NAME:

Student ID.:

- 1 (72 pts)) True or false? (Score = Right $\frac{1}{2}$ Wrong.) Mark 'O' for true; '×' for false.
 - 1. $\dots O = \{a^i | i \text{ is prime}\}$ is not context free.
 - 2. $\dots X \dots X \dots \{(a^n b)^n | n \ge 1\}$ is context free.
 - 3. $\dots X \dots \{(a^n b)^m | m, n \ge 1\}$ is context free.
 - 4.O..... If L_1 is context free and L_2 is regular, then L_1/L_2 is context free. (Note that $L_1/L_2 = \{x \mid \exists y \in L_2, xy \in L_1\}$)
 - 5.X.... If L_1/L_2 and L_1 are context free, then L_2 must be recursive.
 - 6.X..... If L_1 and $L_1 \cup L_2$ are context free, then L_2 must be context free.
 - 7.O..... If L_1 is context free and L_2 is regular, then $L_1 L_2$ is context free.
 - 8.X..... If L_1 is regular and L_2 is context free, then $L_1 L_2$ is context free.

 - 10.*O*..... If L_1 and L_2 are CFLs, then $L_1 \cup L_2$ must be a CFL.
 - 11.O.... If L is context free, then L^R (={ $x^R | x \in L$ }) is also context free.
 - 12.X Nondeterministic and deterministic versions of PDAs are equivalent.
 - 13.O..... If a language L does not satisfy the conditions stated in the pumping lemma for CFLs, then L is not context-free.
 - 14.X.... Every infinite set of strings over a single letter alphabet Σ (={a}) contains an infinite context free subset.
 - 15.X Every infinite context-free set contains an infinite regular subset.
 - 16. $\dots O \dots A$ language can be accepted by a nondeterministic pushdown automaton iff it can be generated by a context-free grammar.
 - 17.O..... Right-linear grammars are special cases of context-free grammars.
 - 18.X..... If both L and \overline{L} are context-free, then L must be regular.
 - 19.O..... There is a language L which is context-free but not regular such that \overline{L} is also context-free.
 - 20. $\dots O = \{xxxx | x \in \{0,1\}^*\}$ can be accepted by a deterministic 2-counter machine.
 - 21.O..... Given a TM M whose tape head can move left, right, or stay stationary, the problem of determining whether M ever executes a stationary move is undecidable. (A stationary move is a transition without moving the tape head.)
 - 22.O..... Given a TM M, the problem of determining $L(M) = \emptyset$?' is undecidable.

- 23.O..... Given two languages L_1 and L_2 , if $L_1 \leq_m \overline{L_2}$, then $\overline{L_1} \leq_m L_2$. (\leq_m denotes many-one reduction.)
- **24.***O*..... If L_1 and L_2 are r.e., so is L_1L_2 .
- **25.***O*..... If L_1 and L_2 are recursive, so is $L_1 L_2$.
- 26.X..... The language $\{ < M, x > | \text{ TM M does not accept input } x \}$ is r.e. (< M, x > denotes the encoding of the pair M, x.)
- 27.X..... There exists a language L such that L is context free but L is not recursive.
- 28.O..... Given a PDA M, the problem of determining whether M accepts an infinite language is decidable.
- 29.X..... Given two PDA M_1 and M_2 , the problem of determining whether $L(M_1) \cap L(M_2) = \emptyset$ is decidable.
- **30.***X*..... Given two regular languages L_1 and L_2 , the problem 'Is $L_2 L_1 = \emptyset$?' is undecidable.
- **31.***X*..... Let L_1 be regular and L_2 recursively enumerable. Then $L_1 \cap L_2$ is always recursive.
- 33.X..... Given an input x and a multi-tape DTM M, the problem of determining whether M ever reads x's right-most symbol is decidable.
- 35.O..... Given a TM M and an input w, the problem of determining whether M (on input w) enters some state more than 100 times is decidable.
- 36.X..... Every infinite subset of an infinite non-regular language is non-regular.
- **37.***O*..... If L_1 and L_2 are context-free languages, then $L_1 \cap L_2$ must be a recursive language.
- **38.***X*..... If L_1 and L_3 are r.e. languages and $L_1 L_2 = L_3$, then L_2 must be an r.e. language.
- **39.**X.... Let L_1 and L_2 be two languages over Σ . If $L_1 \leq_p^m L_2$ and $L_2 \leq_p^m L_1$, then $L_1 = L_2$. (\leq_p^m denotes polynomial-time many-one reduction.)
- 40.*X*.... Given a recursive language *L*, the problem of determining whether $L = \emptyset$ is decidable.
- 41. $\dots X \dots \{ \langle M \rangle | L(M) \text{ is regular, } M \text{ is a TM} \}$ is recursive. ($\langle M \rangle$ denotes the encoding of TM M.)
- 42. $\{L \mid L = \Sigma^* \text{ or } L = \emptyset\}$ is a trivial property of r.e. sets.
- 43.O/X..... Given a TM M and an input x, it is decidable whether M ever makes two consecutive right-moves (i.e., a right-move followed by a right-move immediately) during the course of its computation on input x.
- 44.X..... Given a TM M and a symbol $x \in \Sigma$, it is decidable whether M (starting on a blank tape) ever writes x on its tape.
- 45.*O*..... Every primitive recursive function is a total function.
- 46.*O*..... Ackermann's function is a total recursive function.
- 47.O..... Nondeterministic 1-counter machines are less powerful than deterministic 2-counter machines.

