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Abstract

In this article, we explain a method of studying the variation of the zeta functions
of Calabi-Yau varieties parametrized by a smooth affine space over a finite field. The
method is based on the crystalline interpretation by Katz of Dwork’s work. The
relevant definitions of crystals over a smooth base are briefly reviewed. For such a
crystal, we recall the relation between the unit-root sub-crystal and the horizontal
sections of a lifted family in the Calabi-Yau situation. Two examples on families of
Calabi-Yau varieties are given to illustrate the application of this relation. We also
present some questions arising through the study of these examples.

1 Introduction

Let k be a finite field of characteristic p with q = pa elements. Let k̄ be an algebraic
closure of k. Let X be a smooth, geometrically irreducible hypersurface in Pn+1 defined
by a degree (n+ 2) polynomial. Then X is a Calabi-Yau variety over k. For any positive
integer r, let kr be a field extension of k of degree r. Let Nr be the number of kr-points
X(kr) of X. Then the zeta function of X over k

Z(X/k, T ) := exp

{ ∞∑
r=1

Nr
T r

r

}

is a rational function in T of the form

Z(X/k, T ) =
[det (1− T · F |Hn

et(Xk̄,Q`))]
(−1)n+1∏n

i=0(1− qiT )
.

Here F is the geometric frobenius acting on the `-adic étale cohomology Hn
et(Xk̄,Q`) for

some prime ` 6= p of Xk̄ = X ×k k̄. We have an equality of the characteristic polynomials
over Z

det
(
T − F |Hn

et(Xk̄,Q`)
)

= det
(
T − φa|Hn

cris(X/W )
)
, (1)
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whereW is the Witt ring of k and φ is the absolute frobenius on the crystalline cohomology
Hn
cris(X/W ) of X. Under the degree condition on the defining polynomial of X, it is

known that there is at most one root π of this polynomial which is a p-adic unit (with
respect to a p-adic valuation on Q̄). If such a π exists, then π is an element in W via the
right side of (1), and we call π the unit root of X.

In this article, we are interested in the variation of the unit root along a family of
Calabi-Yau hypersurfaces. Suppose that Xt is a smooth and fiber-wise geometrically ir-
reducible family of Calabi-Yau hypersurfaces over a smooth affine k-scheme S0. Assume
further that for each finite field extension k′ of k and any k′-point λ0 of S0, the corre-
sponding Xλ0 has the unit root πλ0 . Then the fiber-wise unit roots form a sub-crystal
U ([6], Theorem (2.4.2)) in the relative crystalline cohomology Hn

cris(X0/(S0/W )). This
unit-root part U can be regarded as the collection of the information of πλ0 for various
points λ0.

The interesting observation due to Dwork (see [5] for the crystalline interpretation)
is that if there exists a nice lifting of the whole family Xt to characteristic zero, then
this unit-root part U is generated locally by the horizontal section with respect to the
Gauss-Manin connection ∇ associated to the lifted family. Moreover this local description
can be used to compute the unit roots πλ0 for all possible values of λ0 in terms of a fixed
local expression of the solution with respect to a basis. Thus the geometric origin of the
Picard-Fuchs differential equation L gives rise to an analytic continuation property on the
solutions to L. On the other hand, if there is a unique solution to L, the unit-root part
U can be recovered totally in terms of the differential equation L, and it then gives an
analytic formula for πλ0 provided that one finds an explicit expression of a ∇-horizontal
section. (See §§3 and 4 below for examples.)

We explain the above observation in terms of the associated Hodge F -crystal of the
lifted family (due to Katz, [5]). We review the notation of Hodge F -crystals and the
interrelation between the variation of the unit root along a family and the ∇-horizontal
sections for the lifted family to characteristic zero in §2. In the following two sections, we
give concrete examples to illustrate the application of this relation. Besides the formulae
for the unit roots of the fibers of the families, new observations are obtained while studying
these examples. In §3, a family of elliptic curves is presented. This family is not of
hypergeometric type but an analogous congruent property for the coefficients of certain
hypergeometric series seems to hold in this case (see Conjecture 3.4). In §4, we give a
new interpretation for one of the Calab-Yau conditions (see equation (13)) on an ordinary
linear differential equation of order four. We then apply this observation to the famous
family of the deformation of the Fermat quintic threefold. Finally we list some open
questions concerning the structure of the local deformation of a generic member in the
family.

The author would like to thank Prof. Noriko Yui and Yifan Yang for their interest in
this work, and providing useful suggestions and comments to early drafts of this article.
I would also like to thank the organizers of the ICCM 2007 for their invitation.

