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Abstract—Sequential binary hypothesis testing from tempo-
rally heterogeneously generated random samples with an active
decision maker under budget constraints is considered. The prob-
lem is motivated from applications in crowdsourced classification
and sequential detection from sensory data in IoT networks. In
such applications, at each time slot, the source of data may vary
from time to time, and the decision on the two possible hypotheses
is to be made in a reliable, fast, and cost effective manner. In
particular, the active decision maker either takes the current
source and collects a sample, or skips the current source and
waits for the next time slot. At the end of each time slot, the
decision maker either decides to claim the decision on the two
hypotheses, or continues to observe the data source for the next
time slot. The goal is to design action taking and decision making
policies so that the probability of error is minimized under two
constraints: one on the total number of samples collected by the
decision maker, and the other is on the total number of time slots.
In this work, the available data source changes among n possible
ones i.i.d. over time, and the two constraints are in expectation.
We establish the optimal error exponents of the two types of
error probabilities as the two constraints tend to infinity with
a fixed proportion. For achievability, a scheme that combines
a sequential probability ratio test and an adaptive randomized
policy that dynamically switches between two sets of accepting
probabilities of the current source, according to the observed
samples collected so far, is proposed. Matching upper bounds
on the error exponents are developed using data processing
inequality and Doob’s Optional Stopping Theorem.

A full version of this paper is accessible at:
http://homepage.ntu.edu.tw/~ihwang/Eprint/isit21sacsc.pdf

I. INTRODUCTION

Sequential hypothesis testing has gained increasing attention
recent years owing to its usage in a wide range of applications
including crowdsourcing, surveillance, spectrum sensing, sen-
sor networks, scientific research, etc.. The problem involves
making a decision over a given set of hypotheses based on
the samples sequentially collected from the observed data
sources. The decision maker can adaptively decide when to
stop the observation and make the decision based on the
samples collected so far. While its root can be traced back
to the seminal works by Wald [1] and Wald and Wolfowitz
[2], a variety of extensions and alternatives of the classical
sequential hypothesis testing problem have been proposed and
explored (to name a few, [3], [4]). See [5] for a glimpse at the
vast literature.

Among them, a branch of works initiated by Chernoff
[6] (termed active sequential hypothesis testing in [7] and
controlled sensing in [8]) have been focused on taking ad-

ditional action which affects the quality of the samples. The
action typically involves selection from multiple data sources
(or statistical experiments in [6]), with applications in sensor
selection [9]–[12], medical diagnosis, etc.. The set of available
data sources to be selected from, however, is assumed to be
fixed throughout the entire process, which is a reasonable
assumption in the applications considered in the literature.

Meanwhile, in other applications such as crowdsourced
classification and sequential detection from sensory data in
IoT networks, the available data sources might not be the
same throughout – they may change over time and hence are
temporally heterogeneous, rendering the setting considered in
Chernoff [6] and follow-up works [7], [9]–[13] not directly
applicable. For example, in crowdsourced data annotation,
the quality and reliability of available workers may vary
over time. Faced with such temporal variability, the action
now additionally involves deciding whether to select from the
current set of available data sources, or to wait for the next
time instance. With two constraints – one on the total number
of collected samples and the other on the total number of
time instances, the goal is to design optimal decision making
and action taking policies so that the probability of error is
minimized. While there has been a vast amount of existing
works that address the policy design and characterization
of the optimal performance when the set of available data
sources is fixed [7], [9]–[13], for the setting with temporally
heterogeneous data sources, such results are missing in the
literature.

To address the challenge imposed by such temporal het-
erogeneity, in this work we consider a canonical setting with
a single available data source at each time instance, and the
available one changes over time randomly (i.i.d. over time).
The active decision maker is faced with two constraints: one
on the total number of collected samples, and the other on
the total number of time instances. At each time instance,
the active decision maker either takes the current source and
collects a sample, or skips it and waits for the next time
instance. At the end of each time instance, the decision maker
either decides to claim the decision on the two hypotheses, or
continues to observe the data source for the next time instance.
The goal is to design action taking and decision making
policies so that the probability of error is minimized under
the two aforementioned constraints. These constraints can
either be absolute (termed “hard” constraints) or in expectation
(termed “soft” constraints).



