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Abstract

We investigate the structures of Calabi-Yau differential equations and the relations
to the arithmetic of the pencils of Calabi-Yau varieties behind the equations. This
provides explanations of some observations and computations in the recent paper [14].

0 Introduction

This note may be regarded as a supplement to the paper [14] of Samol and van Straten.
In that paper, the authors study the variation, along a projective line, of the Frobenius
action on the cohomology of a Calabi-Yau variety (over a finite field) via the expansion
at a totally degenerate point of a certain period of (a lifting of) the pencil. For certain
families, they provide a p-adic analytic formula for the unit root as well as the Frobenius
polynomial (in the case of rank 4) of each fiber provided the fiber is ordinary. Their explicit
computations for those examples also reveal the existence of Dwork type congruences
among the coefficients of the period of such a family.

In this note, we provide some theoretical explanations of the observations and compu-
tations in their paper. In particular, we show that certain cases of the Dwork congruences,
including the mod p ones, follow from the relative geometry of the family.

This article is organized as follows. In §1, we explore the notion of ordinary differential
equations of Calabi-Yau type over a field of characteristic 0 and derive some basic algebraic
properties of them. The associated differential modules assemble the structures of the
Gauss-Manin connection and the Poincaré pairing on certain parts of the relative de
Rham cohomology groups of families of Calabi-Yau varieties over an affine line with totally
degenerate fibers at the origin. In §2, we investigate some cohomological implications of
the existence of a degenerate point of a pencil of Calabi-Yau varieties. For example, we see
that the Galois representation on the cohomology of a certain degenerate fiber of a family
over Q coincides with the representation attached to a modular form. §3 is devoted to
the study of the mod p and p-adic properties of the Calabi-Yau equations. In particular,
we study the relation between the solutions of a Calabi-Yau differential equation and the
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p-adic Hasse invariant of the underlying family. This relation provides an explanation of
parts of the Dwork congruences. Unfortunately at this stage, we do not know how to
deal with these Dwork congruences in general. Finally, some examples are given in §4,
including a further inspection of the Hadamard products appeared in [14].

1 Ordinary differential equations of Calabi-Yau type

This section consists of exercises in the theory of differential modules. For basic references,
see [20, Chap 2]. We recall the notion of differential equations of Calabi-Yau type and
derive some basic properties of them. Such equations arise in the study of the Picard-Fuchs
equations of pencils of Calabi-Yau varieties with certain degenerations. We postpone
the geometric picture to the following sections. Notice that some properties we derived
here (e.g., Lemma 1.3) can be obtained more easily if the differential equations are from
geometry.

Let K be a field of characteristic 0 with a fixed embedding into C. Denote by K ⊂ C
the algebraic closure of K. Let t denote a variable. It will also be regarded as a fixed
parameter of the projective line P1 over K. Let θ = t ddt be the usual logarithmic derivation
with respect to t. In this paper, we adapt the point of view that the derivative θ near a
regular singular point is more natural with respect to the logarithmic structure associated
to the divisor {0} ⊂ P1. For this reason we will use the highly non-standard convention:

g′ := θg

for a differentiable function g = g(t) of t throughout the discussion. Now consider an
ordinary linear differential operator of order n ≥ 1 of the form

L = θn +
n−1∑
i=0

aiθ
i (1)

with coefficients ai = ai(t) ∈ K(t).

(a) The condition (N) and the β-factor

Suppose L is a differential operator of order n of the form (1). Consider the following
condition on L :

(N) Null exponents: L has a regular singularity at the origin t = 0 (i.e., ai ∈ K(t)∩K[[t]])
and the associated indicial polynomial of L at this point reduces to

sn +
n−1∑
i=0

ai(0)si = sn. (2)

For any L as in (1), let formally

β := exp
(

2
n

∫
an−1

dt

t

)
(3)
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(i.e. a non-zero solution of nβ′ = 2an−1β). We call it the β-factor of L. It exists at least
in some differential field extension of K(t).

Lemma 1.1 Suppose L as in (1) satisfies the condition (N). Then we have the following.

(i) The β-factor in (3) can be taken from (1 + tK[[t]]).

(ii) Regard L as a differential operator in K(t)[θ]. Then the differential Galois group of
L is contained in SL(n)K if and only if β can be chosen with√

βn ∈ K(t) ∩ (1 + tK[[t]]) .

Proof. By (2), an−1(0) = 0 and hence one can formally choose∫
an−1

dt

t
∈ tK[[t]].

Thus the first assertion follows. The differential Galois group of L ∈ K(t)[θ] is in SL(n)
if and only if there is a non-zero solution in K(t) of the operator θ + an−1 ([20, Exercise
1.35.5]). Thus one can require that

β ∈ 2/n

√
K(t) ∩ (1 + tK[[t]])

and (ii) follows accordingly. �

From now on, we will always assume that β ∈ (1 + tK[[t]]) if L satisfies the condition
(N).

(b) The self-adjointness and the polarization

Let L be as in (1). Recall that the formal adjoint L∗ of L is the differential operator

L∗ = (−1)nθn +
n−1∑
i=0

(−1)iθiai.

We say that L is self-adjoint if, as elements in K(t)[θ],

L∗ = (−1)nβLβ−1, (4)

where β is defined in (3).

For any L of order n, denote byML the left K(t)[θ]-module with a generator η defined
by:

K(t) → ML := K(t)[θ]/K(t)[θ]L (5)
1 7→ η,

where the map is the natural projection. As a K(t)-module, ML is free of rank n with a
basis {η(i)}n−1

i=0 , where η(i) := θiη. An element x ∈ML is called horizontal if x′ := θx = 0.

3



Define a filtration Fil• on ML by setting Fili = the K(t)-submodule generated by
{η(j)}n−1−i

j=0 . A polarization on ML is a K(t)-linear, (−1)n+1-symmetric, non-degenerate
horizontal pairing

〈 , 〉 :ML ×ML → K(t)

such that 〈Fili,Filn−i〉 = 0 for 0 ≤ i ≤ (n−1). As usual, we sayML is polarizable if there
exists a polarization on it; ML is called polarized if it is equipped with an underlying
polarization. The aim of this subsection is to prove the following.

Theorem 1.2 Let L be as in (1) and β be defined in (3). Then L is self-adjoint with
β ∈ K(t) if and only if ML is polarizable.

We first prove the following.