Notations. In this article, we let k be a perfect field of characteristic p > 0. Let W = W (k)
be the ring of Witt vectors of k. Denote by σ the absolute frobenius on k and W . Recall
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that the hypergeometric series mFn with upper parameters {ai}mi=1 and lower parameters
{bi}ni=1, ai, bi ∈ C and bi 6∈ Z≤0, is defined by the formal power series

mFn

(
a1, a2, · · · , am
b1, b2, · · · , bn

;x
)

=
∞∑
r=0

(a1)r(a2)r · · · (am)r
(b1)r(b2)r · · · (bn)r

· x
r

r!
,

where (a)0 = 1 and (a)r = a(a + 1) · · · (a + r − 1) for r > 0 is the Pochhammer symbol.
Notice that if ai is a non-positive integer for some i, the series mFn is a polynomial. We
may regard mFn as a formal power series over a ring R whenever the expansion makes
sense over R.

2 Crystals

We recall the definition of F -crystals over a smooth base. Roughly speaking, one thinks
of an F -crystal as a cohomology group (the crystalline cohomology) M with an absolute
frobenius structure of a scheme over a base of positive characteristic with nice properties.
A Hodge F -crystal is then the identification ofM with the relative de Rham cohomology
of a nice lifting of the whole family to characteristic zero. It may be regarded as a
bridge connecting the characteristic p > 0 and characteristic zero worlds. To illustrate
this phenomenon, we describe the relation between the variation of the unit root along
a family of Calabi-Yau varieties over a finite field k and the horizontal section of a lifted
family over the ring of Witt vectors W of k with respect to the Gauss-Manin connection.
The material in this section is mainly taken from [5].

(a) Hodge F -crystals over W

Definition. Let k be a perfect field, and W be the ring of Witt vectors of k. Denote by
σ the absolute frobenius on k and W .

(i) An F -crystal over W is a free W -module of finite rank together with a σ-linear
endomorphism

φ : M →M

such that φ induces an isomorphism on M ⊗Z Q. It is called a unit-root F -crystal if
φ is an isomorphism. The rank of the F -crystal M is the rank of M as a W -module.

(ii) A Hodge F -crystal over W is an F -crystal M over W together with a decreasing
filtration Fil•M on M indexed by Z such that

(a) Fil0M = M and FilnM = 0 for n >> 0,

(b) FiliM and FiliM/Fili+1M are free W -modules for all i, and

(c) (divisibility) φ(FiliM) ⊂ piM for all i.

Example. The examples of interest to us come from cohomology groups of geometric
objects. Here is a simple one.
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(i) Let X0 be a smooth hypersurface in Pn+1 over k. Then the crystalline cohomology
M := Hn

cris(X0/W ) is an F -crystal over W .

(ii) Suppose that X0 is the special fiber of a smooth hypersurface X in Pn+1 over W .
Then we have a canonical identification

Hn
dR(X/W ) = Hn

cris(X0/W ).

The Hodge to de Rham spectral sequence on Hn
dR(X/W ) degenerates and it provides

a filtration on M . With these data, M is then a Hodge F -crystal over W .

(b) Hodge F -crystals over a smooth base

Now we turn to the variation of F -crystals. For simplicity, we will restrict ourselves
to the following setting which is enough for the subsequent discussion in this article.

Let A = W [t][H−1] where H = H(t) ∈ W [t] such that H is not divisible by p. Thus
SpecA is the space obtained by removing some points from the affine line over W . Let
An = A/pn+1A for all non-negative integers n and let A∞ = lim←−An be the projective
limit. Let Ωc

A∞/W
be the space of continuous derivatives of A∞ over W . We extend the

absolute frobenius σ on W to A∞ by setting σ(t) = tp. We usually write σ(a) as aσ for
a ∈ A∞.

Definition. Let A and An, n = 0, 1, . . . ,∞, be as above.

(i) An F -crystal over A∞ is a locally free A∞-module M of finite rank together with
a (p-adically) topologically nilpotent integral connection

∇ :M→M⊗A∞ Ωc
A∞/W

and a horizontal σ-linear endomorphism

φ :M→M

such that φ induces an isomorphism on M⊗Z Q. The rank of the F -crystal M is
the rank of M as an A∞-module.

