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Context-Free Grammars

@ Here is an example of a context-free grammar Gy:

A — 0A1
A — B
B — #

o Each line is a substitution rule (or production).

@ A, B are variables.

@ 0, 1, # are terminals.

@ The left-hand side of the first rule (A) is the start variable.
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Grammars and Languages

A — 0A1
A — B
B — #
@ A grammar describes a language.
@ A grammar generates a string of its language as follows.
@ Write down the start variable.
@ Find a written variable and a rule whose left-hand side is that
variable.

© Replace the written variable with the right-hand side of the rule.
© Repeat steps 2 and 3 until no variable remains.

@ For example, consider the following derivation of the string
00#11 generated by Gy:

A = 0A1 = 00A11 = 00B11 = 00#11

@ Any language that can be generated by some context-free
grammar is called a context-free language.
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Grammars and Languages

@ With respect to the following derivation of the string 00#11
generated by Gi:

A= 0Al1 = 00A11 = 00B11 = 00#11

we also use a parse tree to denote a string generated by a grammar:

Fr——D>—>—0n
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Context-Free Grammars — Formal Definition

Definition 1

A context-free grammar is a 4-tuple (V, X, R, S) where
@ V is a finite set of variables (also called non-terminals);
@ Y is a finite set of terminals where VN X = (;

@ Ris a fintie set of production rules. Each rule consists of a variable
and a string of variables and terminals; and

S € V is the start variable.

@ Let u, v, w are strings of variables and terminals,and A — w a
rule. We say uAwv yields uwv (written uAv = uwo).

@ u derives v (written uxv) if u = v or there is a sequence uy, ua, . . ., ux
(k>0)thatu = uy = up = -+ = up = v.
@ The language of the grammar is {w € ¥* : Sxw}.
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Context-Free Languages — Examples

Example 2 (Balanced Parentheses)

Consider G3 = ({S},{(,)}, R, S) where R is

S—(S)|SS e

@ A— w|wy| - | wystands for

A—>ZU1
A—>ZU2

A—>wk

@ Examples of the strings generated by Gs: ¢, (), (())(), .. ..
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Parse Trees vs. Derivation Sequences

Consider the following grammar: E -~ E+E | ExE | (E) | a

The following two derivation sequences have the same parse tree.
e E=E+E=a+E=a+EXE=a+Exa=a+axa
e E=E+E=E+EXE=a+ExXE=at+axE=a+taxa

E

/

N\
E| E
/N
E|E
1
a X

a + d
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Context-Free Languages — Examples

@ From a DFA M, we can construct a context-free grammar Gy such
that the language of G is L(M).
o Let M = (Q, X%, 9,490, F) be a DFA. Define Gy = (V, %, P, S) where
o V={R;:g; € Q}and S = {R¢}; and
) P:{Ri —>aR/:5(qi,a) :q]‘}U{Ri—>6:ql‘ EF}.
@ Recall M3 and construct Gu1, = ({R1, Rz}, {0, 1}, P, {R1}) with

Rl — OR1|1R2|€
R, — O0OR; | 1R5.
@ The above is a right-linear grammar for which the right-hand-side
contains at most one variable at the end of the rule.

Figure: M3
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Subclasses of Context-Free Grammars

e Right-Linear Grammar

Rl — OR1 | 1R, | €
R, — O0OR; ’ 1R,
o Left-Linear Grammar

Ry — Ry0 | Ry1 | €

R, — R;0 ’ Ro1
e Linear Grammar

Ry — O0ORj1 | €

Note: Left- and Right-Linear Grammars only generate regular languages, while
Linear Grammar could generate non-regular languages such as {0"1" | n > 0}.

e How about rules contain both RL and LL rules? (Can you use such to
generate {0"1" | n > 0}?)