Lemma 1.3 Let 〈 , 〉 be a K(t)-linear horizontal pairing on ML such that 〈η, η(i)〉 = 0
for 0 ≤ i < (n− 1). Let γ = 〈η, η(n−1)〉. We have

(i) The pairing is uniquely determined by γ and γ = cβ−1 for some c ∈ K.

(ii) The pairing is (−1)n+1-symmetric.

(iii) The pairing is a polarization if γ 6= 0.

Proof. Since 〈 , 〉 is horizontal, the values 〈η, η(i)〉, 0 ≤ i ≤ m uniquely determine 〈η(i), η(j)〉
for all i+ j ≤ m by a simple inductive procedure of taking derivatives. Thus in our case,
the pairing is uniquely determined by γ. We have 〈Fili,Filn−i〉 = 0 for 0 ≤ i ≤ (n − 1)
and the pairing is trivial if γ = 0.

Since 〈η, η(n−2)〉 = 0, we have

0 = 〈η, η(n−2)〉′

= 〈η′, η(n−2)〉+ 〈η, η(n−1)〉,

which implies that 〈η′, η(n−2)〉 = −γ. Similarly one finds, for 0 ≤ i ≤ n− 1, that

〈η(i), η(n−1−i)〉 = (−1)iγ

by induction. In particular, the pairing is non-degenerate if γ 6= 0.
Assume n = 2l is even. Then

γ = 〈η, η(n−1)〉
= −〈η′, η(n−2)〉

...
= (−1)l−1〈η(l−1), η(l)〉.

Taking derivatives of the l equations above, rewriting η(n) in terms of {η(i)}n−1
i=0 via L and

summing them up, one gets
lγ′ = −an−1γ.
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Thus by definition, γ = cβ−1 for some c ∈ K. The computation is similar for n odd.
We now prove the parity of 〈 , 〉. We may assume that the pairing is non-degenerate.

Let N = HomK(t)(ML,K(t)) and consider the natural pairing

( , ) : N ×ML → K(t)

given by (f,m) = f(m). We equip N with the differential module structure such that
( , ) is horizontal. Then indeed, as a K(t)[θ]-module, N is generated by ξ with

(ξ, η(i)) =
{

1 if i = n− 1
0 otherwise

([20, Exercise 2.12.6]). Denote ξ(i) = θiξ. By a similar computation as above, one deduces
that

(ξ(i), η(j)) =
{

(−1)i if i+ j = n− 1
0 otherwise.

Now the non-degenerate paring 〈 , 〉 induces an isomorphism f betweenML and N and it
sends η to γξ. Thus under f , we can regard {ξ(i)}n−1

i=0 as another basis ofML. Moreover,
since N and ML are dual to each other (indeed, N =ML∗), after switching the roles of
ML and N , we see that

〈ξ(i), η(j)〉 = (−1)n−1〈η(j), ξ(i)〉.

This completes the proof of the parity of 〈 , 〉. �

Proof of Thm 1.2. Suppose L is self-adjoint and β ∈ K(t). Then by the Lemma above,
we can equip ML with the polarization determined by setting 〈η, η(n−1)〉 = β−1.

On the other hand, suppose ML is polarized. Then β ∈ K(t) by the Lemma above.
Multiplying by a non-zero constant, we may assume that 〈η, η(n−1)〉 = β−1. Then βη is
dual to η(n−1) with respect to the basis {η(i)}n−1

i=0 . Thus L∗βη = 0 ([20, Exercise 2.12.6])
and hence L∗ = (−1)nβLβ−1. �

(c) Calabi-Yau differential equations and the q-coordinate

Definition. A differential operator L ∈ K(t)[θ] of the form (1) is called Calabi-Yau if L is
self-adjoint and satisfies condition (N) in §1(a).

Remark. It might be better to call such an L as above locally or quasi-Calabi-Yau since in
literature (e.g., in [1], [14]), there are some integral conditions on solutions of L (cf. Thm
3.3) and here we do not require that L is regular singular away from 0. However there
seems to be no unified definition yet.

For any L as in (1) satisfying the condition (N), we set

ΛL = K[[t]][θ]/K[[t]][θ]L. (6)

It is a K[[t]]-lattice in the completion ML ⊗K[t] K[[t]] of ML. We abuse the notation by
denoting Fili ⊂ ΛL the induced filtration from Fili ⊂ML.
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Suppose L is Calabi-Yau. Denote by F (t) = F0(t) the unique formal power series
solution of L with constant term 1 near t = 0

LF (t) = 0, F (t) ∈ 1 + tK[[t]]; (7)

for n ≥ 2, denote by Fi(t), 1 ≤ i ≤ n− 1, the solutions with logarithmic pole of the form

LFi(t) = 0,
i∑

r=0

(−1)rFi−r(t) ·
logr t
r!
∈ tK[[t]]. (8)

Thus {Fi} forms the Frobenius basis of solutions near t = 0 of L. Let

wri = wr(F, F1, · · · , Fi) := det
(
F (s)
r

)
0≤r,s≤i

(9)

be the wronskians of {Fr}ir=0 and set

q = exp
(
F1

F

)
∈ t+ t2K[[t]]. (10)

Thus K[[t]] = K[[q]]. We call q the q-coordinate of L.

Theorem 1.4 Suppose L in (1) is Calabi-Yau. With the notations above, there exists a
unique increasing filtration U• of K[[t]][θ]-submodules of ΛL such that, for all i,

ΛL = Ui ⊕ Fili+1 (11)

and Ui+1/Ui are trivial K[[t]][θ]-modules. Moreover, up to a multiplicative constant, there
exists a unique sequence {ui ∈ ΛL}n−1

i=0 with the following two properties:

(i) As a K[[t]]-module, Ui is generated by {ur}ir=0.

(ii) ui is of the form ui =
∑n−1−i

r=0 vi,rη
(r) with

vi,n−1−i = β
wri
wri−1

. (12)

Consequently, we have u′i+1 = τi+1 · ui, where

τi+1 =
wri−1wri+1

wr2
i

,

and in particular, τ1 = (log q)′.

Proof. We find {ui} satisfying (11) and (12) by induction.
The condition (N) of L implies that, up to a constant multiple, there is a unique

non-zero element

u0 =
n−1∑
r=0

v0,rη
(r), v0,r ∈ K[[t]]

6



which is horizontal. Since
L〈u0, η〉 = 〈u0,Lη〉 = 0,

we see that v0,n−1 = cβF for some constant c by Lemma 1.3. It is obvious that c 6= 0.
Thus after modifying by a constant, v0,n−1 is of the form (12).