(ii) A Hodge F -crystal over A∞ is an F -crystal M over A∞ together with a filtration
Fil•M on M indexed by Z such that

(a) Fil0M =M and FilnM = 0 for n >> 0,

(b) FiliM and FiliM/Fili+1M are locally free A∞-modules for all i,

(c) (divisibility) φ(FiliM) ⊂ piM for all i, and

(d) (transversality) ∇(FiliM) ⊂ (Fili−1M)⊗A∞ Ωc
A∞/W

for all i.
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Suppose M is an F -crystal over A∞. Let k′ be a perfect field extension of k and W ′

the Witt ring of k′. Suppose e0 : A0 → k′ is a k-morphism with e0(t) = λ0. Let λ ∈ W ′
be the Teichmüller lifting of λ0. Let e : A∞ → W ′ be the W -morphism sending t to λ.
Then the base change

e∗0M :=M⊗(A,e) W
′

with the induced map e∗φ is an F -crystal over W ′. The crystal e∗0M is called the Te-
ichmüller representative of the point e0. Similarly, if M is a Hodge F -crystal over A∞,
then the Teichmüller representative e∗0M is a Hodge F -crystal over W ′.

Example. As before, we consider the following simple situation.

(i) Let X0 be a smooth hypersurface in Pn+1 over A0. Then the relative crystalline
cohomology M := Hn

cris(X0/(A0/W )) is an F -crystal over A∞ (see [6], (2.4) for
the precise meaning for this). Let e0 : A0 → k′ be a k-morphism to a perfect field
extension k′ of k. Then the Teichmüller representative e∗0M of e0 is the crystalline
cohomology Hn

cris(X0/W
′) of the hypersurface X0 := e∗0X0 over k′.

(ii) Suppose that X0 is the special fiber of a smooth hypersurface X in Pn+1 over A. Let
X∞ be the base change of X from A to A∞. Then we have a canonical identification

Hn
dR(X∞/A∞) = Hn

cris(X0/(A0/W )).

The Hodge to de Rham spectral sequence on Hn
dR(X/A∞) degenerates and it pro-

vides a filtration on M. With these data, M is then a Hodge F -crystal over A∞.
The Teichmüller representitive e∗0M of e0 : A0 → k′ is identified with the de Rham
cohomology Hn

dR(e∗X∞/W ′).

(c) Unit roots and horizontal sections

Let e0 : A0 → k′ be a k-morphism to a perfect field extension k′ of k. Let W ′ be the
Witt ring of k′. Suppose e0(t) = α0 and denote by α ∈ W ′ the Teichmüller lifting of α0.
On W ′[[t− α]], we put the natural connection ∇ and choose a σ-linear endomorphism φ
by setting φ(t) = tp.

Now letM be an F -crystal over A∞. Then we can extend the (∇, φ)-structure onM
to the completion W ′[[t − α]] ⊗A∞M of M at (t − α) by combining the corresponding
structure on W ′[[t− α]] introduced above.

Theorem 2.1 ([5]) We retain the above notations. Let M be a Hodge crystal over A∞.
Let k̄ be an algebraic closure of k and W (k̄) be the ring of Witt vectors of k̄. Suppose that
M/Fil1M is of rank one and for every k-morphism e0 : A0 → k̄, the Teichmüller repre-
sentative e∗0M contains a unit-root subcrystal of rank one. Then there exists a (unique)
unit-root sub-F -crystal U of M such that M = U ⊕ Fil1M as A∞-modules. Suppose
further that U is locally generated by u over A∞. Write φ(u) = fu for some f ∈ A∗∞.
Then we have:
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(i) Let e0 : A0 → k′ be a k-morphism to a perfect field extension k′ of k with e0(t) = α0

where u is defined. Let α be the Teichmüller lifting of α0. Then there exists an
F ∈ W ′[[t − α]] such that v := F · u ∈ W ′[[t − α]] ⊗A∞ M is ∇-horizontal and
moreover, the quotient F/F φ is in fact the expansion of an element in A∞.

(ii) There exists c ∈ W (k̄) (depending on F ) such that c · v ∈ W (k̄) ⊗W M is fixed by
φ and consequently, f = cF/(cF )φ.

Proof. See [5], Theorem 4.1 and 4.1.8, 4.1.9 in its proof. �

The above theorem says that if the crystal contains a unique unit-root crystal U of
rank one, then one can detect the frobenius action φ on U by choosing a local solution
at any (Teichmüller) point α. The existence of such a solution is guaranteed by (i). We
formulate this in the following special case.

