Theory of Computation
Fall 2017, Midterm Exam. Solutions (Nov. 7, 2017)

1. (20 pts) Let X = {0, 1}, answer the following questions (True or False) and prove your answer:

(a) the set of nonpalindromes (i.e., ©¥* — {w | w = w®,w € ¥*}) is nonregular;
Solution: True. L N1*01* = {1701" | n > 0} is nonregular.

(b) the set of odd-length strings with middle symbol 0 is regular;
Solution: False. L N 1*01* = {1"01™ | n > 0} is nonregular.

(c) the set of strings that contain a substring of the form wuw where u € X* w € XV is nonregular;
Solution: False. L = .y X*aX*aX*

(d) the set of strings with the property that in every prefix, the number of 0s and the number of 1s differ by
at most 2 is regular;
Solution: True. Use the state to keep the number of differences of 0s and 1s, which involves a finite
number of cases.
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(e) if L is nonregular and both of L’ and L N L’ are regular, then L U L’ is nonregular.
Solution: True. L= (LUL")— (L' = (LNL")). If LUL' is regular, so is L.

2. (16 pts) Let A = {zz | z € {a,b}*}, and h : {a,b}* — {a,b}* be a homomorphism with h(a) = h(b) = a.

(a) What is h(A)?

Solution: {a?" | n > 0}
(b) What is h=1(A)?

Solution: {z | z is of even length}
(c) What is h=1(h(A))?

Solution: {z | z is of even length}
(d) What is h(h=1(A))?

Solution: {a?" | n > 0}

3. (9 pts) Given ¥ = {a, b}, we define Two(z) to be an operation doubling each symbol in x € ¥*. For instance,
Two(abab) = aabbaabb, Two(aab) = aaaabd.

(a) Define Two(x) recursively.
Solution: Two(e) = €; Two(aw) = aaTwo(w), Va € ¥, w € X*.

(b) Given a language L, define Two(L) = {x | Two(z),x € L}. Prove that if L is regular, so is Two(L).
Solution: Define a homomorphism h(a) = aa, h(b) = bb.

4. (5 pts) Consider the following operations:
prefiz(L) = {u|uw € L,3v € ¥*}; suffiz(L) = {v|uw € L,Ju € ¥*}; reverse(L) = {z | 2% € L}.
Use the closure of regular languages under the reverse and prefix operations to prove that suf fiz(L) is regular
whenever L is regular.
Solution: suf fix(L)=reverse(prefixz(reverse(L)))

5. (5 pts) Use the Myhill-Nerode theorem to show that for any positive integer m, no DFA with less than m states
recognizes A, = {1¥|m divides k} (C {1}*).
Solution: A DFA with m states which simply stores the number of 1s seen so far, modulo m recognizes
this language. Also, for any two strings 1¥* and 1% such that k; # ko mod m, the string 17— (k1 mod m)
distinguishes the two. Hence, any two strings in which the number of 1s is different modulo m must be in
different equivalence classes, showing that no DFA with less than m states can recognize this language.

6. (10 pts) Let L be an infinite regular language. Prove that L can be partitioned into two disjoint infinite regular
languages, i.e., L = Ly U Ly, L1 N Ly = (), and L1, Ly are infinite regular languages. (Hint: Use the pumping
lemma.)

Solution: By the pumping lemma, there is p > 0 such that every string w € L of length at least p can be
written as w = zyz, where y is nonempty and zy’z € L for all i > 0, for all i > 0.

So, fix an arbitrary string w € L of length at least p (it exists because L is infinite). Let w = zyz be a
decomposition guaranteed by the pumping lemma. Partition L = AU (L — A); where A = {ayiz | i =
0,2,4,8,..}.

e DISJOINTNESS: Trivial

e INFINITENESS: Trivial

e REGULARITY: A is regular because it is given by a regular expression, z(yy)*z, which makes L — A
regular as well by the closure properties.
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(10 pts) Consider the following grammar G, where S, A are nonterminals, and a, b are terminals:
S—aSA | e ; A—bA | ¢
Answer the following questions:

(a) Is L(G) regular? Why?
Solution: Yes. L = a™b* U {e}.

(b) Is G ambiguous? Explain your answer.
Solution: Yes the grammar is ambiguous.
S = aSA = aaSAA = aaAA = aabAA = aabbAA = aabbA = aabb, and
S = aSA = aaSAA = aaAA = aaA = aabA = aabbA = aabb;
their corresponding parse trees are easy to construct.

(10 pts) True or False? Score = max{0, Right - 5 Wrong}. No explanations are needed.
Here are four regular expressions over the alphabet {a,b}:
Ey = (ab+ a*b*b*)*  Ey = ((ab)*(a*b*b*)*)* Es3=(a+b)* Es=a(a+0b)*

(1) L(E2) = L(E3)
Solution: True

(2) L(E3) = L(E,)
Solution: False

(3) L(E:1) = L(E,)
Solution: False

(4) The minimal DFA for L(E,) has five states.
Solution: False

(5) The minimal DFA for L(E,) has two states.
Solution: False Note: ¢,a,b are in different equivalence classes of Ry (g,)-.

(10 pts) Use the pumping lemma to prove that the following language is not regular:
L={0"1"|m<2n+5m,ne€ N} .

Solution We will use the pumping lemma to prove that the language is not regular. Assume that L is regular
and p is its pumping length. Take the word w = 0P1P. Since p < 2p + 5 then w € L. Also it is clear that
|lw| = 2p > p. From pumping lemma we have that w = zyz where z,y and z are such that for all i > 0
it holds wy’z € L. Also |y| > 0 and |zvy| < p. Since |zy| < p, both x and y consists of zeros only. Take
i = 2p + 6 and form the word xy?**%z. According to the pumping lemma this word should belong to L.
However, |zy*75| > (2p + 6)|y| > 2p + 6. It means that the inequality of numbers of zeros and ones defined
in L does not hold any more: 2p +6 £ 2p + 5, i.e. zy??™52z ¢ L. Contradiction. This means that original
assumption was wrong and L is not regular.

(5 pts) We say that a DFA M for a language A is minimal if there does not exist another DFA M’ for A such
that M’ has strictly fewer states than M. Suppose that M = (Q, %, 9, qo, F') is a minimal DFA for A. Using
M, we construct a DFA M for the complement A as M = (Q, X, 6, gy, @ — F). Is M is a minimal DFA for A?
Why?

Solution: Yes. If otherwise, suppose M is a minimal DFA for A with fewer states, then M is a minimum DFA
for M, a contradiction.



