
Introduction to Complexity Theory/ Time and
Space Complexity

(NTU EE) Time Complexity Spring 2024 1 / 89

Time for Deciding a Language

Let us consider A = {anbn : n ≥ 0}.
How much time does a single-tape TM need to decide A?
Consider
M1 = “On input string w:

1 Scan the tape and reject if an a appears after a b.
2 Repeat if a or b appear on the tape:

1 Scan across the tape, cross an a and a b.
3 If a’s or b’s still remain, reject. Otherwise, accept.”

How much “time” does M1 need for an input w?

(NTU EE) Time Complexity Spring 2024 2 / 89

Time Complexity

Definition 1
Let M be a TM that halts on all inputs. The running time (or time
complexity) of M is the function f : N→ N where f (n) is the running
time of M on any input of length n.

If f (n) is the running time of M, we say M runs in time f (n) and M
is an f (n) time TM.
In worst-case analysis, the longest running time of all inputs of a
particular length is considered.
In average-case analysis, the average of all running time of inputs
of a particular length is considered instead.
We only consider worst-case analysis in the course.

(NTU EE) Time Complexity Spring 2024 3 / 89

Big-O and Small-O

Definition 2
Let f , g : N→ R+. f (n) = O(g(n)) if there are c,n0 ∈ Z+ such that for all
n ≥ n0,

f (n) ≤ c(g(n)).

g(n) is an upper bound (or an asymptotic upper bound) for f (n).
nc(c ∈ R+) is a polynomial bound.
2nd

(d ∈ R+) is an exponential bound.

Definition 3
Let f , g : N→ R+. f (n) = o (g (n)) if

lim
n→∞

f (n)

g(n)
= 0.

That is, for any c ∈ R, there is an n0 that f (n) < c(g) for all n ≥ n0.

(NTU EE) Time Complexity Spring 2024 4 / 89

Time Complexity of M1

Recall
M1 = “On input string w:

1 Scan the tape and reject if an a appears after a b.
2 Repeat if a or b appear on the tape:

1 Scan across the tape, cross an a and a b.

3 If a’s or b’s still remain, reject. Otherwise, accept.”
Let |w| = n.

I Step 1 takes O(n) (precisely, ≤ n).
I Step 2 has O(n) iterations (precisely, ≤ n/2).

F An iteration takes O(n) (precisely, ≤ n).
I Step 3 takes O(n) (precisely, ≤ n).

The TM M1 decides A = {anbn : n ≥ 0} in time O(n2).
I O(n2) = O(n) + O(n)×O(n) + O(n).

(NTU EE) Time Complexity Spring 2024 5 / 89

Time Complexity Class

Definition 4
Let t : N→ R+. The time complexity class TIME(t(n)) is the collection
of all languages that are decided by a 1-tape O(t(n)) time deterministic
TM.

A = {anbn : n ≥ 0} is decided by M1 in time O(n2). A ∈ TIME(n2).
Time complexity classes characterizes languages, not TM’s.

I We don’t say M1 ∈ TIME(n2).

A language may be decided by several TM’s.
Can A be decided more quickly asymptotically?

(NTU EE) Time Complexity Spring 2024 6 / 89

Deciding {anbn : n ≥ 0} Faster

Consider the following TM:
M2 = “On input string w:

1 Scan the tape and reject if an a appears after a b.
2 Repeat if a or b appear on the tape:

1 Scan the tape, cross every other a and b
Reject if even/odd parities disagree

3 Accept if all crossed off.
Analysis of M2.

I Step 1 takes O(n).
I Step 2 has O(log n)(= log2(n)) iterations (why?). Each iteration

takes O(n).
I Step 3 takes O(n).

M2 decides A in time O(n log n).
It can be shown (not trivial) that

Theorem 5
A 1-tape TM cannot decide A by using fewer than n log n steps.

(NTU EE) Time Complexity Spring 2024 7 / 89

How M2 works

(NTU EE) Time Complexity Spring 2024 8 / 89

Deciding {anbn : n ≥ 0} Using a Two-tape TM

Consider the following two-tape TM:
M3 = “On input string w:

1 Scan tape 1 and reject if an a appears after a b.
2 Scan tape 1 and copy the a’s onto tape 2.
3 Scan tape 1 and cross an a on tape 2 for a b on tape 1.
4 If all a’s are crossed off before reading all b’s, reject. If some a’s are

left after reading all b’s, reject. Otherwise, accept.”
Analysis of M3.

I Each step takes O(n).

(NTU EE) Time Complexity Spring 2024 9 / 89

Model Dependence

Computability theory: model independence
All reasonable variants of TM’s decide the same language
(Church-Turing thesis). Therefore model choice doesn’t matter.

Complexity theory: model dependence
Different variants of TM’s may decide the same in different time.

I For the same language A = {anbn : n ≥ 0}.
F TM M1 decides A in time O(n2),
F TM M2 decides A in time O(n log n),
F Two-tape M3 decides A in time O(n).

(NTU EE) Time Complexity Spring 2024 10 / 89

Complexity Relationship with Multitape TM’s

Theorem 6

Let t(n) be a function with t(n) ≥ n. Every t(n) time multitape Turing machine has an
equivalent O(t2(n)) time single-tape TM.

