Theory of Computation Spring 2025, Homework # 4

Due: May 27, 2025

- 1. (20 pts) Give an example of an undecidable (i.e., non-recursive) subset of 1^{*}. Prove that your answer is correct. (Hint: Consider the list of all TMs $M_1, M_2, ..., M_k, ...$ Construct a language $L \subseteq 1^*$, and use the diagonalization method to show L to be non-recursive.)
- 2. (20 pts) Is the language $L = \{ \langle M, w \rangle | M \text{ at some point in time moves left while computing } w \}$ recursive? Why? Give a convincing argument.
- 3. (20 pts) Let $L = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs such that for some input } x$, both M_1 and M_2 halt on $x \}$. Prove that L is r.e. but not recursive.
- 4. (20 pts) Let $T = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \}$. Show that T is not decidable. Do not use Rice's theorem. (Here w^R is the reversal of w.)
- 5. (20 pts) Suppose there are four languages A, B, C, and D. Each of the languages may or may not be recursively enumerable. However, we know the following about them: $A \leq_m B, B \leq_m C$, and $D \leq_m C$. Below are four statements. Indicate whether each one is
 - (a) CERTAIN to be true, regardless of what languages A through D are.
 - (b) MAYBE true, depending on what A through D are.
 - (c) NEVER true, regardless of what A through D are.

Justify your answers.

- (1) A is recursively enumerable but not recursive, and C is recursive.
- (2) A is not recursive, and D is not recursively enumerable.
- (3) If C is recursive, then the complement of D is recursive.
- (4) If C is recursively enumerable, then $B \cap D$ is recursively enumerable.