
Combinatorial Quantitative Group Testing with
Adversarially Perturbed Measurements

Yun-Han Li and I-Hsiang Wang
Graduate Institute of Communication Engineering,

National Taiwan University, Taipei, Taiwan
Email: {r07942058,ihwang}@ntu.edu.tw

Abstract—In this paper, combinatorial quantitative group test-
ing (QGT) with noisy measurements is studied. The goal of QGT
is to detect defective items from a data set of size n with counting
measurements, each of which counts the number of defects in
a selected pool of items. While most literatures consider either
probabilistic QGT with random noise or combinatorial QGT with
noiseless measurements, our focus is on the combinatorial QGT
with noisy measurements that might be adversarially perturbed
by additive bounded noises. Since perfect detection is impossible,
a partial detection criterion is adopted. With the adversarial noise
being bounded by dn = Θ(nδ) and the detection criterion being
to ensure no more than kn = Θ(nκ) errors can be made, our
goal is to characterize the fundamental limit on the number
of measurement, termed pooling complexity, as well as provide
explicit construction of measurement plans with optimal pooling
complexity and efficient decoding algorithms. We first show that
the fundamental limit is 1

1−2δ
n

logn
to within a constant factor

not depending on (n, κ, δ) for the non-adaptive setting when
0 < 2δ ≤ κ < 1, sharpening the previous result by Chen
and Wang [1]. We also provide deterministic constructions of
an adaptive method with 1

1−2δ
n

log2 n
pooling complexity up to

a constant factor and O(n) decoding complexity. While explicit
construction of optimal non-adaptive methods remains open, a
reduction to a simple combinatorial problem is proposed.
An extended version of this paper is accessible at:

http://homepage.ntu.edu.tw/~ihwang/Eprint/itw20cqgt.pdf

I. INTRODUCTION

Group testing is the problem of identifying defective items
in a large set with cardinality n by taking measurements on
pools (subsets) of items. The type of measurement plays a
central role in the fundamental limits of detection efficiency.
In a classical model by Dorfman [2], binary-valued measure-
ments are considered, where the output is a bit indicating the
existence of defected items in the measured pool. Extensive
results for this model (termed traditional group testing here-
after), including algorithms and information theoretic limits,
can be found in surveys [3], [4] and the references therein.

Meanwhile, in many modern applications such as bioin-
formatics [5], network traffic monitoring [6], resource allo-
cation in multi-user communication systems [7], etc., more
informative measurement on the pool of items can be carried
out. A natural one is the counting measurement that outputs
the number of defective items in the pool. This is called
the quantitative group testing (QGT) problem or the coin
weighing problem with its root in combinatorics dating back
to Shapiro [8]. QGT with noiseless measurements has been
extensively studied. In particular, it has been shown that the

minimum number of measurements is asymptotically 2n
log2 n

[9] with explicit constructions of the optimal non-adaptive
measurement plans [10], [11]. These results are combinatorial
in nature as the goal is to detect the defects no matter where
they are located. Hence, it is also called the combinatorial
QGT (CQGT) with noiseless measurements, to contrast an-
other more recent line of works that takes a probabilistic
approach [12], [13], termed probabilistic QGT hereafter.

In practice, however, measurement might be noisy, as
counting the number of defectives might be too costly to be
accurate. In database applications, in order to preserve privacy,
the measurement might also be perturbed intentionally. While
the traditional group testing with noisy measurements has
been extensively studied (see [4] for a survey), QGT with
noisy measurements is far less understood. One line of works
pertains to probabilistic QGT with random perturbation in
the measurement [14]. Another line of works [1], [15]–[17]
consider CQGT with adversarially perturbed measurements.
It has been shown in [1] that, for δ, κ ∈ (0, 1), when the
perturbation is at most the order of Θ(nδ) and the goal is to
detect the defective items within Hamming distance at most
the order of Θ(nκ), there is a sharp phase transition in the
fundamental limit: for 0 < 2δ ≤ κ < 1, the optimal pooling
complexity is Θ(n

logn), and for 0 < κ < 2δ < 1, it is
ω(np) ∀ p ∈ N. This sharpened results in previous works
related to data privacy [15], [16]. However, unlike the noiseless
case [10], [11], only the existence of good measurement plans
was shown in [1] by a probabilistic argument, and the optimal
explicit construction remained open.

In this work, we improve the previous work [1] both in
characterization of the optimal pooling complexity and con-
struction of algorithms for the regime 0 < 2δ ≤ κ < 1. As for
the information theoretic limit, we characterize the relationship
between (κ, δ) and the leading coefficient of the optimal non-
adaptive pooling complexity which turns out to be 1

1−2δ
n

logn

to within a constant factor not depending on (κ, δ). We further
investigate the sparse CQGT (SCQGT) problem, that is, the
original CQGT problem with an additional condition that the
number of defective items is not greater than a threshold that
we term the sparsity level. When the sparsity level is Θ(nλ),
for 0 < 2δ ≤ κ < λ < 1, the optimal pooling complexity is
also characterized to within a constant factor not depending on
(κ, δ, λ). Achievability is proved via a probabilistic argument,
and the converse proof extends that of Erdös and Rényi [9].

As for the construction of CQGT algorithms, the following
contributions are made. We first provide an explicit con-
struction of a non-adaptive measurement plan with pooling
complexity being 1

κ−2δ
n

log2 n
(which is not optimal in the

leading coefficient) to within a constant factor, along with a
procedure that combines this construction with any sufficiently
good SCQGT algorithms to reach a construction that has the
optimal pooling complexity. The whole problem boils down
to the design of good SCQGT algorithms. We further provide
an explicit adaptive SCQGT algorithm that meet the above-
mentioned criterion, leading to an overall adaptive measure-
ment plan with pooling complexity being 1

1−2δ
n

log2 n
to within

a constant factor, together with O(n) decoding complexity. As
for the construction of the non-adaptive SCQGT algorithm, we
reduce it to a simple combinatorial problem, and the existence
of the solution is proved by a probabilistic method. As a
result, if one can provide an explicit construction for this
simple combinatorial problem, we can construct a SCQGT
non-adaptive measurement plan with close-to-optimal pooling
complexity. Consequently, the construction of an optimal non-
adaptive measurement plan for CQGT can be completed.

Related Works

There are several closely related works [17]–[20] that
consider CQGT with adversarially perturbed measurements.
The noise model in the measurement, however, are all quite
different from ours. In [17], there are three possible outcomes:
the correct sum, an erroneous outcome with an arbitrary
value, and an erasure symbol "?". When the total number
of erroneous (or erasure) outcomes is assumed to be at most
a fraction of the total number of measurements, which can
be viewed as a `0-norm constraint on the perturbation vector,
the optimal non-adaptive pooling complexity is characterized
to within a constant factor. Another line of related works
pertain to the binary multiple-access adder channel [18]–
[20], where the perturbation vector is constrained in the `1-
norm. In contrast, the noise model in our work constrains
the perturbation vector in the `∞-norm, which makes perfect
detection impossible, while in the related works mentioned
above, only the perfect-detection criterion is considered.

II. PROBLEM FORMULATION

In this section, let us define the combinatorial quantitative
group testing (CQGT) problem and other related notions. A
CQGT problem comprises the following:

Data: for each item indexed by j = 1, ..., n, we use xj ∈
{0, 1} to denote whether or not the j-th item is defective.
Hence, the n-by-1 data vector x := [x1 x2 ... xn]ᵀ is the
target to be reconstructed from the noisy measurements.

Counting measurements: the pool of items in the i-th count-
ing measurement can be represented by an 1-by-n pooling
vector qi ∈ {0, 1}1×n, and the outcome of the counting
measurement is qix. For a non-adaptive pooling algorithm,
the measurement plan can be concisely represented by an n-
by-s pooling matrix Q with its i-th row being the i-th pooling

vector qi. Here s denotes the number of measurements, termed
pooling complexity.