Proof.
We analyze the simulation of a k-tape TM M is by the TM S. Observe that each tape of
M has length at most t(n) (why?).
For each step of M, S has two passes:

The first pass gathers information (O(kt(n))).

The second pass updates information with at most k shifts (O(k2t(n))).

Hence S takes O(n) + O(k2t2(n)) (= O(n) + O(t(n))×O(k2t(n))). Since t(n) ≥ n, we
have S runs in time O(t2(n)) (k is independent of the input).

0 1 xy0

ab xyb b 1 # b b
•
00 b xy

•
a ##

SM

(NTU EE) Time Complexity Spring 2024 11 / 89

Time Complexity of Nondterministic TM’s

Definition 7
Let N be a nondeterministic TM that is a decider. The running time of
N is a function f : N→ N where f (n) is the maximum number of steps
among any branch of N’s computation on input of length n.

f (n)
... ...

accept

reject

reject

accept

f (n)

(NTU EE) Time Complexity Spring 2024 12 / 89

Complexity Relationship with NTM’s

Theorem 8

Let t(n) be a function with t(n) ≥ n. Every t(n) time single-tape NTM has
an equivalent 2O(t(n)) time single-tape TM.

Proof.
Let N be an NTM running in time t(n). Recall the simulation of N by a
3-tape TM D with the address tape alphabet Σb = {1,2, . . . ,b} (b is the
maximal number of choices allowed in N).
Since N runs in time t(n), the computation tree of N has O(bt(n)) nodes.
For each node, D simulates it from the start configuration and thus
takes time O(t(n)). Hence the simulation of N on the 3-tape D takes
2O(t(n))(= O(t(n))×O(bt(n))) time.
By Theorem 6, D can be simulated by a single-tape TM in time
(2O(t(n)))2 = 2O(t(n)).

(NTU EE) Time Complexity Spring 2024 13 / 89

The Class P

It turns out that reasonable deterministic variants of TM’s can be
simulated by a TM with a polynomial time overhead.

I multitape TM’s, TM’s with random access memory, etc.
The polynomial time complexity class is rather robust.

I That is, it remains the same with different computational models.

Definition 9
P is the class of languages decidable in polynomial time on a
determinsitic single-tape TM. That is,

P =
⋃

k

TIME(nk).

We are interested in intrinsic characters of computation and hence
ignore the difference among variants of TM’s in this course.
Solving a problem in time O(n) and O(n100) certainly makes lots
of difference in practice.

(NTU EE) Time Complexity Spring 2024 14 / 89

The Nondeterministic Time Complexity Class

Definition 10
NTIME (t (n)) = { L : L is a language decided by a O (t (n)) time NTM
}.

Definition 11

NP =
⋃

k

NTIME(nk).

Recall that class TIME(t(n)) and

P =
⋃

k

TIME(nk).

(NTU EE) Time Complexity Spring 2024 15 / 89

Another View of the Class NP

Definition 12
A verifier for a language A is an algorithm V where

A = {w : V accepts 〈w, c〉 for some c}.

c is a certificate or proof of membership in A. A polynomial time
verifier runs in polynomial time in |w| (not 〈w, c〉). A language A is
polynomially verifiable if it has a polynomial time verifier.

Note that a certificate has a length polynomial in |w|.
I Otherwise, V cannot run in polynomial time in |w|.

Compare the verifier version of NP with the following:
Language C is Turing-recognizable⇔ there is a decidable language D
such that C = {x | ∃y, 〈x, y〉 ∈ D, x, y ∈ Σ∗}

I Recognizable lang. ↔ NP; Decidable lang. ↔ P
I x ∈ C if ∃y, 〈x, y〉 ∈ D ↔

w ∈ A if ∃c, 〈w, c〉 accepted by Ptime DTM V.

(NTU EE) Time Complexity Spring 2024 16 / 89

Decider vs. Verifier

3-colorability problem: Decide whether vertices of a graph G can
be 3-colored with adjacent vertices colored differently.
There are 3n possible colorings for a graph with n vertices.
Checking all of them by a decider requires exponential time.
G is 3-colorable⇔ ∃ a valid 3-color assignment, which serves as a
proof.
Verifier V’s work is to, given a certificate, checking whether it is
indeed a ”proof”.

(NTU EE) Time Complexity Spring 2024 17 / 89

NP and Ptime Verifiers

Theorem 13
A language is in NP if and only if has a polynomial time verifier.

Proof.
Let V be a verifier for a language A running in time nk. Consider
N = “On input w of length n:

1 Nondeterministically select string c of length ≤ nk.
2 Run V on 〈w, c〉.
3 If V accepts, accept; otherwise, reject.”

Conversely, let the NTM N decide A and c the address of an accepting configuration in
the computation tree of N. Consider
V = “On input 〈w, c〉:

1 Simulate N on w from the start configuration by c.
2 If the configuration with address c is accepting, accept; otherwise, reject.”