Let L[i] be the i-th exterior product of L. Then L[i] satisfies the condition (N) and
ΛL[i] is a quotient of the i-th exterior power of the K[[t]]-module ΛL. There exists a unique
(up to a scalar) horizontal u[i] ∈ ΛL[i] of the form

u[i] =
∑

r1≤···≤ri

v
[i]
r1···riη

(r1) ∧ · · · ∧ η(ri)

with v
[i]
n−i,··· ,n−1 6= 0. (Notice that η(n−i) ∧ · · · ∧ η(n−1) 6= 0 in ΛL[i] .) With the induced

pairing,
L[i]〈u[i], η ∧ · · · ∧ η(i−1)〉 = 〈u[i],L[i]

(
η ∧ · · · ∧ η(i−1)

)
〉 = 0.

Thus we have, after modifying by a scalar, v[i]
n−i,··· ,n−1 = βiwri ∈ K[[t]]×. Therefore, by

subtracting an element in Ui−1, we obtain ui satisfying (11) and (12). �

Corollary 1.5 Suppose L in (1) is Calabi-Yau. With notations in Thm 1.4, we have
〈Ui−1, Un−1−i〉 = 0 and τi = τn−i for all 1 ≤ i ≤ n.

Proof. By the last assertion of Thm 1.4, we see that K(t) ⊗K[t] Ui are the only possible
K((t))[θ]-submodules of K(t) ⊗K[t] ΛL. Since Ui is stable under θ, so is its orthogonal
complement U⊥i . Thus by a rank counting, U⊥i = Un−2−i.

Since ui lies in Fili and 〈Fili,Filn−i〉 = 0, we have 〈ui, un−1−j〉 = 0 if i 6= j and
〈ui, un−1−i〉 are non-zero constants. Consequently,

0 = 〈ui, un−i〉′

= τi · 〈ui−1, un−i〉+ τn−i · 〈ui, un−1−i〉.

Since τi(0) = 1 for all i by definition, the second assertion follows. �

(d) Examples: lower order cases

In the remaining of this section, we consider Calabi-Yau L in the form (1) of lower orders
more explicitly.

Suppose n = 1. Then condition (4) is empty. ΛL is generated by βFη, which is
horizontal.

Suppose n = 2. Then condition (4) is empty. ΛL is generated by {u0, u1} given by

u0 = β[Fη′ − F ′η],

u1 =
η

F
.

One computes easily that u′0 = 0 and u′1 = (log q)′u0. See §4(a) for a concrete example.

Suppose n = 3. We have the following.
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Proposition 1.6 A differential operator J = θ3 +
∑2

i=0 biθ
2 ∈ K(t)[θ] of order 3 is

Calabi-Yau if and only if it is the symmetric square of a Calabi-Yau L in the form (1) of
order 2.

Proof. The operator J is the symmetric square of L if and only if

b2 = 3a1

b1 = 4a0 + a′1 + 2a2
1 (13)

b0 = a′0 + 2a0a1.

From the first two relations in (13), we see that the pair (b2, b1) determines the pair
(a1, a0) uniquely. On the other hand, if we rewrite the last equation in (13) in terms of
bi, then it is equivalent to the condition (4) on J . (Explicitly, the condition is equivalent
to the relation

2βb0 = (βb1)′ − (βb2)′′ + β(3),

where β is the β-factor (3) of J .) Finally if J is indeed the symmetric square of L, it is
easy to check that J satisfies (N) if and only if L does too. �

Corollary 1.7 Let J = θ3 +
∑2

i=0 biθ
2 ∈ K(t)[θ] be Calabi-Yau of order 3. There exists

a basis {vi}2i=0 of ΛJ satisfying condition (11) and (12) in Thm 1.4 with

v′2 = (log q̌)′v1,

where q̌ is the q-coordinate (10) of J .

Proof. By the lemma above, there is a Calabi-Yau L such that ΛJ is the symmetric square
of ΛL as K[[t]][θ]-modules. Let {u0, u1} be the basis of ΛL constructed in the discussion
of the case n = 2 above. Let

v0 = u2
0, v1 = u0u1, v2 =

1
2
u2

1.

Then they form a basis of ΛJ and satisfy the derivative conditions. �

Remark. In the case of the corollary above, q̌ coincides with the q-coordinate of the L in
the proof.

(e) The case n = 4 and 5

Let us now consider the case when n = 4. Let L as in (1) be Calabi-Yau. Explicitly, the
condition (4) translates to the relation on the coefficients of L :

a1 = a′2 +
1
2
a2a3 −

1
2
a′′3 −

3
4
a3a
′
3 −

1
8
a3

3. (14)

Via the β-factor (3) of L, equation (14) is equivalent to

βa1 − (βa2)′ + (βa3)′′ − β′′′ = 0.
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Proposition 1.8 With the notation above, assume that L in (1) is a Calabi-Yau differ-
ential equation of order 4. Let β, F,G := F1 be as given in (3), (7), (8), respectively.
Consider the following elements in the K[[t]][θ]-module ΛL:

u0 = β[Fη′′′ − F ′η′′ + F ′′η′ − F ′′′η] + β′[Fη′′ − F ′′η] + (βa2 − β′′)[Fη′ − F ′η],

u1 =
β

F

[
(FG′ − F ′G)η′′ − (FG′′ − F ′′G)η′ + (F ′G′′ − F ′′G′)η

]
,

u2 =
Fη′ − F ′η
FG′ − F ′G

,

u3 =
η

F
.

Then {ui}3i=0 forms a basis of ΛL and satisfies conditions (11) and (12) in Thm 1.4. We
have

u′2 = κ · (log q)′ · u1

u′3 = (log q)′ · u2,

where q is the q-coordinate of L and

κ =
(
q
d

dq

)2(F2

F

)
∈ K[[t]] = K[[q]].

Proof. By a direct computation, we have u′0 = 0 and u′3 = (log q)′ · u2. Also one derives
easily that

u′2 =
F 2

β(FG′ − F ′G)2
· u1

= κ · (log q)′ · u1,

where the second equality comes from [1, Prop 1]. Finally u1 = (log q)′ · u0 by Thm 1.4.
�

Remark. In terms of the α-factor introduced in [22, Lemma 4.1], we have (up to a constant
multiple)

α = t3β.