The focus of this work is on the problem with soft con-
straints. Under the constraint that the expected number of col-
lected samples is not greater than B and the expected number
of time instances is not greater than T , it is natural to employ
a randomized selection policy to meet the constraints in
expectation. Hence, the key is to determine the probability of
accepting each kind of source based on the source distributions
and the observations so far. Such a randomized selection policy
is specified by a vector of accepting probabilities. We propose
an adaptive policy that dynamically switches between two
kinds of accepting probabilities, depending on the observed
samples collected so far. The proposed policy is shown to be
asymptotically optimal as T and B both tend to infinity with
a fixed proportion, in the sense that the achievable type-I and
type-II error probabilities can both vanish exponentially fast
with T , and the rate functions (error exponents) are optimal. To
characterize the achievable error exponents, proof techniques
in [7] based on martingale theory are employed. For the proof
of the converse part, data processing inequality along with
Doob’s Optional Stopping Theorem are leveraged, which is
similar to that in [14], [15, Chapter 15.3]. As a result, the
optimal type-I and type-II error exponents are characterized
by two linear programs that can be solved explicitly, and the
resultant error exponents are certain linear combinations of
the n KL divergences between the two hypothetical distri-
butions of the n data sources. The coefficients in the linear
combinations are proportional to the accepting probabilities
of the sources. The fact that both types of error exponents are
linear combinations of KL divergences reflects the benefit of
adaptivity in the sequential setting since the soft constraints
leave some soft margins in time so that the decision maker
can wait for more informative sources.

In the literature, the most closely related works lie in
the field of sensor selection [10]–[12]. The setting can be
viewed as a special case of active sequential binary hypothesis
testing [7], [8], where multiple sources are available, and the
decision maker has to select a source at each time instance.
Bai and Gupta [11] considered heterogeneous sampling cost.
They minimized the expected total cost over selection policies
under the sequential probability ratio test with fixed stopping
boundaries. Bai et al. [10] also studied the minimization of the
expected total cost when the sampling cost is heterogeneous.
The minimization problem is subject to the constraints on
the probability of error and the expected usage of each
source usage. Policies in their work are prohibited from using
the collected samples. Meanwhile, Li et al. [12] used the
information of collected samples to minimize the expected
number of samples, subject to the constraints on probability of
error and sensor usage. Notably, none of the above-mentioned
existing works consider temporal variability of the sources that
are available.

II. PROBLEM FORMULATION

As motivated in the previous section, let us formulate the
problem in detail as follows. Consider n heterogeneous data
sources, labeled by integers in [n] , {1, ..., n}.

A. Statistical model

The statistical model involves two parts: which data source
is available at each time instance, and the realization of the
collected data samples.

At time instance t, t ≥ 1, the index Wt ∈ [n] of the current
available source follows a distribution Pα, that is,

Pα(j) , P{Wt = j} = αj , ∀ j ∈ [n] .

In words, the sequence of the indices of available data sources
{Wt}t∈N follows Pα in an i.i.d. fashion. For notational con-
venience, let α = [α1, ..., αn] denote this probability vector
in the n-dimensional probability simplex.

The goal of the decision maker is to infer the hypothesisHθ,
θ ∈ {0, 1} from the collected samples. Under the hypothesis
Hθ, the sample drawn from each source (say source j, j ∈ [n])
follows distribution Pθ,j , that is,

Xt ∼ Pθ,j if wt = j.

The distributions of all sources under different hypotheses are
known to the active decision maker. For notational conve-
nience, let us also denote the alphabet of Xt’s as X , and
use Pθ{·} and Eθ[·] as the short-hand notations for “the
probability” and “the expectation” under hypothesis Hθ, for
θ = 0, 1.

Throughout this manuscript, we make the following techni-
cal assumption as in [7]. This technical assumption is used in
our achievability and converse proofs as well as to ensure the
error probabilities do vanish in the asymptotic regime.

Assumption 1: The one-step log-likelihood ratio (LLR) is
bounded, that is, there exists a constant L > 0 such that

∀ j ∈ [n] , sup
x∈X

∣∣∣∣log P1,j(x)

P0,j(x)

∣∣∣∣ ≤ L. (1)

Moreover, ∃ j ∈ [n] such that D (P1,j ‖P0,j) > 0, and ∃ j ∈
[n] such that D (P0,j ‖P1,j) > 0. Here we denote the KL
divergence of distribution P from distribution Q as D (P ‖Q).

