
�Õ§¡ Theory of Computation

Ý_�

Dept. of Electrical Engineering
National Taiwan University

E-mail: hcyen@ntu.edu.tw

Web: https://homepage.ntu.edu.tw/ ∼hcyen

Time: 2:20-5:20 PM, Tuesday

Place: BL 103

Office hours: by appointment

Class web page:
https://homepage.ntu.edu.tw/ ∼ hcyen/courses/TOC-2025.html

Prerequisites and Grading

• Prerequisites:
Familiar with basic materials in discrete mathematics,
such as sets, relations, functions, graphs,
propositional logic, induction principle, ...

• Grading:

Homework : 20 %

Midterm exam.: 40 %

Final exam.: 40 %
This is not a programming course; there will be NO programming
assignments.

Reference Book – Michael Sipser, 3rd Edition

Introduction to the Theory of
Computation

Michael Sipser
(Thomson, 2012)

Reference Book – HMU 3rd Edition

Introduction to Automata
Theory, Languages, and
Computation

John E. Hopcroft, Rajeev Motwani,
Jeffrey D. Ullman
(Addison-Wesley, 2006)

Reference Book – HU 1st Edition

Introduction to Automata
Theory, Languages, and
Computation

John E. Hopcroft, Jeffrey D. Ullman
(Addison-Wesley, 1979)

Aims of the Course

To familiarize you with key Computer Science concepts in central
areas like

I Automata Theory
I Formal Languages
I Models of Computation
I Complexity Theory
I ...

To equip you with tools with wide applicability in the fields of CS
and EE, e.g. for

I Software/Hardware Verification
I Cryptography
I Discrete Event Dynamic System
I Quantum Computing
I ...

Fundamental Theme

What are the capabilities and limitations of
computers and computer programs?

I What can we do with computers/programs?

I Are there things we cannot do with computers/programs?

Studying the Theme

How do we prove something CAN be done by
SOME program?

How do we prove something CANNOT be done
by ANY program?

Example: The Halting Problem

Consider the following problem:
Input: A program P with input x
Goal: Decide whether P halts on x eventually.

It turns out that the above problem is
undecidable, meaning that it is impossible to
write a program that gives the correct answer.

What might be surprising is that it is possible to
prove such a result formally. This was first done
by the British mathematician Alan Turing.

Proof of the Halting Problem

Yes

No

Program T

P

x

Program T’

Copy y

Program M

M Program M Halt ?
Question:

Halt: T enters ”Yes”⇒ Not Halt
Not Halt: T enters ”No”⇒ Halt

A Related ”Halting Problem” (The 3n + 1 Problem)

Consider the following program. Does it terminate
for all values of n ≥ 1?

while (n > 1)
if even(n)

n = n
2 ;

else
n = n ∗ 3 + 1;

The 3n + 1 Problem (cont’d)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

In fact, for all numbers that have been tried (a lot!), it
does terminate ...

... but in general?

The problem remains open!

What is ”Computation”?

Ruler and Compass Construction

Plato (5th century B.C.) believed that the only ”perfect” geometric
figures were the straight line and the circle.

In Ancient Greek geometry, there were
only two instruments available to perform
geometric constructions (computations):

Ruler: It can only be used to draw a
line segment between two points, or
to extend an existing line segment.
Compass: Circles and circular arcs
can be drawn starting from two given
points: the center and a point on the
circle.

Ruler and Compass Construction (cont’d)

The ancient Greeks were unable to solve the following problems:

Squaring the circle
Draw a square with the same area as a given circle.

Doubling the cube
Draw a cube with twice the volume of a given cube.

Trisecting an angle
Divide an angle (such as 60o) into three smaller angles of the same size.

In 1837, Pierre Wantzel used Field Theory to prove that the above three
constructions were impossible.

Finding Roots of Polynomials

Roots of polynomials

Given a polynomial anxn + an−1xn−1 + ...+ a1x + a0 = 0, find its roots
(in C) in terms of a finite number of additions (+), subtractions (−),
multiplications (×), divisions (÷), and root extractions (n

√
.).

For n = 1, 2, 3, 4, they are solvable; however, the general quintic
(of degree 5) cannot be solved algebraically. Recall that the

solutions of ax2 + bx + c = 0 are −b±
√

b2−4ac
2a , if a 6= 0.

The problem was shown by Abel (1824) (also Ruffini 1813) to be
impossible using a tool in abstract algebra now known as Galois
Theory .