Ry — Rzl‘e
R, — O0OR;
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Context-Free vs. Context-Sensitive Grammars

Q@ Context-Free Rules: A — 3, pe(VUX)*

© Context-Sensitive Rules: aAy — af~,

pge(Vux)t

@ Similarity: both replace A by 3.

a,y € (VUX)*,

e Difference: in (2), replacing A by 3 could only take place if A is
surrounded by (in the context of) o and .

o Context-sensitive grammars are more powerful than context-free

grammars.
The Chomsky Hierarchy
Grammars \ Rules \ Languages \ Automata
Type 3 / Right-linear A—aB,A— ¢ Regular DFA /NFA
Type 2 / CFG A—a CFL PDA
Type 1 / CSG aAy — afv,|8] >0 CSL LBA
Type 0 / Unrestricted Ay — re. Turing Machine
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Context-Free Languages — Examples

Example 3 (Fragment of C Grammar)
Consider G4 = (V, X, R, (EXPR)) where
o V = {(EXPR), (TERM), (FACTOR)}, ¥ = {a, +, x, (,)}; and
@ Ris
(EXPR) (EXPR)+(TERM) | (TERM)

.
(TERM) —» (TERM)x(FACTOR) | (FACTOR)
(FACTOR) —» ((EXPR))|a

(EXPR)

(TERM)

(TERM) [ (TERM)

(FACTOR) | (FACTOR) | (FACTOR)

a + a X a
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Ambiguity

Example 4 (Fragment of C Grammar)
Consider Gs:

(EXPR) —» (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

@ We have two parse trees for a + a x a.

(EXPR) (EXPR)
(EXPR) (EXPR) (EXPR) (EXPR)
(EXPR) (EXPR) (EXPR) (EXPR)
SRR A AN

o If a grammar generates (w.r.t. parse trees) the same in different
ways, the string is derived ambiguously in that grammar.

o If a grammar generates some string ambiguously, it is ambiguous.

(NTU EE) Context-Free Languages Spring 2025



Ambiguity

@ A derivation is a leftmost derivation if the leftmost variable is the
one replaced at every step.

@ Two leftmost derivations of a + a X a:

(EXPR) = (EXPR)x(EXPR) = (EXPR)+(EXPR)x (EXPR) =
a+(EXPR) x (EXPR) = a+ax (EXPR) = a+axa
(EXPR) = (EXPR)+(EXPR) = a+(EXPR) =
a+(EXPR) x (EXPR) = a+ax (EXPR) = ataxa

A string is derived ambiguously in a grammar if it has two or more different
leftmost derivations.

e If a language can only be generated by ambiguous grammars, we
call it is inherently ambiguous.

o {a'v/ck:i=jorj=k}isinherently ambiguous.
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Chomsky Normal Form (CNF)

Definition 6

A context-free grammar is in Chomsky normal form if every rule is of the
form

S — €
A — BC
A — a

where a is a terminal, S is the start variable, A is a variable, and B, C
are non-start variables.

@ RHSis (1) € (only from S), (2) exactly two non-start variables, (3)
exactly one terminal.

Any context-free language is generated by a context-free grammar in
Chomsky normal form.
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Chomsky Normal Form

Given a context-free grammar for a context-free language, we will
convert the grammar into Chomsky normal form.

O (start variable) Add a new start variable Sy and a rule Sy — S.

@ (e-rules) For each e-rule A — €(A # Sp), remove it. Then for each
occurrence of A on the right-hand side of a rule, add a new rule
with that occurrence deleted.

o R — uAvAw becomes R — uAvAw | uwvAw | uAvw | uvw.
© (unit rules) For each unit rule A — B, remove it. Add the rule
A — u for each B — u.
© For eachrule A — ujuy - - - ur(k > 3) and u; is a variable or
terminal, replace it by A — u1 A1, A1 — A, ...,
Ap—p — Ug_1l.
@ For each rule A — uqup with u; a terminal, replace it by
A — Uqup, Uy — uy. Similarly when u; is a terminal. O

(NTU EE) Context-Free Languages



Chomsky Normal Form — Example

@ Consider G¢ on the left. We add a new start variable on the right.