B. Active source selection and inference

At each time instance, the decision maker first takes the
following binary selection action: it either takes the current
available data source and collects a sample Xt drawn from
the source, or skips the current source and waits for the next
time instance. The binary action is denoted as δt ∈ {0, 1},
where 1 means to take the current source. In our formulation,
randomized policy is allowed, that is, δt is a random variable,
which follows a distribution determined by the decision maker.
After the selection action, based on the previous collected
samples and their respective data sources, the decision maker
decides whether to stop collecting data and infer the underly-
ing hypothesis, or to continue to the next time instance. Hence,
the time instance at which the decision maker outputs the
inferred result is a stopping time, which we denote as τ . The
inferred result is denoted as φ ∈ {0, 1}, that is, the inferred
hypothesis is Hφ.

In short, there are three parts of the decision maker’s policy:
(1) the randomized selection action {δt | t = 1, 2, ...}, (2) the



stopping rule 1{τ = t}, and (3) inference of the hypothesis φ.
To describe how the three parts depend on the overall collected
information by the decision maker, let us denote it (up to
time t) as Ft, consisting of the collected samples and their
sources so far: Ft , {(Xs,Ws) | 1 ≤ s ≤ t : δs = 1}. Note
that there is no need to include the indices of the skipped
data sources because of the temporal independence. For the
selection action, the probability of taking the current source
P {δt = 1} is a function of Ft−1 and the index of the current
source Wt. The stopping rule 1{τ = t} and the inference φ
are both functions of Ft. For notational convenience, let us
denote the distribution of Ft under hypothesis Hθ as P

(t)
θ (·),

for θ = 0, 1.
As for the performance of the inferred result, let us define

the following probability of errors:

Type 1: π1|0 , P0{φ = 1} ; Type 2: π0|1 , P1{φ = 0}.

For convenience, let the probabilities of success π0|0 , 1−π1|0
and π1|1 , 1 − π0|1. For the Bayesian setting, let πθ denote
the prior of hypothesis Hθ, θ ∈ {0, 1}. The Bayesian error
probability is hence Pe , π0π1|0 + π1π0|1.

C. Constraints and error exponents

The decision maker is faced with two constraints: one on the
total number of collected samples (budget constraint), and the
other on the total number of time instances (time constraint). In
particular, let us denote the total number of collected samples
as B ,

∑
t≤τ δt. Meanwhile, the stopping time τ corresponds

to the total number of time instances. The two soft constraints
are then given as follows:

Eθ [τ ] ≤ T and Eθ [B] ≤ B, ∀ θ ∈ {0, 1}. (2)

As for the asymptotic performance, our focus is on the case
where both B and T tend to infinity with a fixed ratio B

T = r,
0 ≤ r ≤ 1. In such an asymptotic regime, we say that the error
exponents of the type 1 and the type 2 error probabilities,
denoted by E0 and E1 respectively, are achievable if there
exists a sequence of policies under the constraints in (2) such
that the two types of error probabilities both vanish and satisfy

lim inf
T→∞
B=rT

{
1

T
log

1

π1|0

}
≥ E0, lim inf

T→∞
B=rT

{
1

T
log

1

π0|1

}
≥ E1. (3)

The collection of all achievable (E0, E1) is called the exponent
region E(r), where the dependency on the budget-to-time
ratio r is emphasized. In addition, the optimal Bayesian error
exponent is defined as

E∗(r) , lim
T→∞
B=rT

{
1

T
log

1

P∗e (T,B)

}
,

where P∗e (T,B) is the minimum Bayesian error probability Pe

subject to the constraints in (2).
Remark 1: Our treatment on the asymptotic performance

is focused on policies that can guarantee vanishing type-1
and type-2 error probabilities. Note that policies providing a
constant guarantee on one type of error probability, namely,

those in the “Neyman-Pearson” regime, are not considered
in this work. Such restriction when studying the asymptotic
performance was also taken in previous works [6], [8]. In our
main theorem, the characterization of error exponents in this
work does not cover those in the Neyman-Pearson regime.

