Theory of Computation

Spring 2025, Final Exam.

2:20-5:00 PM, June 3, 2025

In this test, we write \leq_m for many-one reduction, \leq_P for polynomial-time reduction, and \leq_L for logspace reduction. We also write *r.e.* for recursively enumerable languages, P for the class of languages in deterministic polynomial time, and NP for the class of languages in nondeterministic polynomial time. Given two languages L_1 and L_2 , $L_1 \setminus L_2 = \{w \mid w \in L_1, w \notin L_2\}$.

- 1. (40 pts) True or False? No penalty for wrong answers. No explanations are needed.
 - (1) The language $L = \{a^i b^j c^k \mid j < i, j < k\}$ is not context-free. Sol. True. Easy proof using pumping lemma.
 - (2) The complement of the language $L = \{a^i b^i c^i d^i \mid i \ge 0\}$ is context-free. Sol. True. L consists of (1) strings not of the form $a^*b^*c^*d^*$ which can be checked using an FA, and (2) the lengths of two of a^i , d^i , $c^i d^i$ are different, which can be checked by a PDA.
 - (3) If both L and \overline{L} are context-free, then L must be regular. Sol. False. $\{a^n b^n \mid n \ge 0\}$ and its complement are both context-free.
 - (4) If both L₁ and L₂ are deterministic context-free languages, then L₁ ∩ L₂ is a context-free (not necessarily deterministic) language.
 Sol. False. {aⁿbⁿc^m | m, n ≥ 0} ∩ {aⁿb^mc^m | m, n ≥ 0}.
 - (5) If both L_1 and L_2 are context sensitive languages, then $L_1 \cap L_2$ is also context-sensitive. Sol. True. Context-sensitive languages are those that can be accepted by linear bounded automata.
 - (6) If L_1 and $L_1 \cap L_2$ are context-free, then L_2 must be regular. Sol. False. $L_1 = \{a^n b^n\}$ and $L_2 = \{0^n 1^n\}$.
 - (7) Given two context-free languages L_1 and L_2 , the problem " $L_1 \cap L_2 = \emptyset$?" is decidable. Sol. False. $\{\langle M, w \rangle \mid M \text{ is a TM and } w \in L(M)\}$ can be expressed as the intersection of two CFLs whose intersection represents sequences of accepting computations.
 - (8) Given a linear bounded automaton M and a regular language R, deciding whether $L(M) \subseteq R$ is decidable.

Sol. False. $L(M) \subseteq \emptyset$ iff $L(M) = \emptyset$, which is undecidable.

- (9) Given two r.e. languages L_1 and L_2 , $L_1 \setminus L_2$ (containing words in L_1 but not in L_2) is always r.e. Sol. False. $\overline{A_{TM}} = \Sigma^* \setminus A_{TM}$.
- (10) All regular languages are in the class DSPACE(1), i.e., accepting by DTMs using constant work space.

Sol. True. FAs are TMs not using extra space.

- (11) The class P is closed under complementation.
 Sol. True. Let M be a DTM accepting a language in P. Swapping the accepting and rejecting states of M accepts the complement of the language.
- (12) The class NP is closed under the star " *" operation. (That is, $L \in NP \Rightarrow L^* \in NP$). Sol. True. On input $w \in \Sigma^*$, guess a partition $w = w_1 w_2 \dots w_k$, $\forall i, w_i \in \Sigma^*$. Check $w_i \in L$.
- (13) The language $L = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) \subseteq L(M_2) \}$ is not r.e. Sol. True. Let $L(M_2) = \emptyset$. Then $E_{TM} \leq_m L$, where $E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$ is known to be not in r.e.
- (14) Given a context-free grammar G and a string w, deciding whether $w \in L(G)$? is solvable in P. Sol. True. CYK algorithm runs in P-time.
- (15) The undecidability of $\{ \langle M \rangle \mid M \text{ is a minimal TM, i.e., no TM with a smaller representation recognizes the same language } follows from Rice's theorem. Sol. False. It is not a TM property.$

