
Theory of Computation
Spring 2025, Homework # 1 (Solutions)

1. (10 pts) A string u is an anagram of a string w if u is obtained from w by rearranging the
symbols. For example, listen is an anagram of silent. Formally, if w = w1w2 · · ·wn, then u is
its anagram if u = wσ(1)wσ(2) · · ·wσ(n) for some permutation σ. Given a regular language L, is
LA = {u|u is an anagram of w ∈ L} always regular? Justify your answer.

Answer. LA is not always regular. Let Σ = {0, 1}. Consider regular language L = (01)∗,
we have LA = {w ∈ Σ∗| w has an equal number of 0’s and 1’s}, and we know LA is not regular
(Ch.1 Corollary 21 ).

2. (20 pts) Consider the following DFA,

we associate the DFA with the following system of equations:

A1 = 1A1 + 0A2

A2 = 0A3 + 1A1

A3 = 0A3 + 1A1 + ϵ

The solution of Ai (1 ≤ i ≤ 3) corresponds to set of strings that can lead the DFA from state
Ai to accepting state A3. Solve the system of equations to obtain the regular expression corre-
sponding to the solution of A1, which is the language accepted by the DFA as A1 is the initial
state.
Hint: you may use the fact that the solution of X = αX + β is α∗β. For instance, A3 =
0A3 + 1A1 + ϵ implies A3 = 0∗(1A1 + ϵ). Also use the idea similar to Gaussian elimination in
solving systems of linear equations.

Answer.

A1 = 1A1 + 0A2

= 1A1 + 0(0A3 + 1A1)

= (1 + 01)A1 + 00A3

= (1 + 01)A1 + 000∗(1A1 + ϵ)

= (1 + 01 + 000∗1)A1 + 000∗

= (0∗1)A1 + 000∗

= (0∗1)∗0∗00

= (0 + 1)∗00

(1)

3. (10 pts) Use the pumping lemma to prove that L = {0n!|n ≥ 0} is not regular, where n! denotes
the factorial of n.

Answer. Suppose L is regular, and let p ≥ 1 be the pumping length. Let s = 0p! ∈ L, notice that
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|s| ≥ p. Now, let xyz be the partition in pumping lemma. Write |x| = a, |y| = b, |z| = p!− a− b.
Note that 0 < b ≤ p.

|xyp!z| = a+ bp! + p!− a− b = p!(b+ 1)− b < p!(b+ 1) ≤ (p+ 1)! (2)

|xyp!z| > p! (3)

The two inequalities give that |xyp!z| ̸∈ L.
Proof by Contradiction, L is not regular.

4. (15 pts) Let Σ = {0, 1}. For each of the following languages, decide whether it is regular or not.
Justify your answers.

(a) L1 = {1ky | y contains at least k 1′s, k ≥ 1.}
(b) L2 = {1k0y | y contains at least k 1′s, k ≥ 1.}.
(c) L3 = {1ky | y contains at most k 1′s, k ≥ 1.}

Answer.
(a) L1 is regular.
Notice that for any w = 1ky where y contains at least k 1′s, w can be written as 11k−1y and
1k−1y is a string contains at least one 1.
So L1 = {1y|y contains at least one 1} = 10∗1Σ∗

(b) L2 is not regular.
Prove by pumping lemma. Let p be the pumping length, and s = 1p01p ∈ L2 and xyz be the
partition in pumping lemma. We have |xy| ≤ p and |y| > 0 so x = 1i y = 1j for some j > 0.
Then xy2z = 1p+j01p ̸∈ L2, a contradiction.

(c) L3 is not regular.
Notice that L3

⋂
1∗01∗ = {1i01j |i ≥ j} is not regular.

5. (15 pts) If L is a language over the alphabet Σ = {0, 1}, define LERROR so that a string is in
LERROR iff it is the result of flipping a bit in a string in L; i.e.,

LERROR = {w | w = uxv, u, v ∈ Σ∗, x ∈ {0, 1}, uxv ∈ L}

where 0 = 1, 1 = 0.
Prove that if L is regular, then LERROR is also regular.
Hint: Suppose M is a DFA accepting L, construct an NFA M ′ so that L(M ′) = LERROR.

Answer. Suppose DFA M(Q,Σ, δ, q0, F ) accept L. The goal is to construct an NFA M ′ that
accepts LERROR. We start by making a copy of the finite automaton (FA) M . Let the original
automaton be denoted as MA and the copied automaton as MB .

� The start state of M ′ is the start state of MA

� The accept state of M ′ is the start state of MB

� The transition function δ′ of M ′ behaves as follows:

Within MA and MB , the transitions remain the same as the original transition function.

Additionally, if δ(q1, 0(resp.1)) = q2 then δ′(q1 in MA, 1(resp.0)) = q2 in MB .

In other words, δ′ mirrors δ within MA and MB , while also allowing bit-flipped transitions from
MA to MB . We can observe that M ′ accepts L. Below is an example for L = 0∗.

6. (20 pts) For a language L over an alphabet Σ, define

CY CLE(L) = {x1x2 | ∃x1, x2 ∈ Σ∗ such that x2x1 ∈ L}.
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(a) DFA accepts 0∗. (b) NFA accepts 0∗error.

For example, if abc ∈ L, abc, bca, cab ∈ CY CLE(L). Prove that if L is regular, then so is
CY CLE(L).
Hint: Given an FA M = (Q,Σ, δ, q0, F ) accepting L, construct an NFA M ′ = (Q′,Σ, δ′, q′0, F

′)
to accept CY CLE(L). You may let a state of Q′ be of the form (p, q, d), d ∈ {1, 2}. The d is
used to indicate whether the current input symbol is a part of x1 or x2.

Answer. Given a regular language L and a FA M accepts L.
Based on the Hint, we represent states in the form (p, q, d), where:

� p records the beginning state of this computation

� q represents the current state in Q

� d is used to indicate whether the current input symbol is a part of x1 or x2.

In M , the computations are q0
x1−→ qi

x2−→ qf . In M ′, the computations are qi
x2−→ qf

ϵ−→ q0
x1−→ qi.

The states setQ′ of M ′ is Q × Q × {1, 2}
⋃
{q′0}. q′0 is the start state and it transitions to

beginning states via epsilon transitions.
The accept statesF ′ set of M ′ is {(p, p, 2)|p ∈ Q}.
The transition function δ′ in the NFA M ′ is constructed by inheriting the transitions from the
original automaton M , with additional epsilon transitions.

� δ′((p, q, d), a) = {(p, δ(q, a), d)}
� δ′(q′0, ϵ) = {(p, p, 1)|p ∈ Q}
� δ′((p, qf , 1), ϵ) = {(p, q0, 2)}∀qf ∈ F

We have constructed a NFA M ′ = (Q′,Σ, δ′, q′0, F
′) accepts CY CLE(L).

7. (10 pts) Consider a new kind of finite automata called ∀-NFA. A ∀-NFA M is a 5-tuple
(Q,Σ, δ, q0, F ) that recognizes x if every possible computation of M on x ends in a state from
F . Note, in contrast, that an ordinary NFA accepts a string if some computation ends in an
accept state. Prove that ∀-NFA recognize the class of regular languages.

Answer. Claim that ∀-NFA accepts L =⇒ L is regular. We know that a ∀-NFA M =
(Q,Σ, δ, q0, F ) accepts L means ∀w ∈ L, all computations of w ends in F . Now constructing a
NFA M ′ = (Q,Σ, δ, q0, Q − F ). M ′ shares the same states, alphabet, transition function, and
start state with M . Notice that M ′ is a NFA accepts L so L is regular, which gives that L is
regular.
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