Due: May 27, 2025

- 1. (20 pts) Give an example of an undecidable (i.e., non-recursive) subset of 1^{*}. Prove that your answer is correct. (Hint: Consider the list of all TMs $M_1, M_2, ..., M_k, ...$ Construct a language $L \subseteq 1^*$, and use the diagonalization method to show L to be non-recursive.) Sol: Consider $D = \{1^k \mid 1^k \notin L(M_k)\}$, where M_k is the k-th TM, as the set of TMs is countably infinite. The rest is by a standard diagonalization.
- 2. (20 pts) Is the language $L = \{ \langle M, w \rangle | M \text{ at some point in time moves left while computing } w \}$ recursive? Why? Give a convincing argument.

Sol: Yes. It is recursive. The following procedure can decide L: Simulate M on w, one of the following must occur:

- (a) During the first |w| steps, M makes a left move. Accept, in this case; otherwise,
- (b) M moves into the region of the tape with a sequence of blank symbols. Either M makes a left move in |Q| steps, or a state repeats. In the former case, accept; in the latter case, reject as M will move to the right forever.

In the above, M is assumed to be a DTM. The NTM case is similar using a breadth-first simulation.

3. (20 pts) Let $L = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs such that for some input } x$, both M_1 and M_2 halt on $x \}$. Prove that L is r.e. but not recursive.

Sol: We write s_i to denote the i^{th} string of Σ^* in alphabetical order. Consider the following algorithm:

for $(i = 1 \text{ to } \infty)$ for (j = 1 to i)Simulate M_1 on s_j for i steps. Simulate M_2 on s_j for i steps.

Accept if both M_1 and M_2 halted.

It accepts L, so L is r.e..

To show that L is not recursive, it suffices to show that HP $\leq_m L$. We write K_x to denote a TM that halts if only if the input is x. The map $\langle M, x \rangle \to \langle K_x, M \rangle$ witnesses the reduction.

4. (20 pts) Let $T = \{\langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$. Show that T is not decidable. Do not use Rice's theorem. (Here w^R is the reversal of w.) Sol: Reduce $HALT_{TM}$ c to T.

For each $\langle M, w \rangle \in HALT_{TM}$, we define a TM M_w as follows: For each $w' \in \Sigma^*$,

- reject if $w' \neq 01$ or 10;
- accept if w = 01; and
- simulate M on w if w = 10.
 - accept if M accepts w;
 - reject if M rejects w.

Hence, we have $\langle M_w \rangle \in T \leftrightarrow L(M_w) = \{01, 10\} \leftrightarrow M$ accepts w. Since halting problem is undecidable, T is not decidable.

- 5. (20 pts) Suppose there are four languages A, B, C, and D. Each of the languages may or may not be recursively enumerable. However, we know the following about them: $A \leq_m B, B \leq_m C$, and $D \leq_m C$. Below are four statements. Indicate whether each one is
 - (a) CERTAIN to be true, regardless of what languages A through D are.
 - (b) MAYBE true, depending on what A through D are.
 - (c) NEVER true, regardless of what A through D are.

Justify your answers.

- (1) A is recursively enumerable but not recursive, and C is recursive.
- (2) A is not recursive, and D is not recursively enumerable.
- (3) If C is recursive, then the complement of D is recursive.
- (4) If C is recursively enumerable, then $B \cap D$ is recursively enumerable.

Sol:

- (a) NEVER. If A is not recursive, C is not recursive since $A \leq_m C$.
- (b) MAYBE. Both $A = B = C = D = \{0^n 1^n | n \ge 0\}$ or $A = B = C = D = \neg HP$ are consistent with the relation \leq_m .
- (c) CERTAIN. $D \leq_m C$ implies that if C is recursive, then $\rightarrow D$ is recursive. D is recursive if and only if \overline{D} is recursive.
- (d) CERTAIN. $B \leq_m C$, $D \leq_m C$ implies that if C is r.e., then both B, D are r.e.. If B, D are r.e., then $B \cap D$ must also be r.e..