Perturbed outcomes: the outcome of the i-th measurement
is yi = qix + ni, where ni ∈ [−dn, dn] denotes the bounded
additive perturbation in the i-th measurement. The s outcomes
of the measurements can be written as an s-by-1 vector y =
Qx+n, where n is the perturbation vector with ‖n‖∞ ≤ dn.

Detection: for any data vector x ∈ {0, 1}n×1, the estimate
generated by the detection algorithm (denoted by x̂) should
be close to x. In particular, the Hamming distance between x̂
and x should not be greater than kn, that is, ‖x̂− x‖1 ≤ kn.

Hence, a pooling matrix Q that solves the above CQGT
problem if and only if

∀x,x′ ∈ {0, 1}n×1 with ‖x− x′‖1 > kn,

‖Qx−Qx′‖∞ > dn.
(1)

Let us introduce the following definition.
Definition 2.1: (n, kn, dn)-CQGT denotes the combina-

torial quantitative group testing problem defined above. If
a pooling matrix Q is a solution to (n, kn, dn)-CQGT, it
is called an (n, kn, dn)-detecting matrix. s∗CQGT(n, kn, dn)
denotes the smallest possible pooling complexity among all
non-adaptive pooling algorithms, that is, it is the smallest
height of (n, kn, dn)-detecting matrices.

Throughout our development, it turns out that CQGT with
an additional sparsity constraint, which we call sparse com-
binatorial group testing (SCQGT), can be explored simul-
taneously. The optimal pooling complexity for non-adaptive
SCQGT is also characterized, along with efficient adaptive
algorithms. Let us introduce the following definition to better
refer to this problem.

Definition 2.2: (n, kn, dn, ln)-SCQGT denotes the combi-
natorial quantitative group testing problem (n, kn, dn)-CQGT
with the additional sparsity assumption on the data vec-
tor x, that is, ‖x‖1 ≤ ln. If a pooling matrix Q is
a solution to (n, kn, dn, ln)-SCQGT, with a slight abuse
of notation, it is called an (n, kn, dn, ln)-detecting matrix.
s∗SCQGT(n, kn, dn, ln) denotes the smallest possible pooling
complexity among all non-adaptive pooling algorithms, that is,
it is the smallest height of (n, kn, dn, ln)-detecting matrices.

III. FUNDAMENTAL LIMITS

In this section, we provide the characterization of the opti-
mal non-adaptive pooling complexity for (n, nκ, nδ)-CQGT,
0 < 2δ ≤ κ < 1. The characterization is tight to within a
constant factor that is independent of (n, κ, δ), as stated in the
following theorem.

Theorem 3.1: For 0 < 2δ ≤ κ < 1,

s∗CQGT(n, nκ, nδ) = 1
1−2δ

n
logn

up to a constant factor that is independent of (n, κ, δ).
Proof: The proof comprises two parts: achievability and

converse, established in the lemmas below.
Lemma 3.1 (CQGT Achievability): For 0 < 2δ ≤ κ < 1,

lim supn→∞
s∗CQGT(n,nκ,nδ)

n/ logn ≤ 8
1−2δ .

In words, there exists a sequence of (n, nκ, nδ)-detecting
matrices with pooling complexity not greater than 8

1−2δ
n

logn
as n→∞.

Lemma 3.2 (CQGT Converse): For 0 < 2δ ≤ κ < 1,

s∗CQGT(n, nκ, nδ) ≥ 2
1−2δ

n
logn .

The two lemmas complete the proof of the theorem. The
proof of achievability (Lemma 3.1) is in Appendix A of the
full version, which uses a probabilistic argument to prove the
existence of good pooling matrices. Converse (Lemma 3.2) is
proved in Appendix B of the full version, which is based on
extending a counting argument with its root in [9].

It is interesting to note that the leading coefficient does
not depend on the order of the detection criterion κ. In other
words, as long as partial detection to within nκ successfully
detection items is allowed, the number of pools to be measured
only depend on the strength of the adversarial perturbation nδ ,
where δ ≤ κ/2.

When the defective items are sparsely populated in the
data set, the number of pools needed to be measured should
be smaller. The following theorem characterizes the optimal
non-adaptive pooling complexity for (n, nκ, nδ, nλ)-SCQGT
when 0 < 2δ ≤ κ < λ < 1.

Theorem 3.2: For 0 < 2δ ≤ κ < λ < 1,

s∗SCQGT(n, nκ, nδ, nλ) =

{
1−λ
λ−2δn

λ, 2δ < κ

1−λ
λ−2δn

λ log n, 2δ = κ

up to a constant factor that is independent of (n, κ, δ, λ).
Proof: Similar to the proof of Theorem 3.1, the following

two lemmas correspond to achievability and converse respec-
tively, and their combination completes the proof.

Lemma 3.3 (SCQGT Achievability): For 0<2δ≤κ<λ <1,

lim supn→∞
s∗SCQGT(n,nκ,nδ,nλ)

nλ
≤ 4(1−λ)

λ−2δ , 2δ < κ

lim supn→∞
s∗SCQGT(n,nκ,nδ,nλ)

nλ logn
≤ 4(1−λ)

λ−2δ , 2δ = κ

Lemma 3.4 (SCQGT Converse): For 0 < 2δ ≤ κ < λ < 1,

s∗SCQGT(n, nκ, nδ, nλ) ≥

2(1−λ)
λ−2δ n

λ, 2δ < κ

2(1−λ)
λ−2δ n

λ log n, 2δ = κ

Proofs of the above two lemmas are similar to those of
Lemma 3.1 and 3.2 and hence left in the appendices of the
extended version.

IV. ALGORITHMS

In this section, first we give a basic construction of a
non-adaptive measurement plan for (n, nκ, nδ)-CQGT with
pooling complexity that has the optimal order in n but a
suboptimal leading coefficient in terms of κ, δ in Section IV-A.
To achieve a better leading coefficient, an adaptive pooling
algorithm for SCQGT is developed in Section IV-B. This
adaptive pooling algorithm is then combined with the basic
non-adaptive measurement plan in Section IV-A to give an
explicit adaptive pooling algorithm with a pooling complexity

that has a matching leading coefficient with the optimal non-
adaptive one. While the explicit construction of a good non-
adaptive measurement plan for (n, nκ, nδ, nλ)-SCQGT is still
missing, we provide reduction of this problem to a simpler
combinatorial problem detailed in Section IV-C. This non-
adaptive measurement plan would then be combined with the
basic non-adaptive measurement plan to give an optimal non-
adaptive pooling algorithm.

A. Basic construction

The basic construction of the non-adaptive CQGT measure-
ment plan is given below. Some necessary notations are set
up first. Let ε = κ − 2δ > 0. Let |dnε/2e| denote the smallest
possible width of the detecting matrix for the noiseless coin
weighing problem mentioned in Section 4 of [11] that is
not smaller than nε/2, and M|dnε/2e| be the corresponding
detecting matrix. Let ‖dn1−ε/2e‖ denote the smallest possible
size of the Sylvester’s type Hadamard matrix that is not smaller
than n1−ε/2, and H‖dn1−ε/2e‖ be the corresponding Hadamard
matrix. Let n̄ = |dnε/2e| ‖dn1−ε/2e‖ and let

Pn̄ = M|dnε/2e| ⊗H‖dn1−ε/2e‖,

the Kronecker product of the two matrices.
We are ready to give our basic construction. According to

the above setup, entries of Pn̄ take value in {0,±1}. Let us
find two {0, 1}-matrices Q1

n̄ and Q2
n̄ such that Q1

n̄−Q2
n̄ = Pn̄,

concatenate them vertically into a new matrix Q, and delete
the last n̄−n columns of Q to get Q̂. The width of the matrix
Q̂ becomes n, and Q̂ stands for the measurement matrix that
we would like to construct.

The basic construction Q̂ turns out to be a detecting matrix
for CQGT with guarantees summarized in following theorem,
the proof of which is detailed in Appendix C of the full
version. It leverages the structure of the Hadamard matrix
along with the detecting capability of M.