We continue to assume that L ∈ K(t)[θ] with leading coefficient 1 is Calabi-Yau of
order 4. Let

Ľ = θ5 +
4∑
i=0

ǎiθ
i ∈ K(t)[θ]
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be the second exterior power of L. Notice that by the self-adjointness of L, the operator
Ľ is of order 5 (see [1, Prop 2 and 3]). Explicitly, we have

ǎ4 =
5
2
a3

ǎ3 = 2a2 + 2a′3 +
7
4
a2

3

ǎ2 = −a1 + 4a′2 +
7
2
a2a3 (15)

ǎ1 = −4a0 + 2a′1 + a2
2 + a′′2 +

3
2
a1a3 +

3
2
a′2a3 +

1
4
a2a

2
3

ǎ0 = −2a′0 + a′′1 − 2a0a3 + a1a2 +
3
2
a′1a3 +

1
4
a1a

2
3.

Proposition 1.9 Keep the assumptions and notations as above. Then Ľ is Calabi-Yau
and there exists a basis {vi}4i=0 of ΛĽ satisfying condition (11) and (12) in Thm 1.4 with

v′1 = κ · (log q)′ · v0 , v′2 = (log q)′ · v1,

v′3 = (log q)′ · v2, , v′4 = κ · (log q)′ · v3,

where q, κ are defined in Thm 1.8. Consequently the q-coordinate q̌ of Ľ satisfies

d log q̌ = κ · d log q.

Proof. The self-adjointness is proved by a direct computation (see below for the explicit
relations). Let {ui}3i=0 be the basis of ΛL constructed in Thm 1.8. Being the exterior
power of ΛL, the K[[t]][θ]-module ΛĽ is isomorphic to the quotient of

∧2
K[[t]] ΛL modulo

the condition that (u0 ∧ u3 − u1 ∧ u2) is horizontal. (cf. [1, Prop 2]). Put

v0 = u0 ∧ u1, v1 = u0 ∧ u2, v2 =
1
2

(u0 ∧ u3 + u1 ∧ u2), v3 =
1
2
u1 ∧ u3, v4 =

1
2
u2 ∧ u3.

One then checks readily that they do the jobs.
On the other hand, with the notations in §1(c), we have

log q̌ =
FF ′2 − F ′F2

FF ′1 − F ′F1

= q
d

dq

(
F2

F

)
=

∫
κ d log q.

Here we take the integral congruent to log q modulo tK[[t]]. �

Conversely, let J = θ5 +
∑4

i=0 biθ
i ∈ K(t)[θ] be a Calabi-Yau differential operator of

order 5. If β is the β-factor of J , the self-adjointness of J is equivalent to the following
two relations:

0 = 2(βb2)− 3(βb3)′ + 4(βb4)′′ − 5(β)(3) (16)
2(βb0) = (βb1)′ − (βb2)′′ + (βb3)(3) − (βb4)(4) + (β)(5),

which together are equivalent to the two relations in [14, Prop 2.3].
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Proposition 1.10 Let J be Calabi-Yau of order 5 as above. Then there exists a unique
Calabi-Yau L ∈ K(t)[θ] of the form (1) of order 4 such that J is the second exterior
power of L.

Proof. By the first four formulas in (15), we can determine the coefficients of L uniquely
from those of J . One checks that the condition (14) follows from (16). The condition
(N) on L is obvious. �

2 Degenerations

For the definitions and basic properties of logarithmic structures, see [7] or [5].

Fix a base field k. Consider a flat projective pencil π : X → P1 whose generic fiber is
smooth. We further assume that each singular fiber of π is a union of reduced divisors with
normal crossings. (Over characteristic zero, this is possible by resolution of singularities
and by passing to a finite steps of base change of cyclic covering from P1 to P1.) For such
a pencil π, we equip X and P1 with the natural logarithmic structures associated to the
union of the singular fibers (which is a reduced normal crossing divisor on X) and the
critical values (which form a reduced divisor on P1), respectively. Then π is log-smooth.
Denote by ωi = ωiX/P1 the (locally free) sheaf on X of relative differential i-forms with
log poles with respect to the log structures.

Now suppose that the generic fiber of π is an absolutely irreducible Calabi-Yau variety
of dimension m ≥ 1. We will call such a π a nice pencil of Calabi-Yau varieties of
dimension m. Then the sheaf π∗ωm is an invertible sheaf on P1. Suppose there exists a
locally direct factor M of Rmπ∗ω• of rank (m + 1) which contains π∗ωm and is stable
under the Gauss-Manin connection ∇. Now suppose k = C. Let a ∈ P1(C) be a C-valued
point and let N denote (the logarithm of) the local monodromy around a. Then N acts
on the stalk Ma at a and is nilpotent.

We make the following working definition, which is a special variant of being Hodge-
Tate in the sense of Deligne ([2, §6]).

Definition. With notations and assumptions as above, we call M totally degenerate at a
if Nm 6= 0 on Ma. It is called of rigid type at a if Nm−1 = 0 but Nm−2 6= 0 on Ma. We
will abuse the notation by saying that the fiber at a of the family π is totally degenerate
(resp. of rigid type) if there exists an M as above which is totally degenerate (resp. of
rigid type) at a. We call M the degenerate factor of π in this case.

Remark. Suppose there is a totally degenerate fiber of π : X → P1 over C. Then
the degenerate factor M is the unique irreducible locally direct factor of Rmπ∗ω• which
contains π∗ωm and is stable under ∇.

For example, consider the case when m = 3. Let M⊃ R3π∗ω
• be of rank 4, which is

locally a direct summand and is stable under ∇. Let N be the local monodromy around
a point a ∈ P1(C). Since N i : GrW3+iMa → GrW3−iMa(−i) is an isomorphism (of Hodge
structures) and the Hodge filtration Fili is locally free for each integer i, there are three
possibilities of the degeneration types of the Hodge structure on M at this point:
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(i) No degeneration (N = 0 on M).

(ii) The fiber is of rigid type. In this case, h1,1 = h3,0 = h0,3 = h2,2 = 1. That is, the
Hodge structure Ma is a consecutive extension of the Tate C(−2) of weight 4 by a
rigid (= rank 2) Calabi-Yau piece of weight 3 by the Tate C(−1) of weight 2.

(iii) The fiber is totally degenerate. In this case, h0,0 = h1,1 = h2,2 = h3,3 = 1. That
is, the Hodge structure Ma is a consecutive extension of Tate C(−i) of weights
2i = 6, 4, 2, 0.

Lemma 2.1 Let π : X → P1 over C be a nice pencil of Calabi-Yau varieties of di-
mension m as above with a totally degenerate fiber at 0. Then the Poincaré pairing is
non-degenerate around 0 on the degenerate factor M.