- 48.X..... Given a context-free language L_1 and a recursive language L_2 , it is undecidable whether $L_1 \subseteq L_2$.
- 49. $X_{X,W}$ Rice's theorem is a useful tool for showing a language to be recursive.
- 50. $\dots X_{n-1}$ If L and L^R (the reversal of L) are both in r.e., then L must be recursive.
- 51., Given a recursive set L and a regular set R, it is decidable whether $L \subseteq R$.
- 52., Given a recursive set L and a regular set R, it is decidable whether $R \subseteq L$.
- 53.O..... Given a nondeterministic finite automaton M it is decidable whether the language accepted by M is finite or not.
- 54.O..... The L_u language (i.e., the universal language) is many-one reducible to the PCP language (the language associated with the Post correspondence problem).
- 55.*O*..... Given a left-linear grammar *G*, it is decidable whether $L(G) = \Sigma^*$.
- 56.O..... Recursive languages are closed under Kleene star (i.e., if L is recursive, so is L^*).
- 58.O..... The function $f(n) = 2^{f(n-1)}, n \ge 1; f(0) = 1$ is primitive recursive.
- 60.X..... Every total function $f: N \to N$ is a recursive function. (f is total if f(x) is defined for every $x \in N$.)
- 61.X..... With respect to a given input, checking whether a C program terminates or not is decidable.
- 62.O..... The language $\{a^n b^m c^n d^m \mid m, n \ge 1\}$ can be accepted by a deterministic TM in polynomial time (i.e., in P).
- **63.** O_{\dots} { $(a^i b^i)^j \mid i, j \in N$ } is in P.
- 64.O...... The class of NP languages is closed under intersection.
- 65.O...... The class of NP languages is closed under concatenation.
- 66.*O*..... For every language $L \in P$, $L \leq_p^m 3SAT$.
- 67.X.... If $L = \bigcup_{i=1}^{\infty} L_i$, and each $L_i \in NP$, then $L \in NP$.
- 68.X..... Given a context-free grammar G and a word x, the problem 'Is $x \in L(G)$?' is NP-complete.
- 69.X.... If $\{ww^R \mid w \in \Sigma^*\}$ is solvable in polynomial time, then P = NP. (w^R denotes the reversal of word w.)
- 70. $\dots X_{\dots}$ If $L_2 \subseteq L_1$, and L_2 is NP-hard, then L_1 must be NP-hard as well.
- 72. $\dots X$ If some NP-complete language is solvable in polynomial time, then the PCP problem becomes solvable (i.e., recursive).

2. (20 pts) Let L_1 and L_2 be languages in the respective language class, and let R be a regular language, and x be a given word over alphabet Σ . Choosing from among (D) decidable, (U) undecidable, (?) open problem, categorize each of the following decision problems. No proofs are required. No penalty for wrong answer.

Language class /	regular	context-free	recursive	r.e.
Problem				
$L_1 \cup L_2 = \Sigma^*?$	D	U	U	U
$x \in L_1?$	D	D	D	U
$R \subseteq L_1?$	D	U	U	U
$L_1 - R = \emptyset ?$	D	D	U	U
$\exists y \in L_1, y \le 5?$	D	D	D	U

(|y| denotes the length of y.)

3. (8 pts) For each $n \in N$ (the set of natural numbers), let C_n be a subset of NP which is closed under polynomial-time many-one reduction (i.e., if $L_1 \leq_p^m L_2$ and $L_2 \in C_n$, then $L_1 \in C_n$). Assume also that each $C_n \neq C_{n+1}$, and let $C = \bigcup_{n=0}^{\infty} C_n$. Show that $C \neq NP$. Give a brief but convincing argument.

(Proof sketch)

It is known that NP contains some complete languages such as 3SAT. If C = NP, then $3SAT \in C_j$, for some j. Due to the definition of "completeness", $\forall L \in C(=NP)$, $L \leq_p^m 3SAT$. This implies that $\forall L' \in C_{j+1}(\subseteq C)$, $L' \leq_p^m 3SAT$; hence, $L' \in C_j$. We have that $C_{j+1} = C_j - a$ contradiction.