Theory of Computation Spring 2025, Homework # 2 (Solutions)

1. (15 pts) Let $L_1 \subseteq (a+b)^*$ be a set of strings. In each string in L_1 , delete every *b* immediately preceding (i.e., before) an *a* to get the set L_2 . For instance, if $L_1 = \{aabba, aa\}$, then $L_2 = \{aaba, aa\}$. You are asked to define two homomorphisms $h_1, h_2 : \{a, b, \hat{b}\}^* \to \{a, b\}^*$), and write an expression for L_2 in terms of $h_1, h_2, h_1^{-1}, h_2^{-1}, R, L_1$, for some regular expression *R*. Explain why your answer is correct. Answer.

Let R be the regular expression of laguage

{Every \hat{b} immediately following an a, and no b immediately preceding an a}.

Define

$$\begin{split} h_1 : \{a, b, \hat{b}\}^* \to \{a, b\}^*, h_1(a) &= a, h_1(b) = b, h_1(b) = b, h_1(w_1w_2) = h_1(w_1)h_1(w_2) \\ h_2 : \{a, b, \hat{b}\}^* \to \{a, b\}^*, h_2(a) = a, h_2(b) = b, h_2(\hat{b}) = \varepsilon, h_2(w_1w_2) = h_2(w_1)h_2(w_2). \end{split}$$

Then $h_1^{-1}(L_1) = \{x \mid h_1(x) \in L_1\}, \\ \text{and } h_1^{-1}(L_1) \bigcap R = \{x \mid b \text{ 's immediately preceding an a are replaced by } \hat{b}\}, \\ \text{and } L_2 = h_2(h_1^{-1}(L_1) \bigcap R). \end{split}$
In the example $L_1 = \{aabba, aa\}, h_1^{-1}(L_1) = \{aabba, aab\hat{b}a, aa\hat{b}ba, aa\hat{b}ba, aa\hat{b}ba, aa\}.h_1^{-1}(L_1) \bigcap R = \{aab\hat{b}a, aa\}. \end{split}$

- 2. (15 pts) For a language L, let $Init(L) = \{x \mid xy \in L, \text{ for some } y \in \Sigma^*\}$. Let r, s, r_I and s_I be regular expressions for the languages R, S, Init(R), and Init(S), respectively. Using only these regular expressions and the operations +, concatenation, and *, give expressions for the following languages. Briefly explain why your answers work.
 - (a) $Init(R \cup S)$
 - (b) Init(RS)
 - (c) $Init(R^*)$

Answer.

(a) $r_I + s_I$

$$Init(R \cup S) = \{x \mid xy \in R \cup S, \text{ for some } y \in \Sigma^*\}$$

= $\{x \mid xy \in R, \text{ for some } y \in \Sigma^*\} \cup \{x \mid xy \in S, \text{ for some } y \in \Sigma^*\}$
= $Init(R) + Init(S)$

(b) $r_I + rs_I$

$$Init(RS) = \{x \mid xy \in RS, \text{ for some } y \in \Sigma^*\}$$

= $\{x \mid xy = rs, \text{ for some } y \in \Sigma^*, r \in R, s \in S\}$
= $Init(R) + RInit(S)$

Note that if $|x| \leq |r|$ then $x \in Init(R)$, else $x \in RInit(S)$. (c) r^*r_I

$$Init(R^*) = \{x \mid xy \in R^*, \text{ for some } y \in \Sigma^*\}$$
$$= \{x \mid xy \in \bigcup_{i=0}^{\infty} R^i, \text{ for some } y \in \Sigma^*\}$$
$$= \bigcup_{i=0}^{\infty} \{x \mid xy \in R^i, \text{ for some } y \in \Sigma^*\}$$
$$= R^*Init(R)$$

Note that we know Init(RR) = Init(R) + RInit(R) in (b).

3. (30 pts) Given a language L, we define (as discussed in class) the relation \equiv_L for strings x and y in Σ^* as

$$x \equiv_L y \Leftrightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L).$$

Suppose we consider the following relations \equiv^{L} and $\stackrel{L}{\equiv}$ instead

$$x \equiv^{L} y \Leftrightarrow (\forall z \in \Sigma^{*}, zx \in L \Leftrightarrow zy \in L).$$
$$x \stackrel{L}{=} y \Leftrightarrow (\forall u, v \in \Sigma^{*}, uxv \in L \Leftrightarrow uyv \in L)$$

Given a string w, let w^R be its reverse, i.e., the word obtained when reading w from right to left, e.g., $(abb)^R = bba$. For a language L, we let $L^R = \{w^R \mid w \in L\}$.

