Theory of Computation Spring 2025, Homework # 1 (Solutions)

1. (10 pts) A string u is an anagram of a string w if u is obtained from w by rearranging the symbols. For example, *listen* is an anagram of *silent*. Formally, if $w = w_1 w_2 \cdots w_n$, then u is its anagram if $u = w_{\sigma(1)} w_{\sigma(2)} \cdots w_{\sigma(n)}$ for some permutation σ . Given a regular language L, is $L_A = \{u | u \text{ is an anagram of } w \in L\}$ always regular? Justify your answer.

Answer. L_A is **not** always regular. Let $\Sigma = \{0, 1\}$. Consider regular language $L = (01)^*$, we have $L_A = \{w \in \Sigma^* | w \text{ has an equal number of 0's and 1's}\}$, and we know L_A is not regular (Ch.1 Corollary 21).

2. (20 pts) Consider the following DFA,

we associate the DFA with the following system of equations:

$$A_{1} = 1A_{1} + 0A_{2}$$
$$A_{2} = 0A_{3} + 1A_{1}$$
$$A_{3} = 0A_{3} + 1A_{1} + 0A_{3}$$

The solution of A_i $(1 \le i \le 3)$ corresponds to set of strings that can lead the DFA from state A_i to accepting state A_3 . Solve the system of equations to obtain the regular expression corresponding to the solution of A_1 , which is the language accepted by the DFA as A_1 is the initial state.

Hint: you may use the fact that the solution of $X = \alpha X + \beta$ is $\alpha^*\beta$. For instance, $A_3 = 0A_3 + 1A_1 + \epsilon$ implies $A_3 = 0^*(1A_1 + \epsilon)$. Also use the idea similar to Gaussian elimination in solving systems of linear equations.

Answer.

$$A_{1} = 1A_{1} + 0A_{2}$$

$$= 1A_{1} + 0(0A_{3} + 1A_{1})$$

$$= (1 + 01)A_{1} + 00A_{3}$$

$$= (1 + 01)A_{1} + 000^{*}(1A_{1} + \epsilon)$$

$$= (1 + 01 + 000^{*}1)A_{1} + 000^{*}$$

$$= (0^{*}1)A_{1} + 000^{*}$$

$$= (0^{*}1)^{*}0^{*}00$$

$$= (0 + 1)^{*}00$$
(1)

3. (10 pts) Use the pumping lemma to prove that $L = \{0^{n!} | n \ge 0\}$ is not regular, where n! denotes the factorial of n.

Answer. Suppose L is regular, and let $p \ge 1$ be the pumping length. Let $s = 0^{p!} \in L$, notice that

 $|s| \ge p$. Now, let xyz be the partition in pumping lemma. Write |x| = a, |y| = b, |z| = p! - a - b. Note that $0 < b \le p$.

$$|xy^{p!}z| = a + bp! + p! - a - b = p!(b+1) - b < p!(b+1) \le (p+1)!$$
(2)

$$|xy^{p!}z| > p! \tag{3}$$

The two inequalities give that $|xy^{p!}z| \notin L$. Proof by Contradiction, L is not regular.

- 4. (15 pts) Let $\Sigma = \{0, 1\}$. For each of the following languages, decide whether it is regular or not. Justify your answers.
 - (a) $L_1 = \{1^k y \mid y \text{ contains at least } k \ 1's, k \ge 1.\}$
 - (b) $L_2 = \{1^k 0y \mid y \text{ contains at least } k \ 1's, k \ge 1.\}.$
 - (c) $L_3 = \{1^k y \mid y \text{ contains at most } k \ 1's, k \ge 1.\}$

Answer.

(a) L_1 is regular.

Notice that for any $w = 1^k y$ where y contains at least k 1's, w can be written as $11^{k-1}y$ and $1^{k-1}y$ is a string contains at least one 1.

So $L_1 = \{1y | y \text{ contains at least one } 1\} = 10^* 1\Sigma^*$

(b) L_2 is not regular.

Prove by pumping lemma. Let p be the pumping length, and $s = 1^{p}01^{p} \in L_{2}$ and xyz be the partition in pumping lemma. We have $|xy| \leq p$ and |y| > 0 so $x = 1^{i} y = 1^{j}$ for some j > 0. Then $xy^{2}z = 1^{p+j}01^{p} \notin L_{2}$, a contradiction.

(c) L_3 is not regular.