S — S
j _ ‘;T‘;"aB S — ASA|aB
A — B|S

B — Dbje B — ble

@ Remove B — ¢ (left) and then A — ¢ (right):

SO — S So — S
S — ASA|aBla S —» ASA|aB|a|SA|AS|S
A — B|S|e A — B|S
B — Db B — Db
@ Remove S — S (left) and then Sp — S (right):
S — S So — ASA|aBla|SA|AS
S — ASA|aB|a|SA|AS S — ASA|aB|a|SA|AS
A — B|S A — BIS
B — Db B — b
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Chomsky Normal Form — Example

@ Remove A — B (left) and then A — S (right):

So —> ASA|aB|a|SA|AS Sy —» ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS S —» ASA|aB|al|SA|AS
A — S|b A — b|ASA|aB|a|SA|AS

B — Db B — b
@ Remove S) — ASA,S — ASA,and A — ASA:

So — AAi|aB|a|SA|AS
S — AAi|aB|a|SA|AS
A — Db|AAi|aB|a]|SA|AS
B — b
A, — SA

e AddU — a:
So — AA1|UB|al|SA|AS
S — AA;|UB|al|SA|AS
A — Db|AA;|UB|a|SA|AS
B — b
A1 — SA

%

a
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Schematic of Pushdown Automata

[blaja/bablaaabb| [blaablabaaabb]

Each step of the PDA looks like:
@ Read current symbol and advance head;
@ Read and pop top-of-stack symbol;
@ Push in a string of symbols on the stack;
@ Change state.

Each transition is of the form

(p,a,X) = (q,Y1Y2...Yy)
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Three Mechanisms of Acceptance

Accept if input is consumed and
Q Stack is empty (Acceptance by Empty Stack),
@ PDA is in a final state (Acceptance by Final State),
@ PDA is in a final state and stack is empty (Acceptance by Final State

and Empty Stack).
[6/aababaaabb] [ba a bablaaabb]
I
f
P L X
Y
Y
Z
1
Empty stack Final State

It turns out that the three notions of acceptance are equivalent.
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Pushdown Automata

e Consider L = {0"1" : n > 0}.
@ We have the following table:

Language ‘ Automata
Regular Finite
Context-free
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Pushdown Automata

e Consider L = {0"1" : n > 0}.
@ We have the following table:

Language ‘ Automata
Regular Finite
Context-free | Pushdown

@ A pushdown automaton is a finite automaton with a stack.

o A stack is a last-in-first-out storage.
e Stack symbols can be pushed and poped from the stack.

e Computation depends on the content of the stack.
@ Itis not hard to see L is recognized by a pushdown automaton.
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Pushdown Automata — Formal Definition

Definition 8

A pushdown automaton is a 6-tuple (Q, 3, T, 6, g0, F) where
@ Q is the set of states;
@ X is the input alphabet;
o I'is the stack alphabet;
@ 0:Qx X xTI'c = P(Q x I') is the transition function;
@ go € Qs the start state; and
@ F C Qis the accept states.

Recall ¥, = ¥ U {e}and I'c =T U {e}.

We consider nondeterministic pushdown automata in the
definition. It convers deterministic pushdown automata.

@ Deterministic pushdown automata are strictly less powerful.

For convenience, we often extend 6 to Q x X x I'c — P(Q x '),
i.e., allowing a € I'. in the stack to be replaced by x € I'*.
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Computation of Pushdown Automata

@ A pushdown automaton M = (Q, X, T, 4, qo, F) accepts input w if w can be written
asw = wiw; - - - Wy With w; € X¢ and there are sequences of states
70,71, ..., "m € Q and strings so, 51, . ..,sm € I'" (representing contents of the
stack) such that

_ , b my—
(ro,50) 5 (r1,51) - (rivat) T (rrga, bE) - S (P S)

where
e rg=qoand sy =¢;
e For 0 <i< m,wehave (ri11,b) € §(ri,wit1,a), s; = at, and s; 11 = bt
forsomea,b €', and t € T"*.

