Theory of Computation Spring 2025, Homework # 3

Due: May 13, 2025

1. Answer.

• The proof process is similar to the Pumping Lemma for CFLs. The parse tree must in the form:

Choose m = 2|V| + 3, let $w \in G$ with $|w| \ge m$ and τ the smallest parse tree for w. Let R be the first nonterminal that appears twice on the backbone. The root of the subtree generating vxy corresponds to the 1st occurrence of R. The root of the subtree generating x corresponds to the 2nd occurrence of R.

We have $|vy| \ge 1$ (see Pumping Lemma for CFLs) and there are at most |V|+1 nonterminals from A to the 2nd R, so $|uvyz| \le 2(|V|+1) \le m$

- Suppose L is linear. Let m be the pumping length of L and set $w = a^m c^{2m} b^m$, then no c contained in uvyz which means $uv^2xy^2z \notin L$. Contradiction.
- 2. Answer.

Call the language L. Suppose L is linear. Let p be a prime larger than the pumping length and set $w = a^{p^2} b^p$.

- Case 1: vxy contains a and b Then we have uvⁱxyⁱz ∈ L for all i. Let n_a (resp.n_b) denote the number of a (resp.b) in vy. When i = 0, k = p. k is either decrease or increase for large k, and k → n_a/n_b as i → ∞. While integers between p and n_a/n_b is finite. Contradiction.
 Case 2: num contains only a (n k)
- Case 2: vxy contain only a (or b) $uv^2xy^2z \notin L$ since $|vxy| \leq p$ Contradiction.

3. Answer.

• First, prove that if L is CF and R is regular, then shuffle(L, R) is a CFL. $P = (\{q_p\}, \Sigma, \Gamma, \delta_p, q_p, F_p)$. is a PDA accept L, $D = (Q_d, \Sigma, \delta_d, q_0, F_d)$ is a DFA accept R. Define δ :

$$\delta(q, a, \alpha) = \begin{cases} (q, \beta) & \forall q \in Q_d & \text{if } \delta_p(q_p, a, \alpha) = (q_p, \beta) \\ (q', \alpha) & \text{if } \delta_d(q, a) = q' \\ (q_f, \alpha) & \forall q \in F_d & \text{if } a = \varepsilon, \alpha = \varepsilon \end{cases}$$
(1)

Then PDF $P' = (Q_d \cup \{q_f\}, \Sigma, \Gamma, \delta, q_0, \{q_f\})$ accept shuffle(R,L).

• Let $L_1 = \{a^n b^n | n \ge 1\}, L_2 = \{c^n d^n | n \ge 1\}, R = a^* c^* b^* d^*$. Now shuffle $(L_1, L_2) \cap R$ is not a CFL.

4. Answer.

Using the hint, and construct Turing machine M :

- M = "Run input x on $M_{\overline{A}}$ and $M_{\overline{B}}$ parallelly. (2)
 - if $M_{\overline{A}}$ accept, reject (3)
 - if $M_{\overline{B}}$ accept, accept" (4)

A and B are disjoint so $\overline{A} \cup \overline{B} = \Sigma^*$ and M halts on all input x. Claim L(M) separates A and B. We know that $L(M) \subseteq \overline{B}$ and $\overline{L(M)} \subseteq \overline{A}$, which gives us $A \subseteq L(M)$ and $B \subseteq \overline{L(M)}$