Proof. Let η be a local basis of sections of π∗ωm near 0. By assumption, we have, for
0 ≤ i ≤ m,

η(i) ∈ Film−i \Film−i+1

and they form a local basis of M at 0. Here η(i) = (∇(θ))iη (= N iη at 0). Since
(Fili)⊥ = Film+1−i, the cup-product γ := 〈η, η(m)〉 is an invertible function near 0. By
Lemma 1.3, the assertion follows. �

Corollary 2.2 Let π : X → P1 over K ⊂ C be a nice pencil of Calabi-Yau varieties
of dimension m with a totally degenerate fiber at 0. Let η be a local basis of sections of
π∗ω

m at 0 and let L be the Picard-Fuchs operator of η. Then L is a Calabi-Yau differential
equation with respect to the parameter t of order (m+ 1).

Proof. The self-adjointness of L follows from Lemma 2.1. The validity of condition (N) is
obvious by the total degeneracy assumption. �

Now suppose k = Q. Assume that the nice pencil π : X → P1 over Q of Calabi-Yau
varieties of dimension m is of rigid type at a ∈ P1(Q). Denote by W• the corresponding
monodromy filtration of the degenerate factor Ma at a. Then

dimQWi/Wi−1 =


0 if i odd and i 6= m
1 if i even, 2 ≤ i ≤ 2m− 2 and i 6= m
2 if i = m is odd
3 if i = m is even.

If m ≥ 3, the subquotient N = Wm/(Wm−1 +NWm+2) is then of rank two.

Proposition 2.3 Fix a rational prime `. With notations and assumptions as above,
the Gal(Q/Q)-representation on the `-adic étale realization Net of N coincides with the
representation attached to a cusp form of weight (m+ 1).

Proof. One knows Net is irreducible by [17, (4.8.9)]. If m is odd, the statement is a
consequence of Serre’s conjecture ([17, (3.2.4?) and Th 6]), which has recently been proved
in [10]. If m is even, one uses [11, Cor 1.4]. �
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3 Mod p and p-adic aspects

In this section, we fix a prime p and suppose p > m. Let (for simplicity) K be a finite
unramified extension of Qp with ring of integers W and residue field k. Let π : X → P1

be a nice pencil of Calabi-Yau varieties of dimension m over K with a totally degenerate
fiber at 0. Let ωi be the sheaf on X of relative differential i-forms with log-poles along
the logarithmic structure. We fix a basis η near 0 of sections of π∗ωm ⊂ Rmπ∗ω• and let
L be the Picard-Fuchs operator of η as before. We call that π has nice reduction if π has
a flat model over W such that

(i) the reduction π̄ : X̄ → P1 over k is also a nice pencil of Calabi-Yau varieties, and

(ii) the two log structures of π and π̄ are induced from a smooth log structure on the
flat model.

(a) The p-adic input

Lemma 3.1 Suppose the pencil π has nice reduction and the degenerate factor M0 at 0
is stable under (a lifting of) the absolute Frobenius. Then the Frobenius action on M0 is
ordinary and consequently M is generically ordinary.

Proof. (Cf. [21, Thm 2.2].) SinceM is totally degenerate at 0, the Hodge structure onM0

is a successive extension of rank 1 Hodge structures of pairwise different weights. Since
the Frobenius respects the Hodge and the weight filtrations (cf. [12, Remarques 3.28]),
the result follows. �

Lemma 3.2 Suppose the pencil π over K with a totally degenerate fiber at 0 has nice
reduction and the degenerate factor M0 at 0 is stable under Frobenius. Then there exists
a non-zero constant c ∈W such that cβF ∈W [[t]].

Proof. By Lemma 3.1 and [8, Prop 3.1.3] (cf. [22, Cor 2.2]), there is a non-zero element

u =
m∑
i=0

viη
(i), vi ∈W [[t]]

which is horizontal. By Thm 1.4, vm = cβF for some constant c. �

Theorem 3.3 Let π be a nice pencil of Calabi-Yau varieties of dimension m over Q. Fix
a basis near 0 of sections of π∗ωm and let L be the associated Picard-Fuchs operator. Let
F be the formal solution of L as in (7). Then F (t) ∈ (1 + tZp[[t]]) for all p sufficiently
large. In particular, F (t) ∈ Z[1/N ][[t]] for some integer N 6= 0.

Proof. (Cf. [14, Conj 2.1].) By the Lemma above and its proof, we see that except for a
finite number of primes, βF ∈ Zp[[t]] for all the remaining p such that the pencil π has
nice reduction. By Lemma 1.3, β(t) is rational over Q and hence is in (1 + tZp[[t]]) for
almost all p. Thus the assertion follows. �
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(b) The Hasse invariant and the differential equation

Assume that π has nice reduction π̄. Let ω̄i be the sheaf on X̄ of relative differential
i-forms with log-poles. We choose η that can be extended to the flat model of π and
assume the following condition is satisfied:

(R) Non-degeneracy of the reduction of η at the origin:

〈η, η(m)〉 ∈W× + tW [[t]].

Let σ be the lifting to W [[t]] of the absolute Frobenius defined by sending t to tp. For any
x ∈W [[t]], denote by xσ the image under σ.

Consider the adjoint morphism

V : π̄∗ω̄m → σ∗π̄∗ω̄
m

of the absolute Frobenius with respect to the cup-product on Rmπ∗ω̄
•. Notice that V is

horizontal since the Frobenius and the cup-product are. Represent V by H defined by

V (η) = H · σ∗η. (17)

With our choice of the parameter, H is an element in k(t). We call H the Hasse invariant
of the family π̄ (with respect to η). Notice that H(0) is well-defined and non-zero at t = 0
by Lemma 3.1.

Proposition 3.4 We have LH = 0. That is, with respect to the parameter t, the Hasse
invariant H is a rational solution of L in characteristic p.

Proof. By the very definition, ∇(L)η = 0 and ∇σ∗η = 0. Since V is horizontal, we see
that LH = 0 by applying ∇(L) to the equation (17). �

Thus, for example, if π∗ω̄m = O(1) on P1, then H is a section ofO(p−1). Consequently,
if η ∈ Γ(P1, π∗ω̄

m) and regarding H as a function of t, we see that H ∈ k[t] is of degree
≤ (p− 1).

If (R) is satisfied, then by Lemma 1.3, 3.2 and their proofs, F ∈W [[t]]. Let

H(t) =
F (t)
F (t)σ

(18)

regarded as a formal power series over W . Let H̄(t) be the reduction mod p of H(t).

