a discrete valuation ring (localize at maximal ideals)
or a field(localize at zero ideal). So it remains to prove (a) implies (c). Let U = Spec A
be an open affine subset of X. By the conditions of (a), A is noetherian and A, is a DVR
or a field for every prime p.

Observe that U = Spec A is connected, since X is connected. Assume that A is not a
field, otherwise we are done. Suppose that A is an integral domain. Then A is a Dedekind
domain if and only if the localization Ay, at every maximal ideal is DVR, which follows
from the conditions of (a), since Ay is not a field. So it remains to prove the following
statement: Let A be a noetherian ring, such that A, is integral domain for every prime
p, and Spec A is connected. Show that A is an integral domain.

Suppose that there exists a,b € A such that ab = 0,a # 0,b # 0. Since A, is integral
domain, ay, or b, must be zero. Hence Ann(a)+ Ann(b) = A since the left hand side does
not contained in any prime ideals. So there exists u € Ann(a) and a; € Ann(b) such
that u + a; = 1. Hence a = a(u + a1) = aaj. So we get an element a; € A such that
a1b = 0,a1 # 0,b # 0, with equation a = aa;. We can use this process to produce the
next ag, ag, and so on.

So we have (a) C (a1) C (a2) C ---. Since A is noetherian, there exists (a,—1) = (an),
write a,, = a,_1c for some ¢ € A. Then aZL = ApQnp_1C = Gn_1C = ap, i.€., a, is an
idempotent element, which is not 0,1. This contradicts to Spec A is connected, which
proves that A is an integral domain.

6.32 Let B be aring and I C B a nilpotent ideal. Prove that the set of idempotents of B
maps bijectively to the set of idempotents of B/I, under the natural map B — B/I.

Let e € B be an idempotent. (e + )2 = e> + 1 = e + I is also an idempotent.
et+l=e+I=e—c el=(e—¢€)"=0,Vn > N for some N € N. Pick 2 {n. Then,
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by €2 = e, ¢’ = ¢/ and the binomial theorem, 0 = (e — ¢')" = " — (¢/)" = e — ¢’. Finally,

if £ 4+ I is an idempotent, 22 —z € I. Let z1 = z, Tiyl = 39:? — 295?. Then
2?0y — mip = (a7 — 2;)%(3 — 22;) (23, + 1) € I c1,
which will be zero for sufficiently big i. Moreover, let y; = #? — z; € I. Then
Tip1 — i = 3(i + i) — 2(ziyi + i +yi) — @ =y — 27 € 1.
Thus, x; +1 = x + I for all 4.

6.33 Let p be a prime number and n € Z, n > 0. Prove that the ring homomorphism
Zp — Z/p"Z induces an isomorphism 7(Spec Z/p"Z) = 7(Spec Zy).

Spec(Z/p™7Z) contains one element thus must be connected. By 6.24, consider I, be its
residue class field, we have m(SpecF,) — 7(SpecZ/p"Z) induced by natural ring homo-
morphism Z/p"Z — F,,. Finite extensions of I, are Fy» and indeed they are all separable.
By 6.18 (or [E. Weiss, Algebraic Number Theory, Section 3-2|), the ring homomorphism
Zp, — Fp, which is the composition of Z, — Z/p"Z and Z/p"Z — Fp, is exactly the
residue class map and induces the equivalence of category FEtgpecr, — FEtgpecz, and
thus induces the isomorphism 7(SpecF,) = 7(SpecZ,). Thus, the ring homomorphism
Z, — 7,/p"Z induces an isomorphism 7(Spec Z/p"Z) = m(Spec Zy).

6.35 Prove that 7(SpecZ[i]) and 7(Spec Z[(1 + v/—3)/2]) are trivial.

Observe that Z[i] and Z[(1 + v/—3)/2] are rings of integers of Q(i) and Q(v/—3),
respectively. By Corollary 6.17, it is suffices to show that Q(¢) and Q(1v/—3) have no
unramified extensions, ...
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