Notations: The symbol � denotes the element-wise less-
than-or-equal-to: for β,α ∈ Rn, β � α ⇐⇒ βj ≤
αj , ∀ j ∈ [n]. ‖ . ‖1 denotes the `1-norm. R+ denotes the
set of non-negative reals.

III. MAIN RESULTS

Our main result is summarized in the following theorem.
Theorem 1 (Characterization of the Exponent Region): The

exponent region subject to the budget-to-time ratio r ∈ [0, 1],
E(r), as defined in Section II-C, is the set of positive (E0, E1)
satisfying the following inequalities:

E0 ≤ max
β∈Rn+

{∑
j∈[n] βjD (P1,j ‖P0,j)

∣∣∣ ‖β‖1 ≤ r, β � α
}

︸ ︷︷ ︸
D∗0(r)

E1 ≤ max
β∈Rn+

{∑
j∈[n] βjD (P0,j ‖P1,j)

∣∣∣ ‖β‖1 ≤ r, β � α
}

︸ ︷︷ ︸
D∗1(r)

Sketch of Proof: The converse part is proved in Section V
by data processing inequality and Doob’s Optional Stopping
Theorem. As for the achievability part, note that the maximum
of the type 1 and type 2 error exponents, as denoted above by
D∗0(r) and D∗1(r) respectively, are both solutions to a simple
linear program that can be solved by a greedy algorithm ex-
plicitly. In each of the two cases, the optimal solution of β is to
greedily raise the “weightings” of taking the most informative
source (measured by the respective KL divergence) under the
constraints until the sum of weightings reaches the budget-
to-time ratio r. Intuitively, the optimal solutions of β are
proportional to the accepting probabilities of the sources.

Let us denote the optimal solutions to the two linear
programs as β∗1(r) and β∗0(r) respectively. Hence, β∗1(r)
depends on the ordering of the source indices ranked by
KL divergences {D (P1,j ‖P0,j) | j ∈ [n]}, while β∗0(r)
depends on the ordering of the source indices ranked by
{D (P0,j ‖P1,j) | j ∈ [n]}. Since KL divergences are not
necessarily symmetric, in general β∗1(r) 6= β∗0(r), and a static
randomized policy will not work. Instead, inspired by [7], we
propose an adaptive randomized policy which dynamically
switches between two sets of accepting probabilities. As for
determining when to stop and make the inference, we employ
a sequential probability ratio test (SPRT). The details of the
scheme and analysis can be found in Section IV.

As a straightforward corollary of Theorem 1, the optimal
Bayesian error exponent is characterized.

Corollary 1: The optimal Bayesian error exponent subject
to the budget-to-time ratio r ∈ [0, 1] is

E∗(r) = min{D∗0(r),D∗1(r)}.



Note: For convenience, when the context is clear, in the
rest of this manuscript, we may drop the dependency on r in
D∗0(r), D

∗
1(r), β

∗
0(r), and β∗1(r).

IV. PROOF OF ACHIEVABILITY

In this section, we first describe the proposed scheme which
comprises an adaptive randomized policy as motivated in the
Sketch of Proof of Theorem 1 and a SPRT. The main intuition
is that, at a certain stage, if the decision maker is more
confident that Hθ is correct based on the collected samples
so far, it should use the accepting probabilities that favor
distinguishing from the other hypothesis. We will formalize
this intuition later. Then, performance analysis of the proposed
policy is carried out to complete the proof of achievability.

A. The proposed scheme

The proposed scheme comprises two parts: (1) an adaptive
randomized policy for determining the selection action, and (2)
a SPRT for determining when to stop and make the inference.
For both parts, the log-likelihood ratio (LLR) at each time
instance t, defined as follows, plays a crucial role:

St , log
P1(Ft)

P0(Ft)
(4)

First, let us describe the adaptive randomized selection
policy. It depends on the solutions to the linear programs
charactering the error exponents. Denote the re-ordering of
the indices [n] ranked by D (P1,j ‖P0,j) and D (P0,j ‖P1,j)
as σ1, σ0 respectively:

D
(
P1,σ1(1)

∥∥P0,σ1(1)

)
≥ ... ≥ D

(
P1,σ1(n)

∥∥P0,σ1(n)

)
D
(
P0,σ0(1)

∥∥P1,σ0(1)

)
≥ ... ≥ D

(
P0,σ0(n)

∥∥P1,σ0(n)

)
.