@ On reading wi;1, M moves from r; with stack at to i1 with stack bt.
@ Writec,a — b(c € ¢ and a,b € I'.) to denote that the machine is
reading ¢ from the input and replacing the top of stack a with b.

e 1y, €F.
@ The language recognized by M is denoted by L(M).
o Thatis, L(M) = {w : M accepts w}.
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Pushdown Automata — Example

o LetM; =(Q,%,T,0,q1,F) where

o Q={q1,92,93,94}, ¥ ={0,1},T' = {0,8}, F = {q1,94}; and
e ¢ is the following table:

input 0 1 €

stack [ 0 [ § ] € 0 [S$]elo] & [ e
7 {(92,9)}
q2 {(92,0)} | {(g3,€)}
g {(g3,€)} {(q4,€)}
q4

(NTU EE) Context-Free Languages Spring 2025



Pushdown Automata — Example

o LetM; =(Q,%,T,0,q1,F) where

o Q={q1,92,93,94}, ¥ ={0,1},T' = {0,8}, F = {q1,94}; and
e ¢ is the following table:

input 0 1 €

stack [ 0 [ § ] € 0 [S$]elo] & [ e
7 {(92,9)}
q2 {(92,0)} | {(g3,€)}
g {(g3,€)} {(q4,€)}
q4

o L(My) = {0"1" : n > 0}
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Pushdown Automata — Example

@ Consider the following pushdown automaton M;:

b,a—e€ C,€ €
6,8 —e€
4
68—
€€ € m €€ €
8 -
a,e—a b,e =€ c,a—e€
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Pushdown Automata — Example

@ Consider the following pushdown automaton M;:

b,a—e€ C,€ €

6,8 —e€ (Q)
4
ee—$
68—

€€ € m €€ €

95 T

a,e—a b,e =€ c,a—e€

o L(My) = {ab/ck:i,j,k>0and,i=jori=k}
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Context-Free Grammars = Pushdown Automata

o Idea: Use PDA to simulate derivations

o Example: G: A — 0A1|B; B— #

@ Derivation: A = 0A1 = 00A11 = 00B11 = 00#11
@ Rule:

o Write the start symbol A onto the stack

e Rewrite variable on top of stack (in reverse) according to
production

e Pop top terminal if it matches input

fofe[x[a] [o[of«[+]a] [ofo[#[[s] [olofs]z[s] [o[o[#[ <[] [ofof¢]+]4] [o]o[s]s[s] [o]ofe[s[s] [o[of+]s]2] [o[e[+[]:]
f

- 10 ] ] | L ] ] ]
0 A A B #
A A 1 1 1 1 1

A 1 1 1 1 1 1 1 1

$ $ $ E $ $ $ $ $ $
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Context-Free Grammars = Pushdown Automata

d, a_f':" g Aflak... o
for every terminal a for every production
A= oy.. .0

£,6/54 & £,5/ ==

Ll

Note

@ The above construction seems to suggest that the number of states
in a PDA is not very “important”.

@ In fact, we can turn an arbitrary PDA into an equivalence one with
a single state, such PDA are sometimes called ”stateless” PDA.

o The ”state” information can be incorporated into a ”stack symbol”,
in a way how a programming language handles the ”call-return”
mechanism in a function call.
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Context-Free Grammars = Pushdown Automata
If a language is context-free, some pushdown automaton recognizes it.