Proposition 3.5 Suppose π satisfies the condition (R) above. Then we have the follow-
ing.

(i) H̄(t) ∈ (1 + tk[[t]]) ∩ k(t).

(ii) The function H̄ satisfies LH̄ = 0.

14



Proof. With the notations in Thm 1.4, the element u0 = βFη(m) + · · · is a local generator
of the submodule U0 of horizontal sections of the degenerate factor M (cf. the proof of
Lemma 3.2). Then U0 is a unit-root F -(iso)crystal ([8, Prop 3.1.3]) and hence by [8,
4.1.9], the function βF/(βF )σ is a lifting of an element in k(t). Thus the first assertion
follows.

Formally we have

F (t) =
F (t)
F (t)σ

F (t)σ

F (t)σ2 · · · = H(t)H(t)σ · · · .

Applying the differential operator L, we have

0 = LF (t) = L
(
H(t)H(t)σ · · ·

)
≡

(
LH(t)

)(
H(t)σ · · ·

)
≡

(
LH̄(t)

)(
H̄(t)p · · ·

)
(mod p).

Thus the rational function H̄(t) is a solution of L in characteristic p. �

Proposition 3.6 Assume condition (R) is fulfilled. Let c = H(0). We have H = cH̄
regarded as rational functions of t.

Proof. Over a non-empty open subset of P1, both functions H and cH̄ represent the
absolute Frobenius action on η ([8, 4.1.9]; cf. the proof of Prop 3.5(i)). Thus the assertion
follows. �

Corollary 3.7 Assume that condition (R) is fulfilled and π∗ω
m = O(1). Suppose η ∈

Γ(P1, π∗ω̄
m) and let c = H(0). Then cH̄(t) = H(t) ≡ cF<p(t) mod p, where F<p(t) is

the truncation of F (t) up to degree (p− 1).

Proof. Under the assumptions, H(t) is a polynomial of degree < p. �

Remark. The statement of the corollary is equivalent to the mod p case of the Dwork
congruences of the coefficients χ(n) of F (t) =

∑
χ(n)tn in [14, §2.3]. Indeed let ν =∑

i≥0 νip
i, 0 ≤ νi < p, be the p-adic expansion of an integer ν ≥ 0. Then Cor 3.7 implies

χ(ν) ≡
∏
i≥0

χ(νi) mod p,

which is equivalent to the mod p case.
On the other hand, if π∗ωm = O(n) for some n > 1, then H̄ is of higher degree. This

may be used to detect the degree of π∗ωm from the period F .

(c) The higher congruences

We keep the assumptions and notations in Lemma 3.1; assume that π has nice reduction
π̄ and (R) is fulfilled.
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In this subsection, we are interested in understanding the higher Dwork congruences
geometrically. For this purpose, we suppose that π∗ωm = O(1) over W and η ∈ π∗ωm(P1)
is globally defined. Thus β−1, which equals 〈η, η(m)〉 up to a multiplicative constant, is
in W [t].

We use the following notations. Let H0 = F<p(t). Denote by ∆0 = Spec k[t]/H̄ the
Hasse locus of the pencil π̄. Let ∆∞ = (A1

W )/∆0
be the completion of the affine line A1

W

along ∆0. Define
R∞ = lim←−

n

W [t,H−1
0 ]/(pn+1),

and let
S∞ = Spf R∞.

Under this circumstance, H ∈ R∞ is a section of O(p − 1) with H ≡ H0 mod p
(cf. Cor 3.7 and [8, 4.1.9]; locally H defined in (18) represents the absolute Frobenius on
β−1u up to a multiplicative constant, where u occurs in the proof of Lemma 3.2). On the
other hand, the unit-root part of M defines a (multiplicative) formal group over S∞.

We make a further assumption:

(E) The above formal group over S∞ can be extended to a formal group G over the
completion (P1

W )/P1
k
.

For example ([21]), the Dwork pencil has certain degenerate fibers; however the at-
tached formal group can be extended to the whole (P1

W )/P1
k

in an explicit way by writing
down its logarithm (see [21, Prop 5.2]). See [22, §3], [23, §4] for more examples.

Now suppose (E) holds. Represent G by a formal group law over the affine part
(A1

W )/A1
k

with logarithm

l(τ) =
∞∑
n=1

α(n)
τn

n
, α(n) ∈ lim←−W [t]/(pi+1),

which is normalized by α(pn) ≡ Hα(pn−1)σ mod pn for all n ≥ 1. Write F (t) =∑
χ(n)tn. For any 1 ≤ m < p and s ≥ 0, consider the truncation of F (t)

F(mps) =
mps−1∑

n=(m−1)ps

χ(n)tn.

Lemma 3.8 With notations as above, let {an}∞n=0, an ∈ W [t], be a sequence with a0 ∈
W× and an+1 ≡ Haσn mod pn+1 for all n ≥ 0. Then we have the following.

(i) For any b ∈ W [t] with b ≡ a1 mod p, there exists a sequence {bn}∞n=1, bn ∈ W [t],
such that b1 = b and bn+1 ≡ Hbσn mod pn+1 for all n ≥ 1.

(ii) Fix a positive integer n. For any c ∈ W [t] with c ≡ an mod pn, there exists an
element c̃ ∈W [t], unique modulo pn+1, such that

an+1 · cσ ≡ aσn · c̃ mod pn+1.
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Proof. (i) Indeed, if b = a1 + pδ, one checks that the sequence of elements

bn = an + p · an−1δ
σn−1

, n ≥ 2

(with b1 = b) satisfies the requirement.
(ii) The assumption implies an+1 ≡ a1+p+···+pn

1 mod p. Write c = an + pnα. We are
asked to solve ε in

an+1

(
an + pnα

)σ ≡ aσn (an+1 + pnε) mod pn+1,

which is equivalent to solve
aσnε ≡ an+1α

σ mod p.

The latter has a unique solution a1 · ασ modulo p. �

Theorem 3.9 With notations as above and under the assumption (E), the formal power
series

l̃(τ) =
s≥0∑

1≤m<p
F(mps)

τmp
s

mps

is the logarithm of a formal group law G̃ over (A1
W )/A1

k
. Moreover, G̃ is strictly isomorphic

to G defined above over S∞.