Recall that β∗1 denote the optimal solution of achieving D∗0
and β∗0 denote that of D∗1. They can be explicitly solved as
follows: for θ = 0, 1, j ∈ [n], the σθ(j)-th entry of βθ is

β∗θ,σθ(j) =


ασθ(j) if j < w̃(σθ, r)

r −
∑w̃(σθ,r)−1
j=1 ασθ(j) if j = w̃(σθ, r)

0 otherwise
(5)

where w̃(σθ, r) is the threshold such that∑w̃(σθ,r)−1
j=1 ασθ(j) < r ≤

∑w̃(σθ,r)
j=1 ασθ(j). (6)

One can recognize the greedy algorithm for solving the linear
programs from the solutions above.

We are now ready to describe the adaptive randomized
policy for the take-it-or-not action:

P{δ∗t = 1|wt = j} =

{
β∗1,j/αj if St ≥ 0

β∗0,j/αj otherwise.
(7)

The intuition of the policy is that, if one has more confidence
that one of the hypotheses (for example, H1) is true, one
should take the action that maximizes the expected absolute
value of the LLR (which is a linear combination of KL
divergences {D (P1,j ‖P0,j) | j ∈ [n]}) to distinguish the
hypothesis faster from the other hypothesis.

As for the SPRT that determines when to stop collecting
samples and make the inference, the stopping time

τ = mint∈N{t |St ≥ A1 or St ≤ −A0}, (8)

where A1 , TD∗0 − C1, A0 , TD∗1 − C0, and C1, C0 are
constants not depending on T . The decision rule that gives
the inferred result is

φ =

{
1 if Sτ ≥ A1

0 if Sτ ≤ −A0

. (9)

B. Proof of the achievability part of Theorem 1

Let us now analyze the performance of the proposed scheme
and complete the proof of the achievability part. The key is
how to bound the expected stopping time by analyzing the
behavior of the LLR’s {St} under the proposed adaptive pol-
icy. Once the expected stopping time is successfully bounded,
the expected budget can be bounded via martingale method
and Doob’s Optional Stopping Theorem, and the rest of the
proof just follows the same procedure of bounding the error
probabilities as in SPRT.

To get a handle on the behavior of the LLR under the
proposed policy, we leverage the following lemma which is
a slight extension of [7, Lemma 4] to our case. Its proof is
provided in Appendix B of the full version.

Lemma 1: Suppose the following three conditions are sat-
isfied for constants K1,K2,K3:

E1 [St+1 |St] ≥ St +K1 if St < 0

E1 [St+1 |St] ≥ St +K2 if St ≥ 0

|St+1 − St| ≤ K3

(10)

Then, for the stopping time τupper = min {t : St ≥ A}, its
expectation is upper bounded as follows:

E1 [τupper] ≤
A+K3

K2
+

K3

1− e−K3

(
1

K1
− 1

K2

)
. (11)

Similarly, suppose the following three conditions are satisfied
for constants K4,K5,K6:

E0 [−St+1 |−St] ≥ −St +K4 if − St ≤ 0

E0 [−St+1 |−St] ≥ −St +K5 if − St > 0

|St+1 − St| ≤ K6

(12)

Then, for the stopping time τlower = min {t : −St ≥ A}, its
expectation is upper bounded as follows:

E0 [τlower] ≤
A+K6

K5
+

K6

1− e−K6

(
1

K4
− 1

K5

)
(13)

We are ready to analyze the behavior of LLR’s. Note that
the stopping time τ in (8) can be written as τ = min{τ1, τ0},
where

τ1 = min
t∈N
{t |St ≥ A1} and τ0 = min

t∈N
{t |St ≤ −A0}.

In the following, we are going to invoke Lemma 1 to find
appropriate C1 and C0 so that E1 [τ1] ≤ T and E0 [τ0] ≤
T . Since E1 [τ1] ≥ E1 [τ ] and E0 [τ0] ≥ E0 [τ ], the temporal
constraints are satisfied.