Theorem 4.1 (Basic Construction): For n sufficiently large,
Q̂ is a

(
n, nκ, nδ

)
-detecting matrix with pooling complexity

no more than 48
κ−2δ

n
log2(n) .

In Appendix D of the full version, we also provide a
companion two-step decoding algorithm for this non-adaptive
measurement plan with time complexity O(n).

B. Explicit construction of an adaptive pooling algorithm

Towards improving the leading coefficient of pooling com-
plexity, we first give an adaptive pooling algorithm for SC-
QGT. The key ingredient of this algorithm is divide-and-
conquer. The details of the algorithm are given step-by-step
in the following. Let S be the index set of defect items.

0) Initialize I ← {1, ..., n}, the whole index set of items.
1) Divide I into 2nλ equal-size segments (subsets)

I1, I2, ..., I2nλ , and define C = {1, 2, ..., 2nλ}, the index
set of the segments. Let ki = |S

⋂
Ii|, the number of

detectives in Ii. Make 2nλ measurements as follows.
First prepare a Hadamard matrix H|C|+ of size |C|+,
where |C|+ denotes the smallest power of 2 not smaller
than |C|, and then delete the last |C|+ − |C| columns

of H|C|+ . Denote this new matrix by H|C|. Replace
(H|C|)i,j by (H|C|)i,j1|Ij |, where (H|C|)i,j denotes the
i, j-th entry of H|C| and 1|Ij | denotes the all-1 row
vector with size 1 × |Ij |. The resulting new matrix Ĥ
serves as the pooling matrix that determines the 2nλ

counting measurements in this step.
2) After making the counting measurements in Step 1), we

get outcome

y = Ĥx + n = H|C|[k1 k2 ... k|C|]
ᵀ + n.

Let [k̂1 k2 ... k̂|C|]
ᵀ = dH−1

|C|yc, where dc denotes
rounding to the closest integer.

3) Update C: for i = 1, ..., |C|, remove i from C if k̂i = 0.
4) Update I ←

⋃
i∈C Ii. If |I| > 2nλ, go back to Step 1).

Otherwise, go to Step 5) to terminate.
5) Divide I into |I| segments and prepare a Hadamard

matrix H|I|+ of size |I|+, where |I|+ is the smallest
power of 2 not smaller than |I|. Delete the last |I|+−|I|
columns of H|I|+ and denote this new matrix by H|I|,
which is used for counting measurements to detect these
I bits. After making these counting measurements, we
get the outcome y = H|I|x+n and let [k̂1, ..., k̂|I|]

ᵀ =

dH−1
|I| yc. Finally, remove i from I if k̂i = 0, ∀ i. Return

the resulting I as the set of indices of the defective items.
Let us now analyze the performance of this adaptive pooling

algorithm for SCQGT. The sparsity level is assumed to be nλ.
First, let us deal with the number of iterations. In Step 3),
since the sparsity level is nλ, there exists at least nλ segments
Ii such that ki equals to 0. Hence |I| is reduced at least by
half in Step 3) of each iteration. As a result, after no more than
log2 n iterations, this algorithm enters Step 5) for termination.

As for the quality of detection, let w = [k̂1 ... k̂|C|]
ᵀ −

[k1 ... k|C|]
ᵀ in each iteration. Since H|C| has the property

that ∀x ∈ R|C|, ‖H|C|x‖22 = |C|+ ‖x‖22, if ‖w‖22 > n2δ ,

‖H|C|w‖∞ ≥ (
‖H|C|w‖22
|C|+)1/2 = ‖w‖2 > nδ , contradicting

our assumption about noise. Hence, ‖w‖22 ≤ n2δ , implying
‖w‖1 ≤ n2δ since w is a {0,±1}-vector. In each iteration,
we throw away at most n2δ indices that has non-zero value,
and we iterate at most log2 n times. In Step 5), we throw away
at most n2δ indices that has non-zero value too. Hence, we
make at most n2δ log2 n mistakes.

As for the pooling complexity, in each iteration, we make
2nλ counting measurements, and in Step 5), we make at
most 2nλ counting measurements. Hence the total pooling
complexity is 2nλ log2 n. It is also easy to check that total
decoding complexity is O(nλ log2 n).

With the above discussions, we come up with the following
theorem about the performance of this adaptive scheme.

Theorem 4.2 (A Sparse Pooling Algorithm): For SCQGT
with n items and sparsity level nλ, noise level nδ , the proposed
adaptive pooling algorithm uses no more than 2nλ log2 n
counting measurements, and it cause at most n2δ log2 n mis-
takes with O(nλ log2 n) decoding complexity.

We are now ready to combine the non-adaptive measure-
ment plan in Section IV-A and the aforementioned adaptive

SCQGT pooling algorithm to produce an adaptive scheme
for (n, nκ, nδ)-CQGT with pooling complexity 1

1−2δ
n

log2 n
to

within a constant factor. The overall procedure goes as follows.
Step A: First, employ the measurement plan of the basic

construction in Section IV-A for (n, nλ, nδ)-CQGT and use
the corresponding decoding algorithm in Appendix D. The
decoded result is then represented as follows:

x̂ = x− p + q, (2)

where x is the true data vector and p, q are nλ-sparse {0, 1}-
vectors with non-overlapping supports. In other words, Ip ∩
Iq = ∅ where Ip and Iq denote supports, that is, the index
sets of non-zero elements, of p and q respectively. Note that
we intentionally split the mistakes made in this initial decoded
result into two parts p and q, and they are treated separately in
Step B and Step C below. Since x̂−x is a ternary vector taking
values in {0,±1}, binary vectors p, q have unique solutions
and therefore they are well-defined. In this step, we make sA =

48
λ−2δ

n
log2 n

counting measurements.
Step B: In this step, p, a first part of the mistakes made

in Step A, will be detected. From (2), the support of p is
contained in the complement of the support of x̂, that is,
Ip ⊆ I x̂ , {1, ..., n} \ Ix̂. The aforementioned adaptive
SCQGT pooling algorithm is then employed onto x̂ to detect
the support of p, viewing x+q as adversarial perturbation. As
a result, p can be decoded with at most n2δ log2 n mistakes
using no more than sB = 2nλ log2 n counting measurements.

Step C: In this step, q, the remaining part of the mistakes
made in Step A, will be detected. From (2), Iq ⊆ Ix̂. Once
again, the adaptive SCQGT pooling algorithm is employed
onto x̂ to detect the support of q, viewing x+p as adversarial
perturbation. A slight twist is needed: in the original adaptive
pooling algorithm, the number of 1’s is counted, while here
instead, the number of 0’s is counted. As a result, q can be
decoded with at most n2δ log2 n mistakes using no more than
sC2nλ log2 n counting measurements.

To sum up, the total number of mistakes made at the
end is at most 2n2δ log2 n with the number of counting
measurements no more than

stotal = sA + sB + sC = 48
λ−2δ

n
log2 n

+ 4nλ log2 n.

Asymptotically, when n is large enough, stotal ≈ 48
λ−2δ

n
log2 n

.
Taking λ→ 1, stotal tends to 48

1−2δ
n

log2 n
. As a result, the total

pooling complexity is 48
1−2δ

n
log2 n

. Moreover, and it is easy to
check that the total decoding complexity is O(n).

We summarize the above discussion about the performance
of the proposed adaptive CQGT pooling algorithm that com-
bine the basic non-adaptive scheme in Section IV-A in the
theorem below.

Theorem 4.3: This deterministic adaptive pooling algorithm
for (n, nκ, nδ)-CQGT has pooling complexity 48

1−2δ
n

log2 n
and

decoding complexity O(n).

C. Towards constructing an optimal non-adaptive scheme
The scheme developed in Section IV-B is adaptive with

pooling complexity matching the non-adaptive optimum.

