
Theory of Computation
Fall 2017, Midterm Exam. Solutions (Nov. 7, 2017)

1. (20 pts) Let Σ = {0, 1}, answer the following questions (True or False) and prove your answer:

(a) the set of nonpalindromes (i.e., Σ∗ − {w | w = wR, w ∈ Σ∗}) is nonregular;
Solution: True. L ∩ 1∗01∗ = {1n01n | n ≥ 0} is nonregular.

(b) the set of odd-length strings with middle symbol 0 is regular;
Solution: False. L ∩ 1∗01∗ = {1n01n | n ≥ 0} is nonregular.

(c) the set of strings that contain a substring of the form wuw where u ∈ Σ∗, w ∈ Σ+ is nonregular;
Solution: False. L =

∪
a∈Σ Σ∗aΣ∗aΣ∗

(d) the set of strings with the property that in every prefix, the number of 0s and the number of 1s differ by
at most 2 is regular;
Solution: True. Use the state to keep the number of differences of 0s and 1s, which involves a finite
number of cases.

(e) if L is nonregular and both of L′ and L ∩ L′ are regular, then L ∪ L′ is nonregular.
Solution: True. L = (L ∪ L′)− (L′ − (L ∩ L′)). If L ∪ L′ is regular, so is L.

2. (16 pts) Let A = {xx | x ∈ {a, b}∗}, and h : {a, b}∗ → {a, b}∗ be a homomorphism with h(a) = h(b) = a.

(a) What is h(A)?
Solution: {a2n | n ≥ 0}

(b) What is h−1(A)?
Solution: {x | x is of even length}

(c) What is h−1(h(A))?
Solution: {x | x is of even length}

(d) What is h(h−1(A))?
Solution: {a2n | n ≥ 0}

3. (9 pts) Given Σ = {a, b}, we define Two(x) to be an operation doubling each symbol in x ∈ Σ∗. For instance,
Two(abab) = aabbaabb, Two(aab) = aaaabb.

(a) Define Two(x) recursively.
Solution: Two(ϵ) = ϵ; Two(aw) = aaTwo(w), ∀a ∈ Σ, w ∈ Σ∗.

(b) Given a language L, define Two(L) = {x | Two(x), x ∈ L}. Prove that if L is regular, so is Two(L).
Solution: Define a homomorphism h(a) = aa, h(b) = bb.

4. (5 pts) Consider the following operations:
prefix(L) = {u | uv ∈ L, ∃v ∈ Σ∗}; suffix(L) = {v | uv ∈ L, ∃u ∈ Σ∗}; reverse(L) = {x | xR ∈ L}.
Use the closure of regular languages under the reverse and prefix operations to prove that suffix(L) is regular
whenever L is regular.
Solution: suffix(L)=reverse(prefix(reverse(L)))

5. (5 pts) Use the Myhill-Nerode theorem to show that for any positive integer m, no DFA with less than m states
recognizes Am = {1k|m divides k} (⊆ {1}∗).
Solution: A DFA with m states which simply stores the number of 1s seen so far, modulo m recognizes
this language. Also, for any two strings 1k1 and 1k2 such that k1 ̸= k2 mod m, the string 1m−(k1 mod m)

distinguishes the two. Hence, any two strings in which the number of 1s is different modulo m must be in
different equivalence classes, showing that no DFA with less than m states can recognize this language.

6. (10 pts) Let L be an infinite regular language. Prove that L can be partitioned into two disjoint infinite regular
languages, i.e., L = L1 ∪ L2, L1 ∩ L2 = ∅, and L1, L2 are infinite regular languages. (Hint: Use the pumping
lemma.)
Solution: By the pumping lemma, there is p > 0 such that every string w ∈ L of length at least p can be
written as w = xyz, where y is nonempty and xyiz ∈ L for all i ≥ 0, for all i ≥ 0.

So, fix an arbitrary string w ∈ L of length at least p (it exists because L is infinite). Let w = xyz be a
decomposition guaranteed by the pumping lemma. Partition L = A ∪ (L − A); where A = {xyiz | i =
0, 2, 4, 8, ...}.

• DISJOINTNESS: Trivial

• INFINITENESS: Trivial

• REGULARITY: A is regular because it is given by a regular expression, x(yy)∗z, which makes L − A
regular as well by the closure properties.
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7. (10 pts) Consider the following grammar G, where S,A are nonterminals, and a, b are terminals:
S → aSA | ϵ ; A → bA | ϵ
Answer the following questions:

(a) Is L(G) regular? Why?
Solution: Yes. L = a+b∗ ∪ {ϵ}.

(b) Is G ambiguous? Explain your answer.
Solution: Yes the grammar is ambiguous.
S ⇒ aSA ⇒ aaSAA ⇒ aaAA ⇒ aabAA ⇒ aabbAA ⇒ aabbA ⇒ aabb, and
S ⇒ aSA ⇒ aaSAA ⇒ aaAA ⇒ aaA ⇒ aabA ⇒ aabbA ⇒ aabb;
their corresponding parse trees are easy to construct.

8. (10 pts) True or False? Score = max{0, Right - 1
2 Wrong}. No explanations are needed.

Here are four regular expressions over the alphabet {a, b}:
E1 = (ab+ a∗b∗b∗)∗ E2 = ((ab)∗(a∗b∗b∗)∗)∗ E3 = (a+ b)∗ E4 = a(a+ b)∗

(1) L(E2) = L(E3)
Solution: True

(2) L(E3) = L(E4)
Solution: False

(3) L(E1) = L(E4)
Solution: False

(4) The minimal DFA for L(E1) has five states.
Solution: False

(5) The minimal DFA for L(E4) has two states.
Solution: False Note: ϵ, a, b are in different equivalence classes of RL(E4).

9. (10 pts) Use the pumping lemma to prove that the following language is not regular:
L = {0m1n | m ≤ 2n+ 5,m, n ∈ N} .
Solution We will use the pumping lemma to prove that the language is not regular. Assume that L is regular
and p is its pumping length. Take the word w = 0p1p. Since p ≤ 2p + 5 then w ∈ L. Also it is clear that
|w| = 2p ≥ p. From pumping lemma we have that w = xyz where x, y and z are such that for all i ≥ 0
it holds xyiz ∈ L. Also |y| > 0 and |xy| ≤ p. Since |xy| ≤ p, both x and y consists of zeros only. Take
i = 2p + 6 and form the word xy2p+6z. According to the pumping lemma this word should belong to L.
However, |xy2p+6| ≥ (2p + 6)|y| ≥ 2p + 6. It means that the inequality of numbers of zeros and ones defined
in L does not hold any more: 2p + 6 ̸≤ 2p + 5, i.e. xy2p+6z ̸∈ L. Contradiction. This means that original
assumption was wrong and L is not regular.

10. (5 pts) We say that a DFA M for a language A is minimal if there does not exist another DFA M ′ for A such
that M ′ has strictly fewer states than M . Suppose that M = (Q,Σ, δ, q0, F ) is a minimal DFA for A. Using
M , we construct a DFA M for the complement A as M = (Q,Σ, δ, q0, Q− F ). Is M is a minimal DFA for A?
Why?

Solution: Yes. If otherwise, suppose Ṁ is a minimal DFA for A with fewer states, then Ṁ is a minimum DFA
for M , a contradiction.
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