Consider the case where the ground truth is H1. Based on
the proposed policy and equation (1) in Assumption 1, we
have
E1 [St+1 |St] = St +

∑
j∈[n] β

∗
0,jD (P1,j ‖P0,j) for St < 0

E1 [St+1 |St] = St + D∗0 for St ≥ 0

|St+1 − St| ≤ L
Let us identify the constants in (10) as follows:

K1 ←
∑
j∈[n]

β∗0,jD (P1,j ‖P0,j) ; K2 ← D∗0; K3 ← L. (14)

By equation (11) in Lemma 1, the constraint E1 [τ1] ≤ T can
be satisfied by solving C1 from the following equation:

T =
A+K3

K2
+

K3

1− e−K3

(
1

K1
− 1

K2

)
with the identification in equation (14) and

A← A1 = TD∗0 − C1.

The resulting C1 is indeed a constant independent of T :

C1 = L+
LD∗0

1−e−L

(
1∑

j∈[n] β
∗
0,jD(P1,j ‖P0,j)

− 1
D∗0

)
.

As for the case where the ground truth is H0, a similar ap-
proach can be applied to find a constant C0 that is independent
of T such that E0 [τ0] ≤ T . The resulting constant

C0 = L+
LD∗1

1−e−L

(
1∑

j∈[n] β
∗
1,jD(P0,j ‖P1,j)

− 1
D∗1

)
.

Hence, with the above choices of C1 and C0, we have
shown that the proposed policy satisfies the temporal constraint
Eθ [τ ] ≤ T for θ = 0, 1.

Now, let us show that the proposed policy satisfies the
budget constraint Eθ [B] ≤ B for θ = 0, 1. Note that under
the proposed policy described in (5) – (7), the probability of
taking the source is r:

P{δ∗t = 1} =
∑
j∈[n] αjP{δ∗t = 1|wt = j} = r.

A martingale is then constructed to bound the expected budget
using Doob’s Optional Stopping Theorem. Let Bt ,

∑
k≤t δk

denote the total spent budget at time t. Under the proposed
policy, the random process {Mt = Bt − rt | t ≥ 0} is a
martingale. By Doob’s Optional Stopping Theorem,

0 =M0 = Eθ [Mτ ] = Eθ [Bτ ]− rEθ [τ ] = Eθ [B]− rEθ [τ ] .

Since the temporal constraints are satisfied, Eθ [τ ] ≤ T , and
hence Eθ [B] = rEθ [τ ] ≤ rT = B.

Finally, let us upper bound the probability of errors by the
martingale method. The proof is similar to that of SPRT. Due
to space constraint, we leave the details in Appendix A of the
full version. Eventually, we are able to show that π0|1 ≤ e−A0

and π1|0 ≤ e−A1 . Hence,

lim inf
T→∞
B=rT

{
1

T
log

1

π0|1

}
≥ lim
T→∞

A0

T
= D∗1,

lim inf
T→∞
B=rT

{
1

T
log

1

π1|0

}
≥ lim
T→∞

A1

T
= D∗0,

and the achievability proof is now complete.

V. PROOF OF CONVERSE

Let us first introduce the following notation: for p, q ∈ [0, 1],

d (p ‖q) , p log p
q + (1− p) log 1−p

1−q = D (Ber(p) ‖Ber(q)) ,
h(p) , p log 1

p + (1− p) log 1
1−p = H(Ber(p)).

Our goal is to show that, for any sequence of schemes with
vanishing π0|1 and π1|0 and satisfying (3) as T → ∞ with
B = rT , E0 ≤ D∗0(r) and E0 ≤ D∗1(r).

Let us deal with E0 first. From (3), the key is to upper
bound log 1

π1|0
. From the definition of the above notations,

log 1
π1|0

= 1
π1|1

(d
(
π1|1

∥∥π1|0)+h(π1|1)+π0|1 log π0|0). (15)

By the data processing inequality,

d
(
π1|1

∥∥π1|0) ≤ D (P(τ)
1

∥∥∥P(τ)
0

)
(16)

= E1 [Sτ ] =
∑
j∈[n] E [Sτ,j ] , (17)

where

St,j ,
t∑

s=1

1{Ws = j}δs log
P1,j(Xs)

P0,j(Xs)

denotes the LLR with only samples collected from source j.
Now, by the Optional Stopping Theorem, we have

E1 [Sτ,j ] = E1

[∑
s∈{1,...,τ} 1{Ws = j}δs

]
E1

[
log

P1,j(X)
P0,j(X)