- (a) (5 pts) Prove in detail that $(x \equiv_L y) \Leftrightarrow (x^R \equiv^{L^R} y^R)$.
- (b) (10 pts) Consider langauge $L = (ab + ba)^*$. Determine the equivalence classes of the language $(ab + ba)^*$ under \equiv_L . Write down each of the equivalence classes using a regular expression.
- (c) (10 pts) Use the above equivalence classes to construct (draw) a DFA accepting $(ab + ba)^*$.
- (d) (5 pts) For $L = (ab + ba)^*$, can you find two strings x and y such that both $x \equiv_L y$ and $x \equiv^L y$ hold, but $x \stackrel{L}{\equiv} y$ does not hold. Justify your answer.

Answer.

(a)

$$\begin{aligned} x \equiv_L y \Leftrightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L). \\ \Leftrightarrow (\text{Given any } z = z_1 ... z_k, \text{ we have } x_1 ... x_{|x|} z_1 ... z_k \in L \Leftrightarrow y_1 ... y_{|y|} z_1 ... z_k \in L). \\ \Leftrightarrow (\text{Given any } z^R = z_1 ... z_k, \text{ we have } z_k ... z_1 x_{|x|} ... x_1 \in L^R \Leftrightarrow y_1 ... y_{|y|} z_1 ... z_k \in L^R). \\ \Leftrightarrow (\forall z \in \Sigma^*, zx^R \in L^R \Leftrightarrow zy^R \in L^R). \\ \Leftrightarrow x^R \equiv^{L^R} y^R \end{aligned}$$

(b){
$$L, bL, aL, \phi$$
}

(d) Let $x = \varepsilon, y = ab$. It's clear that $x \equiv_L y$ and $x \equiv^L y$ hold. Choose u = a, v = b, we have $uxv \in L$, and $uyv = aabb \notin L$.

4. (20 pts) Construct a DFA for $\Sigma^* 1(\Sigma\Sigma^*)^* 1\Sigma^*$ with the smallest possible number of states, where $\Sigma = \{0, 1\}$. Prove that your DFA is the smallest possible. (Hint: To prove the DFA to be minimum, you may use the Myhill-Nerode theorem.)

 $\Sigma^* 1(\Sigma\Sigma^*)^* 1\Sigma^* = \Sigma^* 1\Sigma^* 1\Sigma^* = \{ \text{ strings contain 2 1's } \}$, so there are 3 equivalence classes: one is $\{ \text{ strings contain 2 1's} \}$, other one is $\{ \text{ strings contain only one 1} \}$, the last one is $\{ \text{ strings contain no 1} \}$.

5. (10 pts) Let B and D be two languages. We write B ∝ D if B ⊆ D and D contains infinitely many strings that are not in B. Show that, if B and D are two regular languages where B ∝ D, then we can find a regular language C such where B ∝ C ∝ D. Answer.
Let A = D - B = D ∩ B, A is regular and not a finite set. So we can find a string s ∈ A s.t. |s| is larger than the pumping length p of language A. Choose

the partition s = xyz in pumping lemma. Let $C = \{xy^{2i}z \mid i \ge 0\} \cup B$. It is obvious that $B \propto C$ according to pumping lemma. (1) We know $C \subseteq D$, and $\{xy^{2i+1}z \mid i \ge 0\} \subseteq D - C$ which imply $C \propto D$ (2) $(1)(2) \Longrightarrow B \propto C \propto D$

6. (10 pts) Give a right-linear grammar for the following regular language: $(00 \cup 1)^*$. Show your work in sufficient detail.

Answer. Below is a DFA M decide $(00 \cup 1)^*$.

we can construct a right-linear grammar G_M such that the language of G is L(M). You can see the example in CH2. pg 8.

Let $G = (\{R_1, R_2\}, \{0, 1\}, \{R_1 \to 0R_2 \mid 1R_1 \mid \varepsilon; R_2 \to 0R_1\}, R_1)$ be the G_M .