Corollary 2.2 Suppose M satisfies the condition in the above theorem and we retain the
notations therein. Take a Teichmüller point α ∈W with H(α) 6≡ 0 (mod p). Let {ai}ni=1

be a local bases around α of M over A∞ such that {ai}ni=2 ⊂ Fil1M. Suppose there
exists a unique non-trivial collection Fi ∈W [[t− α]], 1 ≤ i ≤ n, up to multiplication by a
constant simultaneously, such that

F1a1 + · · ·+ Fnan ∈W [[t− α]]⊗A∞M

is ∇-horizontal. Then there exists γ ∈W (k̄) such that

f := γ · (F1/F
φ
1 )

is in fact an element of A∞. Moreover, suppose k is a finite field of cardinality pa and
let e0 : A0 → k with e0(t) = λ0 be a k-point. Let λ be the Teichmüller lifting of λ0. Then

πλ0 = f(λ)1+σ+···+σa−1

is the unique p-adic unit root of the linear endomorphism φa on the crystal e∗0M over W .

Proof. The element a1 + F−1
1 (F2a2 + · · · + Fnan) must be the element u in the above

theorem. Putting γ = c/cσ, where c is the constant in statement (ii) above, the assertions
follow. �

Remark. In the computation of unit roots, we usually choose the different lifted frobenius
φ′ with φ′(t−α) = (t−α)p to simplify the frobenius twist of F1 above when we find a local
horizontal section at α (see Theorems 3.3 and 4.3). For the relation between different
lifted frobenius operators on an F -crystal M, see [5], §1.
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3 Example: an Apéry type family of elliptic curves

In this section, we study an interesting example of a family of elliptic curves Et. The
equation of this family is taken from [2], p.204. For the modular interpretation of this
family, see op.cit. We call it an Apéry type family since the coefficients in the expansion
F of the analytic solution to the associated Picard-Fuchs equation are of Apéry type.
We shall see the close relation between the solution F and various invariants of Et over
positive characteristic. In particular, by applying the discussion in §2, we can write down
the p-adic unit root for a (generic) member Eλ0 over a finite field in terms of F and its
frobenius twist. This phenomenon is similar to the case of Legedre family (see [3], §6 (i)
and [5], §8).

(a) Over C

The Apéry type family of elliptic curves Et over C with the parameter t discussed
here is defined by the projective closure of the affine equation in the plane

y2 + (1− 3t)xy + t2(1− t)y = x3. (2)

One computes that Et has discriminant

∆ = t6(1− t)3(1− 9t),

and j-invariant

j =
(1− 3t)3(1− 9t+ 3t2 − 3t3)3

∆
.

Thus we shall regard Et as a family over S = Spec C[t][∆−1].

The Picard-Fuchs differential operator associated to the differential

ω =
dx

2y + (1− 3t)x+ t2(1− t)
∈ Fil1H1

dR(Et/S) (3)

of the family is given ([11], §11 and [2]) by

L = t(1− t)(1− 9t)
d2

dt2
+ (1− 20t+ 27t2)

d

dt
− (3− 9t). (4)

It has four regular singular points at zeros of ∆ and ∞. There is a unique formal power
series F (t) with constant term 1 satisfying LF = 0 (loc.cit.). It is given explicitly by

F (t) =
∞∑
n=0

χ(n)tn (5)

with

χ(n) =
n∑
i=0

(
n

i

)2(2i
i

)
. (6)
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Let ω′ = ∇( ddt)ω, where ∇ is the Gauss-Manin connection on H1
dR(Et/S). One checks

that over Ŝ = Spec C((t)), the element

v = t(t− 1)(9t− 1)
[
Fω′ − F ′ω

]
∈ H1

dR(Et/Ŝ) (7)

is a horizontal section with respect to ∇.

(b) The Hasse invariant

Fix an odd prime p. We now consider the Apéry type family over a finite field k of
characteristic p. The equation (2) is equivalent to

y2 = Pt(x) := 4x3 +
[
(1− 3t)x+ t2(1− t)

]2 (8)

via a standard change of variables. Let H = H(t) be the coefficient of xp−1 in the
expansion of Pt(x)(p−1)/2. Then H, regarded as a polynomial over k, is the Hasse invariant
of the family Et.

Proposition 3.1 Let F<p(t) be the truncation up to degree (p − 1) of the series F (t)
defined in (5). Then H(t) ≡ F<p(t) (mod p) for every odd prime p.

Proof. Write p = 2m + 1. Let z = 1√
x

be a local parameter at the origin of the elliptic
curve. We have

Pmt = (4x3)m
[
1 +

(1− 3t)2

4
z2 +

t2(1− t)(1− 3t)
2

z4 +
t4(1− t)2

4
z6

]m
.