Meanwhile, explicit construction of the optimal non-adaptive
measurement plan is still missing, and a key bottleneck is the
lack of sufficiently good explicit non-adaptive SCQGT pooling
algorithms. In this section, we describe how to construct a
leading-coefficient-optimal non-adaptive CQGT measurement
plan if a sufficiently good explicit non-adaptive SCQGT
scheme exists. Then, we reduce the problem of constructing
non-adaptive SCQGT schemes to a simple combinatorial prob-
lem whose solution is shown to exist.

Suppose a sufficiently good non-adaptive measurement plan
for (n, nκ, nδ, nλ)-SCQGT exists and its pooling matrix is
Q. Take the basic construction for (n, nλ, nδ)-CQGT in Sec-
tion IV-A with pooling matrix being M. Concatenate M and
Q vertically to get R with Rᵀ =

[
Mᵀ Qᵀ

]
. By definition,

‖Mx‖∞ ≥ nδ ∀x ∈ {0,±1}n with ‖x‖0 ≥ nλ,
‖Qx‖∞ ≥ nδ ∀x ∈ {0,±1}n with 2nλ ≥ ‖x‖0 ≥ nκ.

Hence, ‖Rx‖∞ = max{‖Mx‖∞, ‖Qx‖∞} ≥ nδ for all
x ∈ {0,±1}n with ‖x‖0 ≥ nκ. This suggests that R, the
vertical concatenation of M and Q, is a detecting matrix for
(n, nκ, nδ)-CQGT.

Its pooling complexity is the sum of those of Q and M.
Since the pooling complexity of M is 48

λ−2δ
n

log2 n
, as long

as that of Q is nλ to within a poly-log factor, the overall
pooling complexity can be made 48

1−2δ
n

log2 n
similarly as in

Section IV-B by setting λ→ 1.
With the above discussion, the remaining problem is how

to construct Q with the desirable pooling complexity. To
construct such a matrix, we propose an approach to reduce
the original problem into a combinatorial problem, so that
once the solution to the combinatorial problem is found, we
are able to construct a (n, nκ, nδ

48(logn)3/2 , n
λ)-detecting matrix

with height 192nλ(log n)3, satisfying the desirable property of
Q mentioned above.

The reduction relies on a special form of the pooling matrix
Q that we propose. In particular, we construct

Q =
[
Dᵀ

1 ... Dᵀ
4 logn

]ᵀ
, (3)

where Di, ...,D4 logn are designed as follows. Suppose there
exists a binary matrix B with size 4nλ log(n)×n that satisfies
the following properties:

1) Each of its column vector is 4 log n-sparse.
2) For any d of its column vectors ci1 , ..., cid , 1 ≤ d ≤ nλ,
‖
⋃
j=i1,...,id

cj‖0 ≥ 1
6d, where

⋃
denotes the bit-wise

“or” operation of binary column vectors.
Finding such matrix B is a combinatorial problem, the

existence of which is proved in Appendix F of the full version.
Let us now decompose this matrix into 4 log n binary matri-

ces B1, ...,B4 log(n) with each of their column has exactly one
1 and

∑4 logn
i=1 Bi = B. Then we introduce the check matrix

for BCH code as our building block because it can perfectly
distinguish those binary vectors with `0-norm smaller than a
certain threshold (its code distance). Let Cn

t be the check
matrix of a BCH code with size n and code distance t. Suppose

there are nj columns in Bi such that they have 1 at the j-th
place, we replace these columns by H4nλ logn(j)⊗C

nj
48 logn,

where H4nλ logn(j) denote the j-th column of the Hadamard
matrix H4nλ logn and ⊗ denotes the Kronecker product. The
resulting matrices are our designed Di’s in (3). The following
theorem summarizes the guarantees of the constructed Q, and
its proof can be found in Appendix E of the extended version.

Theorem 4.4: The constructed matrix Q in equation (3) is
(n, nκ, nδ

48(logn)3/2 , n
λ)-detecting and its pooling complexity

is at most 192nλ(log n)3.

REFERENCES

[1] W.-N. Chen and I.-H. Wang, “Partial data extraction via noisy histogram
queries: Information theoretic bounds,” in 2017 IEEE International
Symposium on Information Theory (ISIT), 2017, pp. 2488–2492.

[2] R. Dorfman, “The detection of defective members of large populations,”
The Annals of Mathematical Statistics, vol. 14, no. 4, pp. 436–440, 1943.

[3] D. Du and F. Hwang, Combinatorial group testing and its applications.
World Scientific, 1993.

[4] M. Aldridge, O. Johnson, and J. Scarlett, “Group testing: An information
theory perspective,” Foundations and Trends R© in Communications and
Information Theory, vol. 15, no. 3-4, pp. 196–392, 2019. [Online].
Available: http://dx.doi.org/10.1561/0100000099

[5] C.-C. Cao, C. Li, and X. Sun, “Quantitative group testing-based
overlapping pool sequencing to identify rare variant carriers,” BMC
Bioinformatics, vol. 15, no. 1, p. 195, June 2014.

[6] C. Wang, Q. Zhao, and C. Chuah, “Group testing under sum observations
for heavy hitter detection,” in 2015 Information Theory and Applications
Workshop (ITA), Feb 2015, pp. 149–153.

[7] G. De Marco, T. Jurdziński, and D. R. Kowalski, “Optimal channel
utilization with limited feedback,” in Fundamentals of Computation
Theory, L. A. Gąsieniec, J. Jansson, and C. Levcopoulos, Eds. Cham:
Springer International Publishing, 2019, pp. 140–152.

[8] H. S. Shapiro and N. J. Fine, “Problem e 1399,” The American
Mathematical Monthly, vol. 67, no. 7, pp. 697–698, 1960.

[9] P. Erdős and A. Rényi, “On two problems of information theory,” 1963.
[10] B. Lindström, “On a combinatorial problem in number theory,” Cana-

dian Mathematical Bulletin, pp. 477–490, 1965.
[11] D. G. Cantor and W. H. Mills, “Determination of a subset from certain

combinatorial properties,” Canadian Journal of Mathematics, vol. 18,
pp. 42–48, 1966.

[12] A. E. Alaoui, A. Ramdas, F. Krzakala, L. Zdeborová, and M. I. Jor-
dan, “Decoding from pooled data: Sharp information-theoretic bounds,”
SIAM Journal on Mathematics of Data Science, vol. 1, no. 1, pp. 161–
168, 2019.

[13] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and
A. Sprintson, “Sparse graph codes for non-adaptive quantitative group
testing,” Proceedings of IEEE Information Theory Workshop, 2019.

[14] J. Scarlett and V. Cevher, “Phase transitions in the pooled data problem,”
Advances in Neural Information Processing Systems 30 (NIPS 2017), pp.
377–385, 2017.

[15] I. Dinur and K. Nissim, “Revealing information while preserving pri-
vacy,” 2003.

[16] C. Dwork and S. Yekhanin, “New efficient attacks on statistical disclo-
sure control mechanisms,” in Advances in Cryptology"”CRYPTO 2008,
vol. 5157, 2008, pp. 469–480.

[17] N. H. Bshouty, “On the coin weighing problem with the presence of
noise,” in Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques. Springer Berlin Heidelberg, 2012,
pp. 471–482.

[18] S.-C. Chang and E. J. Weldon, “Coding for t-user multiple-access
channels,” IEEE Transactions on Information Theory, vol. 25, no. 6,
pp. 684–691, November 1979.

[19] J. H. Wilson, “Error-correcting codes for a t-user binary adder channel,”
IEEE Transactions on Information Theory, vol. 34, no. 4, pp. 888–890,
July 1988.

[20] J. Cheng, K. Kamoi, and Y. Watanabe, “User identification by signature
code for noisy multiple-access adder channel,” Proceedings of IEEE
International Symposium on Information Theory, pp. 1974–1977, 2006.