- (16) $A_{TM} \leq_m 0^* 1^*$. Sol. False. $0^* 1^*$ is regular, which is recursive.
- (17) If $A \leq_P B$ and A is recursive, then B must be recursive. Sol. False. { $\langle M, w, n \rangle \mid M$ halts on w in n steps } \leq_P { $\langle M, w \rangle \mid M$ halts on w }. The former is recursive while the latter is r.e. but not recursive.
- (18) $SAT \leq_P A_{TM}$. Sol. True. Given a formula ϕ , maps to a $\langle M, \phi \rangle$ such that M guesses a truth assignment and checks whether it satisfies ϕ . If yes, accept.
- (19) The language $\{\langle M \rangle \mid M \text{ is a TM that does not accept string 0101}\}$ is in r.e. but not recursive. Sol. False. The language is not in r.e., using strong Rice's theorem.
- (20) Given a deterministic context-free language (DCFL) L and a regular language R, $L \cap R$ is a DCFL. Sol. True. L can be accepted by a DPDA, and R by a DFA. The product of the two automata is a DPDA accepting $L \cap R$.
- 2. (25 pts) Give a brief yet convincing argument for each of the following statements.
 - (a) Let $A_{NFA} = \{\langle M, w \rangle \mid M \text{ is an NFA and } w \in L(M)\}$. A_{DFA} is defined similarly. It is known that A_{NFA} is in $NSPACE(\log n)$. Show that $A_{NFA} \leq_P A_{DFA}$. Sol. Though we cannot convert an arbitrary NFA to an equivalent DFA in poly time, since the DFA might have exponentially many states, we don't need to do that. Given input $\langle M, w \rangle$, we can determine in P (since $NSPACE(\log n) \subseteq P$) whether $\langle M, w \rangle$ is in A_{NFA} (which is basically the PATH problem discussed in class), then output either a fixed string in A_{DFA} or a fixed string not in A_{DFA} .
 - (b) Knowing that A_{DFA} is in DSPACE(log n) (deterministic logspace), show that there exists a context free language X such that A_{DFA} ≤_L X.
 Sol. Let X = {1}, let the reduction compute whether ⟨M, w⟩ is in A_{DFA} (using deterministic logspace to simulate M on w) and then output 1 or 0 according to the answer.
 - (c) Given two context-free languages L_1 and L_2 , show that $L_1 \setminus L_2$ is always recursive. Sol. L_1 and L_2 are both recursive. Let M_1 and M_2 be TMs accepting L_1 and L_2 , resp. On input w, M simulates M_2 on w. If M_2 accepts, then M rejects. If M_2 rejects, then M starts the simulation of M_1 on w. If M_1 accepts, then M also accepts; otherwise M rejects. It is easy to show that M always halts.
 - (d) The language L = {⟨M, w, q⟩ | M is a DTM and M never visits state q on input w} is not recursive.
 Sol. A_{TM} ≤ L such that f(⟨M, w⟩) = (⟨M', w, q⟩), where M' is M by adding an ε transition of M to a new state q. M accepts w iff M' eventually enters state q.
 - (e) Suppose that there is an L_1 which is NP-complete, and $\overline{L_1} \in \text{NP}$. Prove that for all $L \in \text{NP}$, it must be the case that $\overline{L} \in \text{NP}$. Sol: For all $L \in \text{NP}$, $L \leq_P L_1$, hence, $\overline{L} \leq_P \overline{L_1}$. Since $\overline{L_1} \in \text{NP}$, \overline{L} is in NP.
- 3. (15 pts) There are five languages A, B, C, D, E. All we know about them is the following: (1) A is in P. (2) B is in NP. (3) C is NP-complete. (4) D is Recursive. (5) E is r.e. but not Recursive. For each of the five statements (a) (e) below,

(a) $E \leq_m D$ (b) $C \leq_P B$ (c) $A \leq_P B$ (d) $B \leq_P \overline{C}$ (the complement of C) (e) $D \leq_m C$ tell whether it is:

- **CERTAIN** to be true, regardless of what languages A through E are and regardless of the resolution of unknown relationships among complexity classes, of which "is P = NP?" is one example.
- MAYBE true, depending on what languages A through E are, and/or depending on the resolution of unknown relationships such as P = NP?
- **NEVER** true, regardless of what A through E are and regardless of the resolution of unknown relationships such as P = NP?

No explanation needed. Sol: (a) NEVER. (b) MAYBE. (c) MAYBE. (d) MAYBE. (e) CERTAIN. (Reason)

- (a) If $E \leq_m D$, knowing D in recursive implies E is recursive a contradiction.
- (b) If B is NP-C, $C \leq_P B$ holds. If B is in P and P \neq NP, $C \leq_P B$ implies C in P contradicting P \neq NP.
- (c) If B is NP-C, $A \leq_P B$ holds. If B is the language \emptyset (which is clearly in NP), A is a^*b^* , $A \leq_P B$ does not hold as there is no way to map a^*b^* to the empty set.
- (d) If B is in P, $B \leq_P \overline{C}$ holds. If B is NP-C and NP \neq co-NP, then $B \leq_P \overline{C}$ does not hold.
- (e) Let M be a TM that decides D. Let C = 3SAT. Using M to define $f(w) = (x \lor y \lor z)$ (a satisfiable formula) if $w \in D$; $f(w) = (x \land x \land \overline{x})$ (a non-satisfiable formula) if $w \notin D$. Hence, $D \leq_m C$ holds.
- 4. (20 pts) Let $A_R = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = L(M)^R\}$. Note that $L(M)^R = \{w^R \mid w \in L(M)\}$, where w^R is the reversal of w. Note that TMs accepting \emptyset and Σ^* are both in R_{TM} . Fill in each of the blanks below.
 - (a) To prove $A_{TM} \leq_m A_R$, we use the following mapping from $\langle M, w \rangle$ to $\langle M' \rangle$:

Given
$$M$$
 and w , construct $M' =$ "On input x "
(1) If $x = 01$, ①ACCEPT......
(2) Run M on w
(3) If ② M accepts w , then ③ACCEPT.....
• $A_{TM} \leq_m A_R$ holds because
if M accepts w , $L(M') = ④$ Σ^*; otherwise, $L(M') = ⑤$ $\{01\}$

- (b) To prove $\overline{A_{TM}} \leq_m A_R$, we use the following mapping from $\langle M, w \rangle$ to $\langle M' \rangle$:
 - Given M and w, construct M' = "On input x" (1) Run M on w
 - (1) real M on w(2) If x = 01 and \bigcirc M accepts w, then \bigcirc ACCEPT....
 - $\overline{A_{TM}} \leq_m A_R$ holds because

if
$$M$$
 accepts w , $L(M') = \textcircled{\textcircled{black}}$; otherwise, $L(M') = \textcircled{\textcircled{black}}$.