Let G = (V, %, R, S) be a context-free grammar generating the
language. Define

P = ({gstarts floop: Gaccepts - - -}> 5 VU E U {8}, 8, Gstart, {faccept }) where
@ O(Gstart, €,€) = {(q100p7S$)}
® 6(Qloopa €,A) = {(QIoop7w) :A— weR}
C 5(qloopaa7a) = {(qloopa €)}
° 5(q100p7 €,8) = {(Jaccept, €) }

Note that (v, uquy - - - u;) € 6(q,a,s) is simulated by (g1, 1;) € §(q,4,s),
5(?17 €, 6) = {(5127 ul—l)}/ DRV 5(%—17 €, 6) = {(7’, ul)}’ O
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Find a pushdown automaton recognizing the language of the
following context-free grammar:
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Simplified PDA

e Has a single accepting state
e Empties its stack before accepting
e Each transition is either a push, or a pop, but not both

single accepting state

e, c/:

@ g‘?}/“

® ® @ @ ®-

Empties its stack before accepting
£,a/¢ for every stack symbol a

Y
1 q0)
e
= ) @(1 )

g.g/e

Each transition either pushes or pops, but not both

a,b/c a,b/e u.k,c
a,e/e a.g/b g,b/e
Lo — Lo lw
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Pushdown Automata = Context-Free Grammars

e Key Idea: For every pair (g, r) of states in PDA, introduce variable

Ay in CFG so that
o A, = w iff PDA goes from q to r reading w (with empty stack
both at g and at r)
PDA CFG

@ Agg — €
@JUWNW’@W\N‘NL@' Apr — ApgAgr

a.e;’}:
P !
k.l_’/l—r@ Ay — aA,D
a=coOrb=c¢
r/" A l/' [
\fj b, X/e \9 allowed

(NTU EE)

Context-Free Languages

Spring 2025 30 /51



Pushdown Automata = Context-Free Grammars

o Type 1: Aps — aAgyb
o Type 2: Ayr — ApsAgs
@ Type3: Agg — ¢

Apf > Aps Asf

<—Read a push X Read b pop X —»

Aps 2 aAg b
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Pushdown Automata = Context-Free Grammars
If a pushdown automaton recognizes a language, the language is context-free.

Without loss of generality, we consider a pushdown automaton that
has a single accept state gaccept and empties the stack before accepting.
Moreover, its transition either pushes or pops a stack symbol at any
time. Let P = (Q, %, T, 6, 0, {Gaccept })- Define the context-free grammar
G = (V,%,R,S) where
° V = {qu : p’ q € Q}’ S = AqO,Qaccept; and‘
@ R has the following rules:
o Foreachp,q,r,s € Q,t €T, and a,b € X, if (r,t) € §(p,a,¢) and
(9,€) € (s, b,t), then Ay; — aA,sb € R.
e Foreachp,q,r € Q, Ayy — ApAy €R.
e Foreachp € Q Ay — e €R.
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o We write A;j for Agg.

o Consider the following context-free grammar:

Ay — Ax since (QQ, $) S 5(q1, €, 6) and (q4, 6) € (5((]3, €, $)
Ayz — 0Ax3l since (qz, 0) € 5((]2, 0,€) and (q3, €) € 5((]3, 1,0)
Az — 0Ax1l since (42,0) € 6(q2,0,€) and (g3,¢€) € §(42,1,0)
A22 — €
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Pushdown Automata = Context-Free Grammars

If Ay, generates x in G, then x can bring P from p with empty stack to q with
empty stack.

Proof.
Prove by induction on the length k of derivation.

@ k= 1. The only possible derivation of length 1is A, = e.
o Consider A,y *x of length k + 1. Two cases for the first step:

o Ap; = aA;sb. Then x = ayb with A,s+y. By IH, y brings P from r to s
with empty stack. Moreover, (r,t) € §(p,a,¢€) and (g, €) € d(s, b, t)
since Ay; — aA;sb € R. Let P start from p with empty stack, P first
moves to 7 and pushes f to the stack after reading a. It then moves
to s with ¢ in the stack. Finally, P moves to g with empty stack after
reading b and popping t.

o Ay = ApAy. Then x = yz with Ay+y and Az, By IH, P moves
from p to r, and then r to g. O

- = = = SRS
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Pushdown Automata = Context-Free Grammars

If x can bring P from p with empty stack to q with empty stack, A, generates
xin G.

Prove by induction on the length k of computation.