]
= E1 [Bj ] D (P1,j ‖P0,j) ,

where we denote the number of collected samples from source
j ∈ [n] as Bj ,

∑
s≤τ 1{Ws = j}δs. Note that E1 [Bj ] ≤

E1 [τ ]αj ≤ Tαj , and
∑
j∈[n] E1 [Bj ] = E1 [B] ≤ B. As a

result, with the above notations, we can find the following
inequalities which are necessary conditions for the original
budget and temporal constraints:

E1 [Bj ] ≤ Tαj , ∀ j ∈ [n] (18)∑
j∈[n] E1 [Bj ] ≤ B. (19)

Hence, we can derive an upper bound on E1 [Sτ ] as follows:

E1 [Sτ ]

=
∑
j∈[n] E [Sτ,j ]

≤ max
E1[B1],...,E1[Bn]

satisfying (18) and (19)

∑
j∈[n]

E1 [Bj ]D (P1,j ‖P0,j)

 . (20)

Combining (15) – (17) and (20), an upper bound on 1
T log 1

π1|0
is reached:

1
T log 1

π1|0
≤ 1

Tπ1|1
(h(π1|1) + π0|1 log π0|0 + (20)). (21)

Taking T →∞ with B = rT , since π0|1 and π1|0 both vanish,
the upper bound (21) asymptotically becomes

maxβ : ‖β‖≤r, 0�β�α
∑
j∈[n] βjD (P1,j ‖P0,j)

which is exactly D∗0(r). This shows that E0 ≤ D∗0(r).
As for E1, a similar argument shows that E1 ≤ D∗1(r), and

the converse proof is now complete.
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APPENDIX

A. Error probability upper bounds for the achievability proof

Note that
E1

[
e−St+1

∣∣e−St]
= E1

[
e−St+1

∣∣St]
= e−St E1

[
e−(St+1−St)

∣∣∣St]
= e−St E1

[
exp

(
−δt+1 log

P1,Wt+1
(Xt+1)

P0,Wt+1
(Xt+1)

) ∣∣∣∣St] .
Since ∀ j ∈ [n],

E1

[
e
−δt+1 log

P1,Wt+1
(Xt+1)

P0,Wt+1
(Xt+1)

∣∣∣∣∣St,Wt+1 = j, δt+1 = 0

]
= 1,

E1

[
e
−δt+1 log

P1,Wt+1
(Xt+1)

P0,Wt+1
(Xt+1)

∣∣∣∣∣St,Wt+1 = j, δt+1 = 1

]

= E1

[
P0,j(Xt+1)

P1,j(Xt+1)

∣∣∣∣St,Wt+1 = j, δt+1 = 1

]
= 1,

we have E1

[
exp

(
−δt+1 log

P1,Wt+1
(Xt+1)

P0,Wt+1
(Xt+1)

) ∣∣∣St] = 1. Hence,

E1

[
e−St+1

∣∣e−St] = e−St .

Following a similar derivation, it can also be shown that

E0

[
eSt+1

∣∣eSt] = eSt .

Therefore, {e−St | t ≥ 1} is a martingale under hypothesis H1 and {eSt | t ≥ 1} is a martingale under hypothesis H0. By the
Optional Stopping Theorem, we have

1 = e−S0 = E1

[
e−Sτ

]
, 1 = eS0 = E0

[
eSτ
]
.

Recall the inference rule in equation (9), we have

1 = E1

[
e−Sτ

]
= π0|1E1

[
e−Sτ

∣∣φ = 0
]
+ π1|1E1

[
e−Sτ

∣∣φ = 1
]

≥ π0|1eA0 + π1|1e
−A1−L

≥ π0|1eA0 ,

implying that π0|1 ≤ e−A0 . Similarly, we have

1 = E0

[
eSτ
]
≥ π1|0eA1 =⇒ π1|0 ≤ e−A1 .

B. Proof of Lemma 1

The most of the proof here follows the proof in [7] (See "Proof of Lemma 4" in supplement to [7]). But we slightly adjust
the lemma to directly fit our setting by consider the cases of {St ≤ 0} and {St > 0}.