APPENDIX

A. Proof of Achievability (Lemma 3.1 and 3.3)

A probabilistic argument is used to show the existence of good pooling matrices. In particular, we are going to upper bound
the probability that a randomly generated matrix with height s is not an (n, kn, dn)-detecting matrix. If this probability is
strictly bounded below 1, then the existence of (n, kn, dn)-detecting matrices is established. In words, we are going to show
that s ≤ 8

1−2δ
n

logn is a sufficient condition for the upper bound mentioned above being strictly less than 1.
Let us now describe the random pooling matrix ensemble employed in this probabilistic argument. To simplify the analysis,

we focus on pooling matrices with {±1}-entries. Note that any pooling vector with {±1}-entries can be generated by taking
the difference of two pooling vectors with {0, 1}-entries. Hence, at the end of our analysis, to conform with the original
CQGT problem formulation, we need to double the pooling complexity upper bound. The random pooling matrix ensemble
is generated as follows: each element of the matrix is drawn from {±1} uniformly at random, i.i.d. across all entries. With a
slight abuse of notation, let Q denote this random matrix, that is,

(Q)i,j
i.i.d.∼ Unif({±1}), ∀ (i, j) ∈ {1, ..., s} × {1, ..., n},

and let Qi denote the i-th row of Q.
Consider the event E that Q is not an (n, kn, dn)-detecting matrix. By definition (Definition 2.1),

E =

{
∃x,x′ ∈ {0, 1}n×1 with ‖x− x′‖1 > kn and

‖Qx−Qx′‖∞ ≤ dn

}
. (4)

For notational convenience, let us introduce

Db
a =

{
x− y

∣∣x,y ∈ {0, 1}n×1, a < ‖x− y‖1 ≤ b
}

(5)

to denote the set of difference vectors of `1-norm ranging from a to b. With the notations above, the event E can be succinctly
written as

E =
⋃

d∈Dnkn

{
‖Qd‖∞ ≤ dn

}
.

Hence, by the Union Bound,

Pr{E} ≤
∑

d∈Dnkn

Pr {‖Qd‖∞ ≤ dn}

=
∑

d∈Dnkn

s∏
i=1

Pr {Qid ≤ dn} (6)

Noting that the event {Qid ≤ dn} is equivalent to the event that out of ‖d‖1 i.i.d. Unif({±1}) random variables, the number
of +1 and the number of −1 differ by at most dn, we have

Pr {Qid ≤ dn}

=
∑

`:‖d‖1−dn≤2`≤‖d‖1+dn

(
‖d‖1
`

)
2−‖d‖1

≤ dn
(
‖d‖1⌊
1
2‖d‖1

⌋)2−‖d‖1
(a)

≤ dn

(
π
‖d‖1

2

)−1/2

(7)

(a) is due to the fact that
(

j
bj/2c

)
≤ 2j (πj/2)

−1/2 for all j ∈ N. Combining (6) and (7), we get

Pr{E} ≤
∑

d∈Dnkn

(
dn
√

2/π
)s
‖d‖−s/21

=

n∑
`=bknc+1

|D`
`−1|

(
dn
√

2/π
)s
`−s/2 (8)

To proceed, the range of the above summation is divided into three regimes and bounded separately: the first regime is
kn ≤ ` ≤ knn

2ε, the second regime is knn2ε ≤ ` ≤ n1−2ε, and the third regime is n1−2ε ≤ ` ≤ n, where ε is a positive
constant that is smaller than (1− logn kn)/4 = (1− κ)/4. Then,

(8)
(a)

≤
∣∣∣Dknn

2ε

bknc

∣∣∣ (dn√
kn

√
2/π

)s
+
∣∣∣Dn1−2ε

knn2ε

∣∣∣ (dn√
knn2ε

√
2/π

)s
+ |Dn

n1−2ε |
(

dn√
n1−2ε

√
2/π

)s
(b)

≤ (2(n+ 1))
knn

2ε
(
dn√
kn

√
2/π

)s
+ (2(n+ 1))

n1−2ε
(

dn√
knn2ε

√
2/π

)s
+ 3n

(
dn√
n1−2ε

√
2/π

)s
(c)
= (2(n+ 1))

nκ+2ε
(
nδ−

κ
2

√
2/π

)s
(9)

+ (2(n+ 1))
n1−2ε

(
nδ−

κ
2−ε
√

2/π
)s

(10)

+ 3n
(
nδ−

1
2 +ε
√

2/π
)s
. (11)

(a) follows from dividing the whole summation into the three regimes mentioned above and applying the trivial lower bound
of ` in each regime. (b) follows from applying two different upper bounds on the sizes of difference sets:

|Db
a| =

∑b
j=a+1

(
n
j

)
2j ≤

∑b
j=0

(
n
j

)
2b ≤ (n+ 1)b2b, (12)

|Db
a| =

∑b
j=a+1

(
n
j

)
2j ≤

∑n
j=0

(
n
j

)
2j = 3n.

(c) follows from plugging in kn = nκ, dn = nδ .
Finally, in order to ensure all the three terms (9) – (11) vanish as n → ∞, since it is the most stringent to drive (11) to

zero, it suffices to choose

s =
log 3

1/2− δ − ε
n

log n
.

Picking sufficiently small ε ∈ (0, 1−κ
4) such that it is smaller than (1

2−δ)(1−
log 3

2), we immediately see that it is also sufficient
to choose

s =
4

1− 2δ

n

log n

to ensure (9) – (11) all vanish as n → ∞. As a result, there exists a {±1}-pooling matrix with size s = 4
1−2δ

n
logn . Finally,

note that a {0, 1}-pooling matrix can be generated by simple row operations from {±1}-pooling matrix, with the increase of
the height by at most a factor of 2. Hence, there exists a binary pooling matrix with size s = 8

1−2δ
n

logn , and this completes
the proof of Lemma 3.1.

As for the proof of achievability for the sparse case (Lemma 3.3), we slightly modify the definition of event E in (4) as
follows:

E =

∃x,x′ ∈ {0, 1}n×1 with ‖x‖1, ‖x′‖1 < ln

‖x− x′‖1 > kn and

‖Qx−Qx′‖∞ ≤ dn

 .

In words, it is the event that Q is not an (n, kn, dn, ln)-detecting matrix. Then, following the same proof program, an upper
bound on the probability of this event, similar to (8), can be found as follows:

Pr{E} ≤
2ln∑

`=bknc+1

|D̃`
`−1|

(
dn
√

2/π
)s
`−s/2. (13)

Note that now in the definition of the difference set D̃b
a, there is an additional condition ‖x‖, ‖y‖ ≤ ln, compared to that of

Db
a in (5). Next, following the steps to upper bound (8) by (9) – (11), we derive an upper bound on (13) by diving the range

of the above summation into three regimes and bounding them separately: the first regime is kn ≤ ` ≤ knn
2ε, the second

regime is knn2ε ≤ ` ≤ lnn
−2ε, and the third regime is lnn−2ε ≤ ` ≤ 2ln, where ε is a positive constant that is smaller than

(logn ln − logn kn)/4 = (λ− κ)/4. Then,

(13) ≤
∣∣∣Dknn

2ε

bknc

∣∣∣ (dn√
kn

√
2/π

)s
+
∣∣∣Dlnn

−2ε

knn2ε

∣∣∣ (dn√
knn2ε

√
2/π

)s
+
∣∣∣D2ln

lnn−2ε

∣∣∣ (dn√
lnn−2ε

√
2/π

)s
(d)

≤ (2(n+ 1))
knn

2ε
(
dn√
kn

√
2/π

)s
+ (2(n+ 1))

lnn
−2ε
(

dn√
knn2ε

√
2/π

)s
+ 22ln(log2(en

2ln
)+1)

(
dn√
lnn−2ε

√
2/π

)s
(e)
= (2(n+ 1))

nκ+2ε
(
nδ−

κ
2

√
2/π

)s
(14)

+ (2(n+ 1))
nλ−2ε

(
nδ−

κ
2−ε
√

2/π
)s

(15)

+ 22nλ((1−λ) log2(n)+log2(e))
(
nδ−

λ
2 +ε
√

2/π
)s
. (16)

(d) follows from (12), |D̃b
a| ≤

∑b
j=0

(
n
j

)
2b, and∑b

j=0

(
n
j

)
≤
∑b
j=0

nj

j! =
∑b
j=0

bj

j!