Note that 4m = 2p−1 ≡ 1 (mod p). Thus, as elements in k[t], we have

the coeff. H of xp−1 = x2m in Pt(x)m

= coeff. of zp−1 in
[
1 +

(1− 3t)2

4
z2 +

t2(1− t)(1− 3t)
2

z4 +
t4(1− t)2

4
z6

]m
= coeff. of zp−1 in

[
1 +

(1− 3t)2

4
z2 +

t2(1− t)(1− 3t)
2

z4 +
t4(1− t)2

4
z6

]− 1
2

.

Notice that H(t) has degree ≤ (p− 1) and constant term ≡ 1 (mod p).
On the other hand, if we write the expansion of the invariant differential ω along z as

ω =
dx√
Pt(x)

=
[
1 +

(1− 3t)2

4
z2 +

t2(1− t)(1− 3t)
2

z4 +
t4(1− t)2

4
z6

]− 1
2

dz

=

( ∞∑
n=1

anz
n

)
dz

z
,
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then Lan ≡ 0 (mod n) for all n ([7]; also [11], Theorem 2.3). One then checks that
the equation LF = 0 has only one polynomial solution with constant term 1 of degree
≤ (p− 1) over k. Thus the assertion follows. �

(c) The invariant differential

We consider the family Et defined over R = Z[t][∆−1], where ∆ is the discriminant.
Consider the equation defining Et in the homogeneous form

Qt(X,Y, Z) := Y 2Z + (1− 3t)XY Z + t2(1− t)Y Z2 −X3.

For any non-negative integer n, let bn+1 be the coefficient of (XY Z)n in Qnt . Then the
formal differential

ξ =

( ∞∑
n=1

bnτ
n

)
dτ

τ
(9)

is the expansion of an element in Fil1H1
dR(Et/R) with respect to some local parameter τ

([10], Theorem 1). One computes that bn+1 is equal to

bn+1 =
[n
3 ]∑

r=0

(
n

r

)(
n− r
r

)(
n− 2r
r

)
(1− 3t)n−3r

(
−t2(1− t)

)r
= (1− 3t)n

∑
r≥0

(
n

3r

)
(3r)!
(r!)3

(
−t2(1− t)
(1− 3t)3

)r
= (1− 3t)n

∑
r≥0

(−n
3

)
r

(−n+1
3

)
r

(−n+2
3

)
r

(r!)3

(
27t2(1− t)
(1− 3t)3

)r
= (1− 3t)n3F2

( −n
3 ,
−n+1

3 , −n+2
3

1, 1
;
27t2(1− t)
(1− 3t)3

)
.

Proposition 3.2 Retaining the above notations, we have

(i) As elements in H1
dR(Et/R), we have ξ = c · ω for some non-zero c ∈ Q, where ω is

the invariant differential defined in equation (3).

(ii) Lbn ≡ 0 (mod n) for all positive integers n, where L is the Picard-Fuchs operator
defined in equation (4).

(iii) As formal power series in x over Z, we have

F (x) = (1− 3x)−1
2F1

(
1
3 ,

2
3

1
;
27x2(1− x)
(1− 3x)3

)
, (10)

where F (x) is the series defined in (5).
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Proof. Let L′ be the Picard-Fuchs differential operator associated to ξ ∈ H1
dR(Et/R) with

coefficients in Z[t]. Then L′bn ≡ 0 (mod n) for all n ([7]). Notice that the elliptic curve
Et over a field k of characteristic p is ordinary if and only if bp 6= 0 in k. Now assume
p > 2. Since bp is a polynomial with constant term 1 and of degree ≤ (p − 1), we have
bp ≡ H (mod p), where H is the Hasse invariant. By varying p and applying Proposition
3.1, we see that L′ = αL for some α ∈ Q(t). Thus the assertions (i) and (ii) follow.

Take any prime p. When n runs through ns := ps, the sequence bn(x) converges
p-adically to

B(x) = (1− 3x)−1
2F1

(
1
3 ,

2
3

1
;
27x2(1− x)
(1− 3x)3

)
.

Since Lbns ≡ 0 (mod pn), we must have B(x) = F (x). This proves (iii). �

Remark.

(i) The identity (10) may have a modular interpretation.

(ii) For t = 1/3, the elliptic curve Et over Q is equivalent to the one defined by the
equation

y2 = x3 + 1.

Over K = Q(
√
−3), the curve has complex multiplication by K.

(iii) One checks easily that

2F1

(
1
3 ,

2
3

1
; 27z

)
∈ 1 + 3zZ[[z]].

Thus with χ(n) defined in (6), we have 3 |χ(n) for all positive integers n by (10).