Proof: First note that due to the time-varying sources and adaptive policy, St
K2
− t is not martingale. But we still have:E1

[
St+1

K1
− (t+ 1)

∣∣∣St] ≥ St
K1
− t if St ≤ 0

E1

[
St+1

K2
− (t+ 1)

∣∣∣St] ≥ St
K2
− t if St > 0

(22)



and e−St is still martingale under hypothesis H1.

E1

[
e−St+1

∣∣St]
=e−St E1

[
e−(St+1−St)

∣∣∣St]
=e−St E1

[
e
−δt+1 log

P1,Wt+1
P0,Wt+1

∣∣∣∣∣St
]

=e−St
∑
j∈[n]

∑
x∈X

Pα(j)P1,j(x)(
P {δt+1 = 0 |Ft, wt+1 = j}

+ P {δt+1 = 1 |Ft, wt+1 = j}
(
P0,j(x)

P1,j(x)

))

=e−St
∑
j∈[n]

Pα(j)

(
P {δt+1 = 0 |Ft, wt+1 = j}

+ P {δt+1 = 1 |Ft, wt+1 = j}

)
=e−St

(23)

A submartingale can be constructed by linear combination of these term. Let

ξt =

{
−C + St

K1
− t if St ≤ 0

−Ce−St + St
K2
− t if St > 0

(24)

where C = ( K3

1−e−K3
)( 1
K1
− 1

K2
) > 0. We shall prove that the sequence {ξt} forms a submartingale, i.e. E1 [ξt+1 |ξt] ≥ ξ.

For case 1 St ≤ 0: If St+1 ≤ 0, then

ξt+1 = −C +
St+1

K1
− (t+ 1) (25)

If St+1 > 0, then

ξt+1 = −Ce−St+1 +
St+1

K2
− (t+ 1)

≥ −C +
St+1

K1
− (t+ 1)

(26)

The last inequality is due to the concavity of −Ce−St+1 + St+1

K2
over St+1 ∈ (0,K3]. Note that C is carefully picked to let

−Ce−St+1 + St+1

K2

∣∣
St+1=K3

= −C + St+1

K1

∣∣
St+1=K3

and −Ce−St+1 + St+1

K2

∣∣
St+1=0

= −C + St+1

K1

∣∣
St+1=0

. Hence we have for
St ≤ 0

E1 [ξt+1 |St]

≥E1

[
−C +

St+1

K1
− (t+ 1)

∣∣∣∣St]
≥− C +

St
K1
− t = ξt

(27)

For case 2 St > 0: If St+1 > 0, then

ξt+1 = −Ce−St+1
St+1

K2
− (t+ 1) (28)

If St+1 ≤ 0, then

ξt+1 = −C +
St+1

K1
− (t+ 1)

≥ −Ce−St+1 +
St+1

K2
− (t+ 1)

(29)



The last inequality is due to the concavity of −Ce−St+1 + St+1

K2
over St+1 ∈ (−∞,K3]. Hence we have for St > 0

E1 [ξt+1 |St]

≥E1

[
−Ce−St+1 +

St+1

K2
− (t+ 1)

∣∣∣∣St]
≥− CE1

[
e−St+1

∣∣St]+ E1

[
St+1

K2
− (t+ 1)

∣∣∣∣St]
≥− Ce−St + St

K2
− t

(30)

The last inequality is by martingale e−St under hypothesis H1 (See Equation 24) and by E1 [St+1 − St |St > 0] ≥ K2.
We conclude that {ξt} is submartingale. Hence by optional stopping theorem, we have

−C = ξ0 ≤ E1 [ξτ ] = E1

[
−Ce−Sτ + Sτ

K2
− τ
]

(31)

Recall the stopping rule is τ : min {St ≥ A}. The LLR at stopping time is upper bounded. Sτ = Sτ−1+(Sτ−Sτ−1) ≤ A+K3.
Therefore,

E1

[
−Ce−Sτ + Sτ

K2
− τ
]
≤ −Ce−A−K3 +

A+K3

K2
− E1 [τ ] (32)

Plug-in the value of C = K3

1−e−K3

(
1
K1
− 1

K2

)
, the expected stopping time is upper bounded.

E1 [τ ] ≤ C
(
1− e−A−K3

)
+
A+K3

K2

<
K3

1− e−K3

(
1

K1
− 1

K2

)
+
A+K3

K2

(33)

The proof of the lemma is complete.