(
n
b

)j ≤ eb
(
n
b

)b
.

(e) follows from plugging in ln = nλ, kn = nκ, dn = nδ, 0 < 2δ ≤ κ < λ < 1.
Then, following the same discussion in the non-sparse case, in order to make (14) – (16) all vanish as n→∞, it suffices

to choose a sufficiently small ε and

s =

{
2(1−λ)
λ−2δ n

λ, 2δ < κ
2(1−λ)
λ−2δ n

λ log2 n, 2δ = κ

As a result, there exists a {0, 1}-pooling matrix with size

s =

{
4(1−λ)
λ−2δ n

λ, 2δ < κ
4(1−λ)
λ−2δ n

λ log2 n, 2δ = κ

B. Proof of Converse (Lemma 3.2 and 3.4)

The proof of converse is based on packing. It will be shown that if a pooling matrix Q is (n, kn, dn)-detecting, the number
of measurements s (the height of Q) must be greater than or equal to a certain threshold. The argument goes as follows. Note
that the detection criterion (1) implies that, for any kn-packing CG with respect to `1-norm of a subset G ⊆ {0, 1}n, its image
set after multiplying with Q, Q[CG] , {Qx |x ∈ CG}, must be a dn-packing with respect to `∞-norm of the image set
Q[G] , {Qx |x ∈ G}. By properly choosing G, one can derive a good upper bound on the packing number of Q[G] which
is related to s, the height of Q. Meanwhile, a lower bound of the packing number of G is also a lower bound of the packing
number of Q[G], which can be found by a simple counting argument. The two bounds are then combined to derive a lower
bound of s.

Let us consider the kn-packing number of G with respect to `1-norm. Note that it is lower bounded by the kn-covering
number of G with respect to `1-norm, and the covering number is further lowered by |G| divided by the cardinality of an
`1-norm ball with radius kn. Hence, there exists a maximal packing CG with

|CG| ≥
|G|∑kn
j=0

(
n
j

) ≥ |G|
(n+ 1)kn

. (17)

The choice of the subset G is a second key to the proof. Since we are going to upper bound the dn-packing number with
respect to `∞-norm of the image set Q[G], we select G so that it is strictly contained in an s-dimensional cube of appropriate

side lengths, say, r1, r2, ..., rs. Then, as Qix are integers for all x and i = 1, ..., s, the packing number with respect to `∞-norm
is upper bounded by

s∏
i=1

ri
dn

=

∏s
i=1 ri
dsn

. (18)

Combining (17) and (18), it can be seen that with dn = nδ and kn = nκ,∏s
i=1 ri
dsn

≥ |G|
(n+ 1)kn

=⇒

s

(
s∑
i=1

log ri
s
− δ log n

)
≥ log|G| − nκ log(n+ 1). (19)

Hence, to get the desired lower bound on s, ri ≈
√
n within a poly-logarithm factor and |G| ≈ 2n.

The above discussion motivates us to make the following choice of G. Let qi , 1
2 ‖Qi‖1, the number of 1’s in the i-th

counting measurement, i = 1, ..., s. To this end, let us define “atypical” sets to be excluded as follows: for i = 1, 2, ..., s,

If qi ≥
√
n log n,

Bi ,
{
x ∈ {0, 1}n : |Qix− qi/2| ≥

√
qi log qi

}
. (20)

If qi <
√
n log n,

Bi , ∅. (21)

The “typical” set to be considered is hence

G , {0, 1}n \B, where B ,
⋃s
i=1Bi. (22)

To control the cardinality of Bi, let us employ Hoeffiding’s inequality as follows: randomize the data vector so that the
n elements X1, ..., Xn are now n i.i.d. Ber(1/2) random variables. In other words, X = [X1 X2 ...Xn]ᵀ ∼ Unif({0, 1}n).
As a result, for (20), |Bi| = 2n Pr

{
|QiX − qi/2| ≥ ri/2

}
, with ri = 2

√
qi log qi. Note that given a pooling vector Qi, the

outcome of the counting measurement, QiX , is just the sum of qi i.i.d. Ber(1/2) random variables. Hence, by Hoeffiding’s
inequality, with ri = 2

√
qi log qi,

Pr
{
|QiX − qi/2| ≥ ri/2

}
≤ 2e−r

2
i /2qi = 2q−2

i ≤ 2
n logn .

Consequently, ∀ i = 1, ..., s, |Bi| ≤ 2n 2
n logn , and

|G| ≥ 2n −
s∑
i=1

|Bi| ≥ 2n
(

1− 2s

n log n

)
≥ 2n

(
1− 2

log n

)
, (23)

where in the last inequality, we make use of an implicit assumption that n ≥ s when n is sufficiently large, due to the
achievability part (Lemma 3.1).

Let us now turn back to inequality (19). The choice of G in (20) – (22) together with the fact that 0 ≤ Qix ≤ qi (since it
is the outcome of a counting measurement with qi items in the pool) ensures that the image set Q[G] is strictly contained in
an s-dimensional cube with side lengths not greater than 2

√
n log n. Hence, (19) and (23) imply

s
(

log(2
√
n log n)− δ log n

)
≥ log

(
2n
(

1− 2

log n

))
− nκ log(n+ 1).

As n tends to infinity, we conclude that

lim inf
n→∞

s

n/ log n
≥ 1

1− 2δ
.

The proof for the sparse case (Lemma 3.4) largely follows that of the non-sparse case, with slight modification of the
definition of the “atypical” sets in (20) and (21): for i = 1, 2, ..., s, the definition of Bi in (20) is changed to{

x ∈ {0, 1}n : ‖x‖1 ≤ nλ, |Qix− qin
λ

n | ≥
√

6λnλ log n
}
.

Accordingly, the “typical” set G becomes

G , {x ∈ {0, 1}n, ‖x‖1 ≤ nλ} \B, where B ,
⋃s
i=1Bi.

Chernoff bound is then employed to control the cardinality of Bi. Note that the new definition of Bi has an additional sparsity
constraint ‖x‖1 ≤ nλ. Removing the sparsity constraint, we have a set B̃i with cardinality not smaller than that of Bi. Now,
randomize the data vector so that Xi

i.i.d.∼ Ber(nλ−1), i = 1, ..., n. We first calculate Pr
{
|QiX − qinλ/n| ≥

√
6λnλ log n

}
,

and then relate this quantity to |B̃i|.

Pr
{
|QiX −

qin
λ

n
| ≥

√
6λnλ log n

}
≤(a) 2

(
nλ−1et + 1− nλ−1

)qi
e
t
(
qinλ−1+

√
6λnλ logn

) = 2

(
1 + nλ−1 (et − 1)

)qi
e
t
(
qinλ−1+

√
6λnλ logn

)

≤ 2
en

λ−1(et−1)qi

e
t
(
qinλ−1+

√
6λnλ logn

) ≤(b) 2

(nλ log n)
2 .