(d) The formula for the unit root

Fix an odd prime p. Let H = ∆H, where ∆ is the discriminant and H = F<p(t). Let
A = Zp[t][H−1] and regard Et as a family over A. With the series F (t) given in (5), let

f(t) = F (t)/F (tp),

regarded as a formal power series in t over Zp.

Theorem 3.3 We retain the above notations. Let k be a finite field of characteristic
p ≥ 5 with cardinality pa. For any λ0 ∈ k,H(λ0) 6= 0, denote λ ∈ W the Teichmüller
lifting of λ0. Then the series f(t) converges p-adically at λ and the p-adic unit

πλ0 = f(λ)1+σ+···σa−1
(11)

is the unit root of the elliptic curve Eλ0 over k.
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Proof. Since p 6= 2, the de Rham cohomology H1
dR(Et/A) gives rise to a Hodge F -crystal

(over A∞ by base-change) satisfying the condition in Theorem 2.1. Since p 6= 3, the
element v in equation (7) is the expression of the unique local horizontal section of the
family up to multiplication by a constant ([5], Corollary 7.5). Thus the assertions follow
by Corollary 2.2. The factor α(λ) := λ(λ − 1)(9λ − 1) in (7) does not appear in the
formula (11) since (

α(λ)
α(λp)

)1+σ+···σa−1

= 1.

The fact that the constant γ = 1 in that corollary can be obtained by either applying [3],
Lemma 6.2 combining the congruence H ≡ F<p(t) (mod p) or using the explicit expres-
sion of the invariant differential (9) with [11], Theorem (A.8) (v). �

In testing how fast the series f converges p-adically, we have observed the following
congruences numerically. It is an analogue of the congruences for coefficients of certain
hypergeometric series proved by Dwork ([3], §1, Corollary 2). Notice that the equation
(4) is not of hypergeometric type although the solution (5) is closely related to a hyper-
geometric series (see (10)).

Conjecture 3.4 Let χ(n) be the integers defined in (6). Then

χ(ν + µp+mps+1)
χ(µ+mps)

≡ χ(ν + µp)
χ(µ)

(mod ps+1)

for all primes p and all non-negative integers ν, µ,m, s with 0 ≤ ν < p.

4 Example: the Dwork family of Calabi-Yau threefolds

Here we give an example of families of Calabi-Yau threefolds, called the Dwork family,
and study the variation of the unit root along this family. In the first part, we give a
new interpretation of the Calabi-Yau condition of an order four ordinary linear differential
equation in our setting. As in §3, we shall write the unit root of the member in this family
in terms of the local solution to the Picard-Fuchs equation associated to this family. The
Picard-Fuchs equation in this case is of hypergeometric type. In the latter part, we
formulate some questions arising from the study of this family. For more details on the
discussion in part (b) and (c) below and a generalization of the formula for the unit root
along the Dwork family to the higher dimensional case, see [12].

(a) Calabi-Yau condition on differential equations of order four

Consider an ordinary linear differential operator of order four of the form

L =
d4

dt4
+ a3

d3

dt3
+ a2

d2

dt2
+ a1

d

dt
+ a0, ai = ai(t) ∈ Q(t). (12)

Recall the Calabi-Yau condition (among others) on the coefficients of L ([1], equation
(2.2))

a1 = a′2 +
1
2
a2a3 −

1
2
a′′3 −

3
4
a3a
′
3 −

1
8
a3

3. (13)
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For the meaning of this condition from the viewpoint of the theory of differential equations,
see op.cit. §§2 and 3.

Lemma 4.1 Let L be a differential equation of the form (12) satisfying the condition
(13). Let (M,∇) be a Q(t)/Q-differential module. Suppose ω ∈M such that ∇(L)ω = 0.
Write ω′ = ∇( ddt)ω, ω′′ = ∇( ddt)ω

′ and so on. Let F (t) ∈ Q[[t]] be a formal solution to
LF = 0. Suppose there exists an element

α = exp
(

1
2

∫
a3

)
∈ Q[[t]]

(i.e., an element α satisfying 2α′ = a3α). Then the section u ∈M ⊗Q[t] Q[[t]] given by

v = α
[
Fω′′′ − F ′ω′′ + F ′′ω′ − F ′′′ω

]
+ (αa3 − α′)

[
Fω′′ − F ′′ω

]
+(αa2 − α′a3 − αa′3 + α′′)

[
Fω′ − F ′ω

]
(14)

is horizontal with respect to ∇.