@ k = 0. The only possible 0-step computation is to stay at the same state while
reading e. Hence x = e. Clearly, Ap,*e in G.

@ Two possible cases for computation of length k + 1.

@ The stack is empty only at the beginning and end of the computation. If P
reads a, pushes t, and moves to r from p at step 1, (1, t) € 6(q, 4, €). Similarly,
if P reads b, pops t, and moves to g from s at step k + 1, (g, ¢) € d(s, b, t).
Hence Ap; — aAssb € G. Let x = ayb. By IH, A;sxy. We have Ay *x.

@ The stack is empty elsewhere. Let r be a state where the stack becomes
empty. Say y and z are the inputs read during the computation from p to r
and r to g respectively. Hence x = yz. By IH, A,*y and A, *z. Since
Apg — AprAry € G. We have Apgxx. O
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Context-Free Grammars and Pushdown Automata

Theorem 14

A language is context-free if and only if some pushdown automaton
recognizes it.

Every regular language is context-free.

@ When we say PDA, we mean “nondeterministic PDA”

@ Deterministic PDA (DPDA) are less powerful, they only accept
deterministic context-free languages (DCFL).

e DPDA cannot accept {ww® | w € {0,1}*} or {a"b"c" | n > 0}.

@ The equivalence problem is undecidable for PDA, yet it is
decidable for DPDA.

@ Regular C DCFL C CFL

@ DCFLs are not closed under union, intersection, concatenation,
but are closed under complement.
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Pumping Lemma for CFLs

Theorem 16

If A is a context-free language, then there is a number p (the puming length)
such that for every s € A with |s| > p, there is a partition s = uvxyz that

Q foreachi >0, uvixyiz €A
Q |vy| > 0; and
@ [oxy| <p.

Let G = (V,X,R, T) be a context-free grammar for A. Define b to be the
maximum number of symbols in the right-hand side of a rule. Observe
that a parse tree of height 1 has at most b" leaves and hence can
generate strings of length at most V.

Choose p = blVI*1. Let s € A with |s| > p and 7 the smallest parse tree
for s. Then the height of 7 > |V| + 1. There are |V| + 1 variables along
the longest branch. A variable R must appear twice.
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Pumping Lemma for CFLs

E

E R
) E
R
\ | u v R y z R
R X
| v x y
u z

R Generates um;xy}zlz Generates uxz
= 2
uvxyz =ur’xyz

u v x y z Longs - “cutting and pasting” argument
tall parse tree

(Fig. from M. Sipser’s class notes)

Proof. (cont’d).

From Figure (a), we see uvixyiz € Afori>0.
Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than 7. A
contradiction. Hence |vy| > 0.

Finally, recall R is in the longest branch of length |V| 4 1. Hence the
subtree R generating vxy has height < |V| + 1. |oxy| < blVI+1

=p. ]
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Pumping Lemma - Examples

Show B = {a"b"c" : n > 0} is not a context-free language.

Proof.

uvxyz

. ﬁ . LIRS
Let p be the pumping length. s = a’b”c? € B. Consider a partition
s = uvxyz with |oy| > 0. There are two cases:

@ v or y contain more than one type of symbol, e.g.,

Xyz
u @ ot

AN/
aaad aab bbbbbcccece. Then uv?xy?z ¢ B.

@ v and y contain only one type of symbol, e.g.,
u v x ¥ %
AN AN N
aaa “aa " ab bb bbbccecce. Then one of a, b, or ¢ does not appear
in v nor y (pigeon hole principle). Hence uv?xy*z ¢ B for
loy| > 0. O
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Pumping Lemma - Examples

Example 18

Show C = {a'b/ck : 0 < i < j <k} is not a context-free language.

Proof.
Let p be the pumping length and s = a’b”c? € C. Consider any
partition s = uvxyz with |vy| > 0. There are two cases:

@ v or y contain more than one type of symbol. Then uv?xy*z ¢ C.