Proof. We shall show that the sequence {F(mps)} satisfies the congruence property

F(mps) ≡ H · F σ(mps−1) mod ps. (19)

Consequently the theorem follows by [15, Thm (A.8), (A.9)].
For s = 1, the statement is a consequence of Cor 3.7.
Away from ∆∞, we have

α(m, s) :=
α(mps)

α(mps−1)σ
∈ R∞

and α(m, s) ≡ H mod ps for all s ≥ 1. To shorten the notation, first assume that H
mod p is exactly of degree (p − 1). Now since α(m, s) represents the absolute Frobe-
nius modulo ps, which is a section of the sheaf O(p − 1) of P1 over the affine open
SpecW [t,H−1

0 ]/(ps), we have

α(m, s) ≡ A

Hn0
mod ps (20)

for some n and A ∈W [t]/(ps) of degree (n+ 1)(p− 1).
On the other hand, applying Lemma 3.8(i) with an = α1,n and b = F(mp)/F(m) (∈W [t]

with invertible constant term), we obtain a sequence {bn} such that, for s ≥ 1,

α(m, s) ≡ bs
bσs−1

≡ H mod ps. (21)
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(Here we set b0 = F(m).) By the first congruence in (21) together with (20), we see that
deg bs = mps − 1. Now by a simple induction argument, the second congruence in (21)
together with Lemma 3.8(ii) (for {bn}) imply that one can take bs = F(mps) for all s ≥ 0.

In general, we represent the occurred finite degree elements as homogeneous elements
in W [t0, t1] (e.g., tmp

s−1
0 α(t1/t0) instead of α) to obtain that deg bs < mps and then repeat

the argument above. This completes the proof. �

Corollary 3.10 Write F (t) =
∑
χ(n)tn. For all non-negative integers ν,m, s with 0 ≤

ν < p, we have
χ(ν +mps+1) ≡ χ(ν)χ(mps) mod ps+1.

Proof. One checks readily that it suffices to establish the congruences for 1 ≤ m < p.
Assuming m is in this range. The theorem above (see (19)) implies that, for all s ≥ 0,

F · F σ(mps) ≡ F(mps+1) · F σ mod ps+1. (κm,s)

For m = 1, by comparing the coefficients of tν+ps+1
in both sides of the equation (κ1,s),

we get
ps−1∑
j=0

χ(ν + ps+1 − pj)χ(j) ≡
ps−1∑
j=0

χ(ν + pj)χ(ps − j) mod ps+1.

By canceling common terms on the two sides of the congruence, the assertion (correspond-
ing to j = 0) follows immediately. For m > 1, by comparing the coefficients of tν+mps+1

in both sides of equations (κm,s) and (κm−1,s), one obtains the desired congruences by
induction on m. �

Question. Is there a geometric/homological interpretation of the general Dwork congru-
ences or the supercongruent phenomena (see [13] and the references therein)?

(d) The higher Hasse invariant

Suppose that L satisfies the condition (R) and for simplicity that Rmπ∗ω• is of rank
(m+1). LetMcris be the relative m-th logarithmic crystalline cohomology of π̄. Assume
p odd. Consider N :=

∧2Mcris equipped with the induced cup-product pairing and with
Frobenius = p−1 · (the induced Frobenius from Mcris to

∧2Mcris). Then ξ = η ∧ η′ is a
local section of N and 6≡ 0 mod p.

Let N̄ = (N mod p) and V the adjoint of the Frobenius on N̄ . Define the Hasse
invariant Ȟ (with respect to ξ) of N by

V : N̄ → σ∗N̄
ξ 7→ Ȟ · σ∗ξ.

If η is a section over an open subset U of P1, then we have

Ȟ ∈ Γ
(
U,
(
π∗ω̄

m ⊗R1π∗ω̄
m−1

))
,
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and for x ∈ U(k̄), the Newton polygon of Mcris over x starts with slopes
0, 1 if H(x) 6= 0 and Ȟ(x) 6= 0

0, > 1 if H(x) 6= 0 but Ȟ(x) = 0
1/2, 1/2 if H(x) = 0 but Ȟ(x) 6= 0
> 1/2 if H(x) = 0 and Ȟ(x) = 0.

Consequently the variation of crystals Mcris (over U) away from Ȟ = 0 is an extension
([9, Thm 2.4.2])

0→M≤1 →Mcris

∣∣
U\{Ȟ=0} →M>1 → 0,

whereM≤1 (resp.M>1) is the slope ≤ 1 (resp. > 1) part which is of rank 2 (resp. m−1).

On the other hand, let

F̌ (t) = (FG′ − F ′G)(t) ∈ K[[t]].

Then the condition (R) on L implies that indeed, F̌ (t) ∈W [[t]]. Similarly to the discussion
in the previous subsection, if π∗ωm⊗R1π∗ω

m−1 = O(1) and ξ is a global section, we have
Ȟ(t) ≡ čF̌<p(t) mod p, where č = Ȟ(0).

4 Examples

(a) The Legendre family

Let λ be a fixed parameter of P1. Consider the Legendre family π : E → P1 of elliptic
curves over Q whose affine part is given by

y2 = x(x− 1)(x− λ).

The Picard-Fuchs operator L associated to the invariant differential

η =
dx

2y

is the one associated to the Gauss hypergeometric series

F (λ) := 2F1(
1
2
,
1
2
, 1;λ).

Note that the monodromy around λ = ∞ is not unipotent. Consider the double cover
a : P1 → P1 given by λ = t−2. Then

2η =
dx√

x(x− 1)(x− 1/t2)
=

tdx√
x(x− 1)(t2x− 1)

,

which is zero precisely when t = 0. Thus with respect to t, we have (a∗π)∗ω1
a∗E/P1 = O(1).

Let p be an odd prime. The discussion above shows that the Hasse invariant of the
family over Fp in the affine part with respect to λ is a polynomial of degree ≤ p−1

2 . In
fact,

H(λ) ≡ (−1)(p−1)/2F<p(λ) mod p
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is of degree exactly p−1
2 . This is due to the fact that H(λ) has only simple roots ([18,

Thm V.4.1]) and that the singular curve corresponding to t = 0 is ordinary.

Let an upper ′ denote the derivative with respect to log λ. The set{
u0 = (1− λ)[Fη′ − F ′η], u1 =

η

F

}
provides a local basis of

H := R1π∗

(
ω•E|A1/A1

)
near λ = 0 adapted to the slope filtration (cf. [8, §8]).

The Galois representation on the cohomology H0 over Q at λ = 0 is reducible. It has
the form

0→ Q(ε)→ H0 → Q(−1)(ε)→ 0,

where ε is the Legendre character. This is simply because the corresponding singular
curve splits over Q(

√
−1) but not over Q. This gives an explanation of the constant term

±1 of H(λ).