Proof. One shows that ∇( ddt)v = 0 by direct computation. �

(b) The Dwork family over C

Let Vt be the family of quintic hypersurfaces in P4 defined by the equation

Pt(X) := X5
1 + · · ·+X5

5 − 5tX1 · · ·X5. (15)

We regard the family Vt as defined over S = Spec C[t][(t(t5−1))−1]. We remove the points
t5 = 1 since at each of those points, Vt is not smooth. The exclusion of t = 0 should be
more transparent through the following discussion.

Let ω ∈ H0(Vt/S,Ω3) be the residue of the meromorphic differential form

t · Ω
Pt(X)

with Ω =
5∑
i=1

(−1)iXidX1 ∧ · · · ∧ d̂Xi ∧ dX5

on P4. Let τ = t−5 and θ = τ d
dτ . We then check that ω satisfies

∇(L)ω = 0,

where ∇ is the Gauss-Manin connection and

L =
d4

dτ4
+

1
τ3(1− τ)

(
2τ2(3− 4τ)

d3

dτ3
+ τ(7− 72

5
τ)

d2

dτ2
+ (1− 24

5
τ)

d

dτ
− 24

625

)
. (16)

The operator L is of hypergeometric type. It has a unique formal power series solution
at τ = 0 with constant term 1 and it is given explicitly by the hypergeometric series

F (τ) = 4F3

(
1
5 ,

2
5 ,

3
5 ,

4
5

1, 1, 1
; τ
)

=
∞∑
r=0

(5r)!
(r!)5

· τ
r

55r
. (17)
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Notice that from the last expression, F (τ) has coefficients in Z[1
5 ].

The fact that L is of order four is reflected in that there is a direct summand MdR

of H3
dR(Vt/S) of rank four, which contains ω (see [4], Lemma 1.1). The decomposition of

H3
dR(Vt/S) is stable under ∇. One checks that L satisfies the condition (13). In this case,

the α-factor in Lemma 4.1 can be chosen to be

α = exp
(∫

3− 4τ
τ(1− τ)

)
= τ3(1− τ). (18)

Finally the element v in (14) with F in (17) and α in (18) is the unique (up to multipli-
cation by a constant) local horizontal section near τ = 0 with respect to ∇ ([4], Corollary
1.7).

(c) The Dwork family over a finite field

Now let k be a finite field of characteristic p 6= 5. Let R = W [t][(t(t5 − 1))−1]. Let
Rn = R/pn+1R for any non-negative integer n, and R∞ = lim←−Rn be the projective limit.
Consider the Dwork family Vt defined in (15) over Rn. Then as in the case over C,
there is a rank four direct summand M′ of H3

dR(Vt/R∞) which contains H0(Vt/R,Ω3)
and is stable under the Gauss-Manin connection ∇. The relative crystalline cohomology
H3
cris(Vt/(R0/W )) of the family Vt over R0 respects this decomposition and these data

provide a Hodge F -crystal structure over R∞ on M′.

As in part (b), let τ = t−5. One can choose a generator ω ∈ H0(Vt/R,Ω3) such that
the Picard-Fuchs equation associated to ω is the same equation (16) as for the case over
C. With the formal power series solution F (τ) ∈ W [[τ ]] given in (17) to this equation,
we let H(τ) = F<p(τ) be the truncation of the series up to degree (p− 1).

Proposition 4.2 We retain the above notations. Then for any λ0 ∈ k, λ0 6= 0, λ5
0 6= 1,

the quintic Vλ0 has a (necessarily the unique) unit root if and only if H(λ−5
0 ) 6= 0 in k. In

other words, consider H(t) = t5p(t5−1)H(τ) as a polynomial in t over W , where τ = t−5.
Let A = W [t][H−1], An = A/pn+1A and A∞ = lim←−An. Then the crystal

M :=M′ ⊗R∞ A∞

of rank four over A∞ satisfies the condition in Theorem 2.1.

Proof. We can either directly counts the number of points in Vλ0(k) by Warning’s method
([12], Theorem 4.2) or use the explicit realization ([10], Theorem 1) of the associated
formal group of Vλ0 ([12], Lemma 3.3 (i)). �

Theorem 4.3 Let k be a finite field of characteristic p 6= 5 with cardinality pa. Let W
be the Witt ring of k. Let F (τ) be the hypergeometric series in (17) and let

f(τ) = F (τ)/F (τp) (19)
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as a formal power series in τ over W . For any λ0 ∈ k, λ0 6= 0, λ5
0 6= 1, H(λ−5

0 ) 6= 0, let
λ ∈ W be the Teichmüller lifting of λ0. Then f(τ) converges at τ = λ−5 and the p-adic
unit

πλ0 = f(λ−5)1+σ+···+σa−1
(20)

is the unit root of the Calabi-Yau threefold Vλ0.