(a) follows from Chernoff bound. In order to get (b), it suffics to choose t such that

t
(
qin

λ−1 +
√

6λnλ log n
)
− nλ−1

(
et − 1

)
qi (24)

≥ 2λ log(n) + 2 log (log(n)) (25)

Then we have

(24) ≥ t
(
qin

λ−1 +
√

6λnλ log n
)
− nλ−1

(
et − 1

)
qi

=(a) ln

(
1 +

√
6λnλ log n

nλ−1qi

)(
qin

λ−1 +
√

6λnλ log n
)

−
√

6λnλ log n := f(qi)

≥(b) ln

(
1 +

√
6λnλ log n

nλ

)(
nλ +

√
6λnλ log n

)
−
√

6λnλ log n

≥(c)

(√
6λnλ log n

nλ
− 6λnλ log n

2n2λ

)
(
nλ +

√
6λnλ log n

)
−
√

6λnλ log n

=
1

2

6λnλ log n

nλ

(
1−

√
6λnλ log n

nλ

)
≥ 2λ log n+ 2 log (log n)

(a) follows from choose t = ln

(
1 +

√
6λnλ logn

nλ

)
.(b) follows from the the fact that f(qi) is a decreasing function of qi

and 1 ≤ qi ≤ n. (c) follows from ln(1 + x) ≥ x− x2

2 .
Consequently, ∀ i = 1, ..., s, |Bi| ≤(a)

(
n
nλ

)
nλ 2

n2λ(logn)2 , and

|G| ≥
(
n

nλ

)
−

s∑
i=1

|Bi| ≥
(
n

nλ

)(
1− 2s

nλ(log n)2

)
(26)

≥(b) n(1−λ)nλ
(

1−Θ(
1

log n
)
)
, (27)

(a) follows from the fact that for all x ∈ {0, 1}n, ‖x‖1 ≤ nλ, those ‖x‖1 = nλ has the smallest probability(
nλ

n

)nλ (
1− nλ

n

)n−nλ
, and

(
n
nλ

) (
nλ

n

)nλ (
1− nλ

n

)n−nλ
≥ 1

nλ
. where in (b), we make use of an implicit assumption that

s = O(nλ log n) when n is sufficiently large, due to the achievability part (Lemma 3.3), and the fact that
(
n
nλ

)
≥ n(1−λ)nλ .

Finally, combine (19),(26), we get

s
(

log(2
√

6λnλ log n)− δ log n
)

≥ log

(
n(1−λ)nλ

(
1−Θ(

1

log n
)
))
− nκ log(n+ 1).

As n tends to infinity, we conclude that

s ≥

2(1−λ)
λ−2δ n

λ, 2δ < κ

2(1−λ)
λ−2δ n

λ log n, 2δ = κ

C. Proof of Theorem 4.1

Let ε ∈ (0, 1), and
⌈
n
ε
2

⌉
denote the smallest width of noiseless detecting matrix corresponding to non-adaptive pooling

algorithm mentioned in Section 4 of [11] that greater or equal than n
ε
2 . Let

⌈
n1− ε2

⌉
denote the smallest size of Sylvester’s

type Hadamard matrix that greater or equal than n1− ε2 . Let n̄ =
⌈
n1− ε2

⌉ ⌈
n
ε
2

⌉
. One can easily get that n

ε
2 ≤

⌈
n
ε
2

⌉
≤ 3n

ε
2 ,

and n1− ε2 ≤
⌈
n1− ε2

⌉
≤ 2n1− ε2 , and consequently, n ≤ n̄ ≤ 6n.

In order to proof that Q̂ is a
(
n, nκ, nδ

)
-detecting matrix, we need to show that ∀a 6= b ∈ {0, 1}n, ‖a− b‖0 ≥ nκ,∥∥∥Q̂ (a− b)

∥∥∥
∞
≥ 2nδ . Since Q̂ is reduced(delete last n̄ − n column) from Q, and Q is the concatenate of Q1

n̄,Q
2
n̄, and

Pn̄ = Q1
n̄ −Q2

n̄. It suffics to show that for any a 6= b ∈ {0, 1}n̄, ‖a− b‖0 ≥ nκ, ‖Pn̄ (a− b)‖∞ ≥ 2nδ .
Let d = a − b = [d1,d2, ...,d⌈n1− ε

2

⌉] be the equal length division of some difference vector, where a 6= b ∈ {0, 1}n̄.

Let y = [y1,y2, ...,y⌈n1− ε
2

⌉] = Pn̄d be the equal length division of result vector. Since rows of Hadamard matrix form an

orthogonal basis,

‖y‖2 = ‖Pn̄d‖2 =

⌈
n1− ε

2

⌉∑
i=1

⌈
n1− ε2

⌉ ∥∥∥∥M⌈
n
ε
2

⌉di
∥∥∥∥2

and M⌈
n
ε
2

⌉ is a noiseless detecting matrix, so for any di 6= 0, M⌈
n
ε
2

⌉di 6= 0, combine with the fact that M⌈
n
ε
2

⌉di is an

integer vector,
∥∥∥∥M⌈

n
ε
2

⌉di
∥∥∥∥2

≥ 1. but in our setting, ‖d‖0 ≥ nκ, so, there exists at least nκ⌈
n
ε
2

⌉ segments di 6= 0, hence

‖y‖2 =

⌈
n1− ε

2

⌉∑
i=1

⌈
n1− ε2

⌉ ∥∥∥∥M⌈
n
ε
2

⌉di
∥∥∥∥2

≥
⌈
n1− ε2

⌉ nκ⌈
n
ε
2

⌉ ≥ n1+κ−ε

3

finally, remember that the height of y equals to the height of M⌈
n
ε
2

⌉ times the height of H⌈
n1− ε

2

⌉, which is(
2
⌈
n
ε
2

⌉
log2

(⌈
n
ε
2

⌉) +O

(⌈
n
ε
2

⌉
log2

(
log2

(⌈
n
ε
2

⌉))
log2

2

(⌈
n
ε
2

⌉)))
(28)

⌈
n1− ε2

⌉
≤ 12n

log2

(
n
ε
2

) +O

(
n log2 (log2 (n))

log2
2 (n)

)
(29)

≤(1) 48n

ε log2 (n)
=(2) 48n

(κ− 2δ) log2 (n)
= o

(n
3

)
(30)

When n large enough, inequality (1) follows. Equality (2) follows from that we choose ε = κ− 2δ. So we have,

‖y‖∞ ≥

√
4 ‖y‖2

n
3

≥
√

4n(1+κ−ε)−1 =
√

4nκ−ε =(1) 2nδ

Equality (1) follows from that we choose ε = κ − 2δ. Hence we can see that, for any a 6= b ∈ {0, 1}n̄, ‖a− b‖0 ≥ nκ,
‖Pn̄ (a− b)‖∞ ≥ 2nδ , which implies Q̂ is a

(
n, nκ, nδ

)
-detecting matrix, and by (30), the pooling complexity of this

construction is no more than 48n
(κ−2δ) log2(n) .

D. Decode Algorithm for Basic Code

We propose a two step O (n) decode algorithm :
1) Deconstruction step
2) Rounding step
1) Deconstruction Step: Let y

′
= Q̂x

′
+n

′
,x

′ ∈ {0, 1}n. Since Q̂ is reduced from Q, y
′

= Qx+n
′
,x =

[
x

′
,0n̄−n

]
∈

{0, 1}n̄, where 0n̄−n is the zero vector with size n̄− n. Let ε = κ− 2δ. We first subtract y
′

u(upper half y
′
) by y

′

l (lower half
of y

′
), then

y = y
′

u − y
′

l =
(
Q1
n −Q2

n

)
x + n

′

u − n
′

l = Pn̄x + n

Note that Sylvester’s type Hadamard matrix with size 2d can be write as kronecker product of H2 itself d times

H2d = H2 ⊗H2 ⊗ ...⊗H2 = H⊗d2

hence

Pn̄ = M⌈
n
ε
2

⌉ ⊗H⌈
n1− ε

2

⌉ = M⌈
n
ε
2

⌉ ⊗H ⌈
n

1− ε
2

⌉
2

⊗H2

= P n̄
2
⊗H2 =

(
P n̄

2
P n̄

2

P n̄
2
−P n̄

2

)
then we can see that

y =

(
yu
yl

)
=

(
P n̄

2
P n̄

2

P n̄
2
−P n̄

2

)
x + n

Next we do some row operation(deconstruction)(
yu+yl

2
yu−yl

2

)
=

(
P n̄

2
0

0 P n̄
2

)
x +

(
nu+nl

2
nu−nl

2

)
After some calculation

∥∥∥∥(nu+nl
2

nu−nl
2

)∥∥∥∥2

=

∥∥∥∥nu + nl
2

∥∥∥∥2

+

∥∥∥∥nu − nl
2

∥∥∥∥2

=
‖nu‖2 + ‖nl‖2

2
=
‖n‖2

2
We can see that the two-norm square of noise vector reduce by half after one time deconstruction. Hence, after we do

log2

(⌈
n1− ε2

⌉)
times deconstruction

R
(
y, log2

(⌈
n1− ε2

⌉))
= (31)

P⌈
n
ε
2

⌉ 0 ... 0

0 P⌈
n
ε
2

⌉ ... 0

...
...

