Systems of nonlinear, dispersive evolution equations

Part I: The initial-value problem

Jerry L. BONA

Part II: Solitary waves and stability theory

Hongqiu CHEN
Abstract: Considered here are coupled systems

$$
\left\{\begin{array}{l}
u_{t}+u_{x x x}+P(u, v)_{x}=0, \tag{1}\\
v_{t}+v_{x x x}+Q(u, v)_{x}=0
\end{array}\right.
$$

of equations of Korteweg-de Vries type, where $u=u(x, t)$ and $v=v(x, t)$ are real-valued functions defined for $x \in \mathbb{R}, t \geq 0$, and $P(u, v)$ and $Q(u, v)$ are homogeneous quadratic polynomials of the form

$$
P(u, v)=A u^{2}+B u v+C v^{2}
$$

and

$$
Q(u, v)=D u^{2}+E u v+F v^{2}
$$

with A, B, \cdots, F being given real constants. It will be shown that under certain conditions on P and Q, the system is well-posed globally in time provided the initial data $(u(x, 0), v(x, 0))=\left(u_{0}(x), v_{0}(x)\right)$ lies in the space $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for some $s>-\frac{3}{4}$. More specifically, if the system of linear equations

$$
\left\{\begin{array}{l}
2 B a+(E-2 A) b-4 D c=0 \tag{2}\\
4 C a+(2 F-B) b-2 E c=0
\end{array}\right.
$$

has a solution (a, b, c) such that $a^{2}+c^{2}>\frac{1}{4} b^{2}$, then (1) is globally well-posed as described above.

These systems possess solitary-wave solutions, and the lectures continue with an analysis of their existence, multiplicity and especially, their stability.