Notice that $L_3 \cap 1^* 01^* = \{1^i 01^j | i \ge j\}$ is not regular.

5. (15 pts) If L is a language over the alphabet $\Sigma = \{0, 1\}$, define L_{ERROR} so that a string is in L_{ERROR} iff it is the result of flipping a bit in a string in L; i.e.,

$$L_{ERROR} = \{ w \mid w = uxv, u, v \in \Sigma^*, x \in \{0, 1\}, \ u\overline{x}v \in L \}$$

where $\overline{0} = 1, \overline{1} = 0$.

Prove that if L is regular, then L_{ERROR} is also regular.

Hint: Suppose M is a DFA accepting L, construct an NFA M' so that $L(M') = L_{ERROR}$.

Answer. Suppose DFA $M(Q, \Sigma, \delta, q_0, F)$ accept L. The goal is to construct an NFA M' that accepts L_{ERROR} . We start by making a copy of the finite automaton (FA) M. Let the original automaton be denoted as M_A and the copied automaton as M_B .

- The start state of M' is the start state of M_A
- The accept state of M' is the start state of M_B
- The transition function δ' of M' behaves as follows:

Within M_A and M_B , the transitions remain the same as the original transition function. Additionally, if $\delta(q_1, 0(resp.1)) = q_2$ then $\delta'(q_1 \text{ in } M_A, 1(resp.0)) = q_2$ in M_B .

In other words, δ' mirrors δ within M_A and M_B , while also allowing bit-flipped transitions from M_A to M_B . We can observe that M' accepts L. Below is an example for $L = 0^*$.

6. (20 pts) For a language L over an alphabet Σ , define

 $CYCLE(L) = \{x_1x_2 \mid \exists x_1, x_2 \in \Sigma^* \text{ such that } x_2x_1 \in L\}.$

For example, if $abc \in L$, abc, bca, $cab \in CYCLE(L)$. Prove that if L is regular, then so is CYCLE(L).

Hint: Given an FA $M = (Q, \Sigma, \delta, q_0, F)$ accepting L, construct an NFA $M' = (Q', \Sigma, \delta', q'_0, F')$ to accept CYCLE(L). You may let a state of Q' be of the form $(p, q, d), d \in \{1, 2\}$. The d is used to indicate whether the current input symbol is a part of x_1 or x_2 .

Answer. Given a regular language L and a FA M accepts L. Based on the Hint, we represent states in the form (p, q, d), where:

- *p* records the beginning state of this computation
- q represents the current state in Q
- d is used to indicate whether the current input symbol is a part of x_1 or x_2 .

In M, the computations are $q_0 \xrightarrow{x_1} q_i \xrightarrow{x_2} q_f$. In M', the computations are $q_i \xrightarrow{x_2} q_f \xrightarrow{\epsilon} q_0 \xrightarrow{x_1} q_i$.

The states set Q' of M' is $Q \times Q \times \{1,2\} \bigcup \{q'_0\}$. q'_0 is the start state and it transitions to beginning states via epsilon transitions.

The accept states F' set of M' is $\{(p, p, 2) | p \in Q\}$.

The transition function δ' in the NFA M' is constructed by inheriting the transitions from the original automaton M, with additional epsilon transitions.

- $\delta'((p,q,d),a) = \{(p,\delta(q,a),d)\}$
- $\delta'(q'_0, \epsilon) = \{(p, p, 1) | p \in Q\}$
- $\delta'((p, q_f, 1), \epsilon) = \{(p, q_0, 2)\} \forall q_f \in F$

We have constructed a NFA $M' = (Q', \Sigma, \delta', q'_0, F')$ accepts CYCLE(L).

7. (10 pts) Consider a new kind of finite automata called \forall -NFA. A \forall -NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that recognizes x if *every* possible computation of M on x ends in a state from F. Note, in contrast, that an ordinary NFA accepts a string if *some* computation ends in an accept state. Prove that \forall -NFA recognize the class of regular languages.

Answer. Claim that \forall -NFA accepts $L \implies L$ is regular. We know that a \forall -NFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts L means $\forall w \in L$, all computations of w ends in F. Now constructing a NFA $M' = (Q, \Sigma, \delta, q_0, Q - F)$. M' shares the same states, alphabet, transition function, and start state with M. Notice that M' is a NFA accepts \overline{L} so \overline{L} is regular, which gives that L is regular.