Trisecting an Angle

It is impossible to trisect an arbitrary angle via ruler-and-compass.
However, if we use origami instead, an arbitrary angle can be trisected
easily.
Paper folding is more powerful than ruler and compass. 3

√
2 can also

be computed using origami.

Subclasses of Real Numbers

Goal: Classify interesting subclasses of real numbers.

1 Natural numbers (N): 0, 1, 2, ...
2 Integers Z: ... -2, -1, 0, 1, 2, ...
3 Rational numbers (Q): { q

p | p, q ∈ Z, p 6= 0}
4 Constructable numbers: numbers that can be constructed using

ruler and compass. E.g., 2
√

2
5 Algebraic numbers: numbers that are solutions of a polynomial

with integer coefficients. E.g., 3
√

2 (which is not a constructable
number).

6 Transcendental numbers: numbers that are not roots of any
integer polynomials. E.g., e, π. Recall that e = limn→∞(1 + 1

n)
n

7 Computable numbers: numbers that can be computed using a
Turing machine

8 Real numbers (R):
√

2, e, π, ...

Subclasses of Real Numbers

(1) Natural Number ⊂ (2) Integer ⊂
(3) Rational ⊂ (4) Constructable ⊂
(5) Algebraic ⊂ (7) Computable ⊂
(8) Real
(1)-(7) are countable; (8) is not countable
Algebraic + Transcendental = Real
Proving a number being transcendental is usually DIFFICULT.
Is e + π an irrational number? (Open problem)
How to prove that e is transcendental?
One way is to use the idea similar to proving e to be irrational.
(Proof sketch) e = 1 + 1

1! +
1
2! +

1
3! + ...+ 1

n! + ...

Suppose e were rational, e = q
p .

e = 1 + 1
1! +

1
2! +

1
3! + ...+ 1

p! +
1

(p+1)! + ... =
integer

p! + 1
p!(

1
p+1 + 1

(p+1)(p+2) ...) = integer
p! + r

p! , 0 < r < 1 – a
contradiction.

What is ”Computation”?

What the ruler-and-compass construction and finding the roots of
polynomials have in common?

I They both involve solving a problem by repeatedly performing
operations from a finite set of possible actions.

I For the former, the operations are ”draw a straight line” and ”draw
a circle”; while for the latter, the operations are +,−,×,÷, n

√
..

(Question:) Are those operations powerful enough to capture the
notion of a computation?
Church-Turing Thesis: A function can be calculated by an
effective method if and only if it is computable by a Turing
machine.
The above notion of computability is quite robust, as

Turing computable (Turing) ≡ λ-computable (Church) ≡
Recursive function definable (Gödel)

Axiomatic Set Theory

The Russell’s Paradox (1901): A barber shaves anyone who does
not shave himself, and none else. The question is, does the barber
shave himself?
The Russell’s paradox exposed a huge problem for the ”naı̈ve” set
theory, and changed the entire direction of twentieth century
mathematics.
Naı̈ve set theory: a set is just a collection of objects that satisfy
some conditions. What happens if we define the set
X = {a : a 6∈ a}. Is X ∈ X?

Modern Set Theory: The so-called Zermelo-Fraenkel
axiomatisation of set theory came to the rescue, using axioms and
inference.

Why Study Theory of Computation?

Computation Theory is essential for the study of the
limits of computation. Two issues:

What can a computer do at all?
(Decidability vs. Undecidability)

What can a computer do efficiently?
(Tractability vs. Intractability)

How ”Hard” is a Set?

Consider the following sets, can you list their complexities (i.e.,
difficulties) in ascending order?

1 A = {n|n is a student enrolled in National Taiwan University},
2 N,Z,Q,R,C, i.e., the sets of natural numbers, integers, rational

numbers, real numbers, and complex numbers, respectively,
3 P = {p|p is a prime},
4 S = {G|G is a graph with a Hamiltonian cycle},
5 H = {P|P is a program that halts},
6 Ĥ = {P|P is a program that prints a specific symbol infinitely

many times}.

Well, it depends on the complexity metrics.

Another Question: Consider the following two sequences
01010101 · · · and 011010010111001 · · · , which one is more ”complex”?

How to Compare the Difficulty Between Two Sets (or
Sequences)?

A Possible Attempt: For sets A and B, we write a program PA (resp.,
PB) to answer the following question: Given an x, is x ∈ A (resp., B)?