@ v and y contain only one type of symbol. Then one of a, b, or ¢
does not appear in v nor y. We have three subcases:

e a does not appear in v nor y. uxz ¢ C for it has more a then b or c.

e b does not appear in v nor y. Since |vy| > 0, a or ¢ must appear in v
or y. If a appears, uv?xy’z ¢ C for it has more a than b. If c appears,
uxy ¢ C for it has more b than c.

o c does not appear in v nor y. uv*xy*z ¢ C for it has less c than a or
b. O
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Pumping Lemma - Examples

Show D = {ww : w € {0, 1}*} is not a context-free language.

Let p be the pumping length and s = 071707 17. Consider a partition
s = uvxyz with |oy| > 0 and |vxy| < p.
vxy
——
Ifo---00---01---11---10P1P, uvzxyzz moves 1 into the second half
and thus uv?xy?z ¢ D. Similarly, uv®xy?z moves 0 into the first half if
vxy

——
07170 coc@Qocc @ ocod oo,

U.Xy
. . ,—/%
It remains to consider 0P1---11---10---00---01P. But then
uxz = 0P1'0/1P with i < p orj < p for |vy| > 0. uxz & D. O
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Testing Membership (Cocke-Younger-Kasami Algo.)

o Test "w = ay...a, € L(G)?”, assuming G in CNE
o Algorithm (CYK) is a good example of dynamic programming
and runs in time O(n3), where n = |w|.
o We construct an n-by-n lower triangular array of sets of variables.
o Xjj={A|A=>w;;}, where w;; = a;---a;. Finally, ask if S € X,,.
@ Basis: X;; = {A | A — a;is a production}
e To compute X;; inductively, try all possible ways of splitting a;...4;
into substrings.

Example 1 2 3 4 5

Grammar: S +AB, A—+BC|a. B+ AC|b. C—alb
String w = ababa

@c @s s> AB
-

14={B,S

X, (4} B,S B,S

Xp={A} x‘:-‘-‘{aé?__)()s‘('“} @ —

el = :;;‘\ K= ) e

X::-(Elbs} Xp={A}  Xse={BSH g\(\-ﬂi 9 @A) Bé,‘ B AC

KA %= XemA0 X=BO K=
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{x"y" | n >0} U {x"y*" | n > 0} Not a DPDA Language

Theorem 20
CFLL = {x"y" | n > 0} U {x"y*" | n > 0} cannot be acceptable by a DPDA.

Assume, otherwise, that DPDA M accepts L. We construct a new DPDA M, which
consists of “two modified copies” M; and M, of M in the following way:

@ the initial state of My is the initial state of M, and the final states of My are the
final states of My,

@ remove all x transitions from M,
@ replace all the y transitions of M, with z transitions,

@ for each y transition emanating from an accept state of M;, remove that
transition and add a z transition to its “copy” in M,

@ remove all x transitions emanating from accept states of My,

@ update on the stack remains unchanged.
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{x’”y’” | n> 0} U {x”yZ” ‘ n > 0} Not a DPDA Language

@ Claim: L(My) C x*y*z*
o The prefix before entering M, must be accepted by M;. Hence, the
prefix must be of the form x™y" or x"y*".

o If My accepts x"y"z' (i > 1), then M must accept x"y"*, only
possible if i = n.

e Hence, My accepts {x"y"z" | n > 1} —a contradiction.

.

: /y\ @ B 7_7277 7 = "Z" ]
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Deterministic Context-Free Languages

@ Deterministic PDA: in state g reading a with x at top of stack, at
most one transition can apply.
o if g “5' p exists, it is the only transition in g;

a,x— . . . a,e—z a,x—z
o ¢S p cannot co-exist with either g "5 p or g "5 p.

Reg C DCFL C CFL \

@ DCFLs are closed under complement, union/intersection with regular
languages.

@ DCFLs are not closed under union, intersection, concatenation.