. . .
...

0 0 ... P⌈
n
ε
2

⌉

x1

x2

...
x⌈

n1− ε
2

⌉

 (32)

+R
(
n, log2

(⌈
n1− ε2

⌉))
(33)

Where we define R(y, t), R(n, t) be the corresponding vector after doing t times deconstruction on column vector y,n.
Since ‖n‖∞ ≤ nδ , and s = o (n) ∥∥R (n, log2

(⌈
n1− ε2

⌉))∥∥2
=
‖n‖2⌈
n1− ε2

⌉ =
o
(
n1+2δ

)⌈
n1− ε2

⌉ (34)

= o
(
n2δ+ ε

2

)
(35)

and then we divide R
(
y, log2

(⌈
n1− ε2

⌉))
= [y1,y2, ...,y⌈n1− ε

2

⌉] , R
(
n, log2

(⌈
n1− ε2

⌉))
= [n1,n2, ...,n⌈n1− ε

2

⌉] into equal

length segment .
from (32), we can see that

yi = P⌈
n
ε
2

⌉xi + ni = M⌈
n
ε
2

⌉xi + ni,∀i

2) Rounding Step: For each yi, we first do rounding, and then apply decode algorithm for noiseless code mentioned in
section 4 of [11].

Since we do rounding first, if ‖ni‖∞ < 1
2 , then after rounding, the noisy part in yi will vanish, and so the decoding result

x̂i = xi, hence, for those i such that x̂i 6= xi, ‖ni‖2 ≥ 1
4 . Combine with (34), the number of segments that possible wrong

is smaller than ∥∥R (n, log2

(⌈
n1− ε2

⌉))∥∥2

1
4

= o
(
n2δ+ ε

2

)
Since there are

⌈
n
ε
2

⌉
bits in each segment, the total number of error bits must smaller than

o
(
n2δ+ ε

2

) ⌈
n
ε
2

⌉
= o

(
n2δ+ε

)
= o (nκ)

Finally, in each deconstruction step we takes O
(

n
log2(n)

)
operations, and we do log2

(⌈
n1− ε2

⌉)
times deconstruction, so the

decode complexity in deconstruction step is O (n). For the rounding step, it’s easy to check that the decoding complexity for
each data segment xi is O

(⌈
n
ε
2

⌉)
, and there are totally

⌈
n1− ε2

⌉
segments, hence the total decoding complexity for rounding

step is O (n̄) = O (n), so the total decoding complexity for basic code is O (n).

E. Proof of Theorem 4.4

By the property of B4nλ log(n)×n and the fact that
∑4 log(n)
i=1 Bi = B4nλ log(n)×n, we get

∀x,x′ ∈ {0, 1}n×1, ‖x‖1, ‖x′‖1 < ln,

∃i such that |Bi

(
{j : xj 6= x′j}

)
| >

‖x−x′‖0
6

4 log(n)
=
‖x− x′‖0
24 log(n)

By pigeonhole principle, the number of index z such that |{j : Bi (j) = z}| ≥ 48 log(n) is smaller than ‖x−x
′‖0

48 log(n) , which

implies the number of index z such that |{j : Bi (j) = z}| < 48 log(n) is greater than ‖x−x
′‖0

24 log(n) −
‖x−x′‖0
48 log(n) = ‖x−x′‖0

48 log(n) . Note
that in the construction of Di, we use BCH code check matrix with code distance 48 log(n) as our building block. Hence
for these ‖x−x

′‖0
48 log(n) numbers of z, define xz be a ternary vector such that xz(j) = (x− x′) (j) if Bi (j) = z and xz(j) = 0

otherwise. Then Dixz ≥ 1 if xz 6= 0, combine with the property of Hadamard matrix
(
∀x ∈ Rn, ‖Hnx‖22 = n‖x‖22

)
, we get

‖Di (x− x′)‖22 ≥
‖x− x′‖0
48 log(n)

4nλ log(n) =
nλ‖x− x′‖0

12

By the construction of Di, the height of Di is smaller than 4nλ log(n)48 log(n)2 = 192nλ log(n)3, since height of
H4nλ log(n) is 4nλ log(n) and height of Cn48 log(n) is smaller than 48 log(n)2. Then

‖Q (x− x′)‖∞ ≥ ‖Di (x− x′)‖∞ ≥

√
‖Di (x− x′)‖22
192nλ log(n)3

≥

√
nλ‖x−x′‖0

12

192nλ log(n)3
=
‖x− x′‖2
48 log(n)

3
2

The proof is complete. It remains to construct B4nλ log(n)×n. Although we can’t construct B4nλ log(n)×n explicitly, we can
show the existence of such matrix by a probability method.

Theorem A.1: There exists a binary matrix B4nλ log(n)×n with each column vector 4 log(n)-sparse such that for any 1 ≤
d ≤ nλ column vector ci1 , ..., cid , ‖V{i1,...,id}‖ := ‖

⋃
j=i1,...,id

cj‖0 ≥ 1
6d.

Proof of Theorem A.1 is given in Appendix F of the extended version.

F. Proof of Theorem A.1

We use probabilistic method to proof this claim, let each element in B4nλ log(n)×n be i.i.d bernoulli 1/nλ random variable,
then the probability that the matrix B4nλ log(n)×n failed to have the desired property would be

Pf ≤(a)
∑

S⊂[1:n],|S|≤nλ
Pr(‖VS‖ <

1

6
|S|) =(b)

∑
1≤d≤nλ

∑
S⊂[1:n],|S|=d

Pr

(
BIN

(
4nλ log(n), (1− 1

nλ
)d
)
> 4nλ log(n)− 1

6
d

)
≤(c)

∑
1≤d≤nλ

∑
S⊂[1:n],|S|=d

Pr

(
BIN

(
4nλ log(n),

1
3d

nλ

)
<

1

6
d

)

=
∑

1≤d≤nλ

∑
S⊂[1:n],|S|=d

Pr

(
e
tBIN

(
4nλ log(n),

1
3
d

nλ

)
> e

td
6

)
, t < 0

≤(d)
∑

1≤d≤nλ

∑
S⊂[1:n],|S|=d

(
d

3nλ
et +

(
1− d

3nλ

))4nλ logn

e
td
6

≤(e)
∑

1≤d≤nλ

∑
S⊂[1:n],|S|=d

e
4dnλ log(n)(et−1)

3nλ

e
td
6

=(f)
∑

1≤d≤nλ

∑
S⊂[1:n],|S|=d

e−(4d logn
3 − d6−

d log(8 log(n))
6) ≤(g)

∑
1≤d≤nλ

nde−
49
48d log(n), n ≥ 8 = o(1)

(a) follows from union bound. (b) follows from the fact that VS is the boolean sum of ci, i ∈ S.(c) follows from change the
parameter of binomial distribution and the fact that ∀1 ≤ d ≤ nλ, (1− 1

nλ
)d ≤ 1− d

3nλ
.(d) follows from markov inequality. (e)

follows from 1 + x ≤ ex. (f) follows from choose t = − log(8 log(n)). (g) follows from upper bound the number of possible
S with |S| = d and the fact that 4d logn

3 − d
6 −

d log(8 log(n))
6 > 49

48d log(n), n ≥ 8.
Since Pf = o(1), the matrix B4nλ log(n)×n we desired must exists.