(b) Dwork families

Fix an integer n ≥ 2. The Dwork family of Calabi-Yau varieties of dimension (n − 1) is
the pencil of hypersurfaces in Pn given by the equation

Pt : Xn+1
1 + · · ·+Xn+1

n+1 − (n+ 1)tX1 · · ·Xn+1.

In this case, we consider the differential

η = Res
tΩ
Pt
,

where
Ω =

∑
(−1)iXidX1 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn+1.

Via the parameter λ = t−(n+1), the associated Picard-Fuchs operator L is the one associ-
ated to the generalized hypergeometric series

nFn−1

(
1

n+1 , · · · ,
n
n+1

1, · · · , 1 ;λ
)
.

Explicitly one can pick the annihilator of η to be

L = θnλ − λ
n∏
i=1

(
θλ +

i

n+ 1

)
= (1− λ)θnλ −

n

2
λθn−1

λ + · · ·

where θλ = λ d
dλ . One checks that β = (1−λ) is the β-factor of L regarded as a Calabi-Yau

differential operator in Q(λ)[θλ].
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Similar to the case of the Legendre family, the monodromy at λ =∞ is not unipotent.
However with respect to t, the form η is well-defined everywhere and vanishes precisely
when t = 0. Thus π∗ωn−1 = O(1). Consequently for the reduction over Fp, p - (n + 1),
the Hasse invariant H(λ), regarded as a polynomial of λ here, is a polynomial of degree
at most b p−1

n+1c. In fact the degree of H(λ) is exactly the upper bound. This is because
the Fermat point t = 0 is not ordinary if and only if p 6≡ 1 mod (n + 1) and there is no
n-multiple root of “H(t)”. Notice that in this example, double roots do occur in H(λ).

On the other hand, over each geometric point of µn+1 := Spec Q[t]/(tn+1 − 1) in P1,
the fiber of the Dwork family has ordinary double points as its singularities. Thus N2 = 0
for the local monodromy N around a point of µn+1. One can show that N 6= 0 in this case
([4, Cor 1.7]). Now consider the fiber over t = 1 in the case n = 4. Retain the notations
in the end of §2. Then the fiber is of rigid type and the subquotient W3/W2 is modular,
which was first proved by Schoen in [16]. The corresponding modular form is of weight 4
and level 25 and with the trivial character.

(c) Hadamard products

Here we describe how to obtain the unit roots precisely for certain Hadamard products
considered in [14, §3]. The only missing piece in loc.cit. is to determine the constant ε4
in Prop 2.7 there. To do this, we study the Frobenius action on the cohomology of the
totally degenerate fiber by applying the weight spectral sequence in [12]. For references
of Hadamard products and examples of pencils of elliptic curves we discuss here, see [14,
§§3.1 and 3.2].

Let X,Y → P1 be two pencils of elliptic curves over a finite field k of characteristic
p with totally degenerate fibers X0, Y0 at 0, respectively. We assume that X0, Y0 are
strictly normal crossing divisors. Let ξ1 and ξ2 be local bases at 0 of horizontal sections
of the relative H1

cris of X and Y over P1, respectively. Then ξi are eigenvectors of the
relative Frobenius. Denote by ci the corresponding eigenvalues. Then c1 = 1 if the
degenerate curve X0 is of split multiplicative type over k; c1 = −1 if X0 is non-split. The
corresponding statement for c2 is similar.

Geometrically, the Hadamard product comes from the following commutative diagram
with squares 1, 2, 3 being Cartesian:

Z

/.-,()*+1

//

��

X̃ × Y
/.-,()*+2

//

��

X × Y

��
C1 ∪ C2

/.-,()*+3

//

��

P̃1 × P1
b //

��

P1 × P1

π

���
�
�

0 // P1 P1.

Here π is the (coordinate-wise) multiplication; b is the blow-up of P1 × P1 along (∞, 0)
and (0,∞); Ci are rational curves with C1 = the strict transformation of b−1(P1× 0) and
C2 = that of b−1(0×P1). Notice that the map b induces isomorphisms from C1 to P1× 0
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and from C2 to 0× P1 and C1 ∩ C2 = b−1(0, 0) ∈ P̃1 × P1. Over k, write X0 =
⋃
Di and

Y0 =
⋃
Ej , where Di and Ej are distinct projective lines. Let Z(i) be the disjoint union

of all possible intersections of i distinct irreducible components of Z. We then have

Z(1) =
(⊔

Di × Y
)
t
(⊔

X × Ej
)

;

Z(2) =
(⊔

(Di ∩Dr)× Y
)
t
(⊔

Di × Ej
)
t
(⊔

X × (Ej ∩ Es)
)

;

Z(3) =
(⊔

(Di ∩Dr)× Ej
)
t
(⊔

Di × (Ej ∩ Es)
)

;

Z(4) =
⊔(

(Di ∩Dr)× (Ej ∩ Es)
)
. (22)

Let us recall the weight spectral sequence ([12, 3.23]; cf. [19, Cor 4.20]):

E−j,i+j1 =
⊕

r≥0,r≥−j
H i−j−2r
cris (Z(1+j+2r)/W )(−j − r) =⇒ H i(Z×/W×),

which degenerates at E2 modulo torsion ([12, Th 3.32]). Here W is the ring of Witt
vectors of k and the target H i(Z×/W×) is the i-th logarithmic crystalline cohomology
of Z. Now assume that X and Y are ordinary and have trivial crystalline cohomology
groups of odd degrees. Then the weights of the E1-terms are all integers and the non-zero
terms of E1 appear only when the weights are even. Thus, putting Er,s1 at the (r, s)-spot,
the complete picture of the E1-terms looks like

wt 6: E−3,6
1 E−2,6

1 E−1,6
1 E0,6

1

wt 4: E−2,4
1 E−1,4

1 E0,4
1 E1,4

1

wt 2: E−1,2
1 E0,2

1 E1,2
1 E2,2

1

wt 0: E0,0
1 E1,0

1 E2,0
1

d // E3,0
1 .

Lemma 4.1 Let ξ be the Hadamard product of ξi and c the eigenvalue of the relative
Frobenius action on ξ. Then c = c1c2.

Proof. c represents the relative Frobenius action on the cokernel of d, where d is the
boundary map in the displayed E1-terms above. Let K be the field of fractions of W . By
[12, Lemme 5.2], we see that (coker d)⊗K is 1-dimensional and the Frobenius acts on ξ
as the product of its actions on ξi. Thus the statement follows. �
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