(NTU EE) Context-Free Languages Spring 2025



Closure Properties of DCFL

@ (Complementation - YES) [Proof Idea] swap accept/non-accept
states but need to make sure that DPDA reads the entire string.

o L= {a"b"c" | n > 0} is not CF, yet its complement L is CF (Why?).
So {a"*b*c" | n > 0} is NOT a DCFL.
@ (Union/Concatenation with Regular - YES):
Proof Idea
DPDA x DFA — DPDA.
@ (Union-NO)L =
Q {abick|i#j}u{abic|i#k}u{abick|j#£k}U
©Q {anything with ba, cb, ca}
Each of the above four sub-languages is DCFL. However, (1) is not
DCFL; otherwise, L is DCFL.

o (Intersection - NO): LUM = LN M.
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Closure Properties of DCFL

@ (Concatenation - NO):
o LetL; = {a'bick | i # j} and L, = {a'bic* | j # k}; both are DCFLs.
e L3 =0L; UL, isaDCFL.
o Claim: A = 0*L3 is not a DCFL.
o Suppose A is a DCFL. Then A N 0a*b*c* is a DCFL.
o AN0a*b*c* = 0L, UOL, (a DCFL) implies L; U L, is a DCFL. However,
LiULy =L NLy = {a"b'c" | n > 0} — {anything with ba, cb, ca}
o As{a"b"c" | n > 0} isnota DCFL, L; U L, is not a DCFL — a
contradiction.

Note:

o If L is a DCFL and R is regular, LR is always a DCFL but RL may
not be a DCFL

@ DCFLs are interesting as they are closed under complementation,
but not closed under union, intersection, concatenation.
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Using Idea behind PDA = CFG to Show Closure with

Regular Sets

CFLs are closed under intersection with regular languages.

Proof.
LetG = (V,%,R,S) bea CFG in CNFand N = (Q, X, §, 90, {¢r}) be an
NFA with a unique accept state. We construct G’ = (V’/, X, R’, S') as
follows. A variable in V" is of the form (g;, 4, q;), where

9,9 € Q,LAEV

0§ = (QO,S,Qf)/
® (9i,S,q;) — €if S — ein R, and q; € 4(q;, €),

® (gi,A,q;) »aif A— ainR, and g; € (g;,a),
° (qi,A,q;) — (9i,B,qx)(qx, C,q;) if A = BCin R, Vi € Q.

Claim: (g;,A,q)) = win G’ iff g t giinNand A = winG. O
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Testing Emptiness

Given a CFG G = (V, %, P, S) in CNF, construct a set
T={A| A== w,w € %*} iteratively in the following way:
Q LetT={A|A—aecPaci}
@ ForallrulesB— CD € P,ifC,D € T,then T = T U {B}.

@ Repeat Step (2) until no more variable is added to T.
Claim: S € T iff L(G) # 0.
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Testing Infiniteness

@ The idea is essentially the same as for regular languages.

@ Use the pumping lemma constant n. If there is a string in the
language of length between n and 2n — 1, then the language is
infinite; otherwise not.

eSS
es’ ? ‘
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Closure of CFLs Under Inverse Homomorphism

Consider a homomorphism /(0) = aba, h(1) = bc. Suppose PDA P
accepts ababc. The following is the way how P’ accepts h~!(ababc) = 01.

@ Each state of P’ is of the form [g, z], where g is a state of P and
z € {a,b,c}*.

@ P’ starts in state [qo, €], upon reading input 0, P’ moves to [qo, abal;
then simulate P’s computation on aba as follows

0,e—e €,x —
o [q0,¢] "5 [0, aba) [ql,bﬂ] [92,a] = [g3, €]
e in the above, [go, aba] “~ [ql, ba] simulates (g1, @ — /) € §(q0,4)

(i.e., specified in the transmon function of P).

@ in state [g3, €], upon reading input 1, P’ moves to [g3, bc]; then
simulate P’s computation on bc as follows

e [43,¢ heye [q3,bc] %5 [qasc] = [g5, €], where g5 is an accept state.
@ Hence, P’ accepts 01.

e P’ updates the stack in the same way as P does.
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