If PA takes more ”resource” than PB, then A is harder than B.
Now the question is, what kind of a resource we care most? Time,
memory, program size ...?
What kind of a programming language suitable for the above
comparison?

The above idea makes sense, except that the kind of ”devices” used for
the comparison have to be precise enough so that time, memory,
program size ... can be characterized in an accurate manner.

Automata

Theory of Computation: A Historical Perspective

Computer vs. Automaton

Computer

Automaton

Various Automata

Finite Automaton

Pushdown Automaton

Linear-bounded Automaton

Turing Machine

Chomsky Hierarchy

Classifying automata, grammars and languages and
their descriptive power.

Finite Automata

0 0 1 1 0 1 Read-only Input Tape

4
Input head

q1start q2 q3

0

1 0

1

0,1

Finite State Control

Basic Components:
Input tape: containing symbols from an alphabet ({0, 1}).
Finite state control: containing states and transitions.
Input head: pointing to the current input symbol.

Turing Machine

. . . t 0 0 1 1 0 t t . . . R/W Tape

q1

2-way R/W Head

q1start q2 q3

(0, 1,→)

(1, 0,→) (0, 1,←)

(1, 0,←)

(0, 1,→), (1, 0,←)

Finite State Control

Pushdown Automata

0 0 1 1 0 1 Read-only Input Tape

4
Input head

` a b a c a Pushdown Stack

4
Top-of-stack

q1start q2 q3

(0, a→ ε)

(1, a→ ab) (0, b→ bca)

(1, a→ c)

(0, c→ ε); (1, a→ b)

Finite State Control

Linear Bounded Automata

B 0 0 1 1 0 1 C R/W Tape

q1

2-way R/W Head

q1start q2 q3

(0, 1,→)

(1, 0,→) (0, 1,←)

(1, 0,←)

(0, 1,→), (1, 0,←)

Finite State Control

Topics

Automata and Formal Languages:
I Finite automata, pushdown automata, linear bounded automata,

Turing machines, and their variants;
I Regular, context-free, context sensitive, and unrestricted grammars;
I Closure and decision properties of various language classes;
I Transducers (i.e., automata with outputs), weighted automata,

probabilistic automata, quantum automata, tree automata, ... etc.

Computability Theory: Turing-recognizable languages,
Turing-decidable languages, Halting problem, reducibility, Post
correspondence problem, ... (If time permits, also Primitive
recursive function, µ-recursive function, partial recursive
function, total recursive function.)

Complexity Theory:
I Various resource bounded complexity classes, including

NLOGSPACE, P, NP, PSPACE, EXPTIME, and many more;
I Randomized complexity classes, including BPP, RP, ZPP, ... etc.

Interactive proof system. Zero-knowledge proof.
I Oracle and alternating computations.
I Circuit complexity.

Applications

Our Focus

The Big Picture

The Power of ”Randomization” (Zero-Knowledge
Proof)

Example: 3-colorability of graphs.
Given a graph G(V,E), deciding whether nodes in V can be colored
with three colors so that adjacent nodes have distinct colors.
Given a graph G, consider the following scenario:

Bob claims that he has a ”major” discovery of a 3-coloring of G.
Bob wants to convince Alice that G is indeed 3-colorable, but does
not want to reveal the exact ”proof” (how nodes are colored) to
Alice.

Zero-Knowledge Proof of 3-Colorability

Repeat Steps (1) - (3) n times.
1 Bob puts the color of each node in an envelope, and gives the set of

envelopes (each associated with a node of G) to Alice.
2 Alice opens a pair of envelopes associated with adjacent nodes. If

same color, ”reject”.
3 Bob randomly permutes the coloring. Repeat Step (1).

”accept”.
• Claim:

3-colorable ⇒ prob. of acc. is ONE.
Not 3-colorable ⇒ prob. of rej. is ”HIGH” for suff. large n.

• Using such scheme, Alice does not know the exact coloring.
• If one-way functions exists, NP ⊆ ZK.

Zero-Knowledge Proof

A ZKP allows one party to prove the knowledge of certain
information to the other party without revealing the data in
question.

I Completeness - a verifier will be confident that the given
information is true

I Soundness - if the provers’ info is false, it cannot convince the
verifier otherwise

I Zero-knowledge - no other information will be revealed other then
the given information

(Fig. from https://en.rattibha.com/thread/1511742345053900800)

How about a student convincing the instructor that he/she
deserves a full credit without taking an exam?