Proof. By the discussion in part (b), one finds the expression of the unique local horizontal
section of the crystal M constructed in the above proposition with respect to ∇. Thus
the assertion follows by Corollary 2.2. The factor α(λ) := λ−15(1− λ−5) in (14) given by
(18) does not appear in the formula (20) since(

α(λ)
α(λp)

)1+σ+···σa−1

= 1.

Similar to the proof of Theorem 3.3, the constant γ = 1 in that corollary can be derived
either by applying [3], Lemma 6.2 ([12], Theorem 4.3 (2)) or by using the explicit expres-
sion ([10], Theorem 1) of the associated formal group ([12], §5). �

(d) Some open questions

In our attempt to write down a formula of a horizontal section for higher dimensional
generalization of the family (15), we have observed the following identity, which we are
not able to establish.

Conjecture 4.4 For all positive integers n > r,

(
n

r

)
=
(
n− r − 1

r

)
+

[ r+1
2 ]∑
i=1

[(
r − i+ 1

i

)
+
(
r − i
i− 1

)](
n− r + i− 1

r − i

)
.

The following is some thought concerning the “canonical lifting” of a member in the
Dwork family.

Let M be the Hodge F -crystal of rank four over A∞ constructed in Proposition
4.2. Take a W -point λ of A∞ and let S = W [[t − λ]] be the formal completion of the
parameter space at λ. Let X = Vt × S be the base change of the family Vt to S and
N =M⊗W [[t− λ]] be the associated crystal. Let TS/W be the tangent space of S over
W . Write Fi = FiliH3

dR(X/S). Then we have the following commutative diagram

TS/W κ //

∇
**

δ

((

H1(X , TX/S)

β

��
Hom(F3,F2/F3)

γ

��
Hom(F3, (F2 ∩N )/F3),
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where κ is the Kodaira-Spencer class associated to X/S, the map β is induced from the
natural pairing

H1(X , TX/S)×H0(X ,Ω3)→ H1(X ,Ω2),

and γ is the projection. Notice that δ is an isomorphism at least for almost all prime p
since it is so over characteristic zero. Thus S may be regarded as the universal deformation
space of M at λ.

On the other hand, fix a k-point of A0 with e0(t) = λ0 and let λ ∈ W be any lifting
of λ0. Let X = Vλ0 over k and Y = Vλ over W be the corresponding quintics. Let
M = e∗0M. Suppose M is ordinary (see [12], Theorem 2.2). Then we have a slope
decomposition M = P ⊕ P ′, where P and P ′ has slopes ≥ 2 and ≤ 2, respectively ([6],
Theorem 1.6.1). The lifting Y gives rise to the relation

P ⊕ P ′ = M ⊂ H3
cris(X/W ) = H3

dR(Y/W ) ⊃ Fil3Y := H0(Y/W,Ω3).

Let QY be the projection of Fil3Y to P . Then QY is an admissible filtration of P ([9],
Definition (V.1.4)) and the pair (P,QY ) corresponds ([9], Theorem (V.1.6)) to a lifting
G to W of the p-divisible group G0 over k associated to P (more precisely, to the Tate
twist P (2)). Together with the discussion in the previous paragraph, we get a bijection
α from the set of liftings of X to W to the set of liftings of G0 to W .

Notice that since G0 is a direct sum of a 1-dimensional multiplicative formal group
and an étale p-divisible group of rank 1, there is a “canonical lifting” of G0 over W . This
lifting thus corresponds to the “canonical lifting” of X to W .

Questions.

(i) Can one define the p-divisible groups G0 and G in terms of cohomology of certain
sheaves on the corresponding schemes? If this can be done, can one construct α
functorially in terms of cohomology?

(ii) Suppose (i) can be done affirmatively. Is there any relation between the canonical
lifting discussed above and the canonical coordinate q from mirror symmetry (see
[8])? For any α0 ∈ k such that Vα0 is ordinary, let αcan be the lifting of α0 corre-
sponding to the canonical lifting of Vα0 . Based on the work of Dwork (see [3], §7), we
may also ask if there exists χ(t) ∈ tp + pW [[t, t−1]], such that χa(αcan) = αcan and
the formal series F (t)/F (χ(t)) has an analytic continuation to the domain strictly
greater than the domain of f(t) given in (19).

The questions above may be regarded as an attempt to generalize the Serre-Tate
coordinate on the local moduli of an ordinary elliptic curve (see [9], Appendix) to a
special motive of weight three and make a connection to the mirror map q mentioned in
(ii) above.
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