(NTU EE) Time Complexity Spring 2024 18 / 89

NP and Ptime Verifiers

Figure: (Left) Verifier V ⇒ NTM N. (Right) NTM N ⇒ Verifier V.
(NTU EE) Time Complexity Spring 2024 19 / 89

Hamiltonian Paths

A Hamiltonian path in a directed
graph G is a path that goes through
every node exactly once.

Theorem 14
HAMPATH ∈ NP.

Proof.
”On input 〈G, s, t〉 (assume G has m nodes)

1 Nondeterministically write a
sequence v1, v2, ..., vm of m nodes.

2 Accept if v1 = s, vm = t, each (vi, vi+1)
is an edge and no vi repeats.

3 Reject if any condition fails”

(Fig. from M. Sipser’s class notes)

(NTU EE) Time Complexity Spring 2024 20 / 89

The Class coNP

Definition 15
coNP = {L : L ∈ NP}.

HAMPATH ∈ coNP since HAMPATH = HAMPATH ∈ NP.
I HAMPATH does not appear to be polynomial time verifiable.
I What is a certificate showing there is no Hamiltonian path?

We do not know if coNP is different from NP.
Recall

I P is the class of languages which membership can be decided
quickly.

I NP is the class of languages which membership can be verified
quickly.

L ∈ P implies L ∈ NP for every language L.

(NTU EE) Time Complexity Spring 2024 21 / 89

P vs NP

P = NPPNP

Figure: Possible Relation between P and NP

To the best of our knowledge, we only know

NP ⊆ EXPTIME =
⋃

k

TIME(2nk
). (Theorem 8)

Particularly, we do no know if P ?
= NP.

(NTU EE) Time Complexity Spring 2024 22 / 89

Satisfiability

Let B = {0,1} be the truth values.
A Boolean variable takes values from B.
Recall the Boolean operations

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 = 1
1 = 0

A Boolean formula is an expression constructed from Boolean
variables and opearations.

I φ = (x ∧ y) ∨ (x ∧ z) is a Boolean formula.
A Boolean formula is satisfiable if an assignments of 0’s and 1’s to
Boolean variables makes the formula evaluate to 1.

I φ is satisfiable by taking {x 7→ 0, y 7→ 1, z 7→ 0}.

(NTU EE) Time Complexity Spring 2024 23 / 89

The Satisfiability Problem

The satisfiability problem is to test whether a Boolean formula is
satisfiable.
Consider

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}.

Theorem 16 (Cook-Levin)
SAT ∈ P if and only if P = NP.

(NTU EE) Time Complexity Spring 2024 24 / 89

Polynomial Time Reducibility

Definition 17
f : Σ∗ → Σ∗ is a polynomial time computable function if a polynomial
time TM M halts with only f (w) on its tape upon any input w.

Definition 18
A language A is polynomial time mapping reducible (polynomial time
reducible, or polynomial time many-one reducible) to a language B
(written A ≤P B) if there is a polynomial time computable function
f : Σ∗ → Σ∗ that

w ∈ A if and only if f (w) ∈ B for every w.

f is called the polynomial time reduction of A to B.

Recall the definitions of computable functions and mapping
reducibility.

(NTU EE) Time Complexity Spring 2024 25 / 89

Properties about Polynomial Time Reducibility

Theorem 19
If A ≤P B and B ∈ P, A ∈ P.

Proof.
Let the TM M decide B and f a polynomial time reduction of A to B.
Consider
N = “On input w:

1 Compute f (w).
2 Run M on f (w).”

Since the composition of two polynomials is again a polynomial, N
runs in polynomial time.

(NTU EE) Time Complexity Spring 2024 26 / 89

Polynomial Time Reducibility

(Fig. from M. Sipser’s class notes)

(NTU EE) Time Complexity Spring 2024 27 / 89

The 3SAT Problem

A literal is a Boolean variable or its negation.
A clause is a disjunction (∨) of literals.

I x1 ∨ x2 ∨ x3 ∨ x4 is a clause.
A Boolean formula is in conjunctive normal form (or a
CNF-formula) if it is a conjunction (∧) of clauses.

I (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x6) is a CNF-formula.

In a satisfiable CNF-formula, each clause must contain at least one
literal assigned to 1.
A Boolean formula is a 3CNF-formula if it is a CNF-formula
whose clauses have three literals.

I (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) is a 3CNF-formula.

Consider

3SAT = {〈φ〉 : φ is a satisfiable 3CNF-formula}.

(NTU EE) Time Complexity Spring 2024 28 / 89

3SAT ≤P CLIQUE

• A k−clique of graph G is a k-vertex complete subgraph of G.
• CLIQUE = {〈G, k〉| graph G contains a k− clique}

Theorem 20

3SAT ≤P CLIQUE.

Proof.
Given a 3CNF-formula φ = (a1 ∨ b1 ∨ c1) ∧ · · · ∧ (ak ∨ bk ∨ ck), find
graph G and a number k s.t. 〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE. E.g.,

(Fig. from M. Sipser’s class notes)
(NTU EE) Time Complexity Spring 2024 29 / 89

3SAT ≤P CLIQUE

Proof.
We need gadgets to simulate Boolean variables and clauses in φ.

For each clause ai ∨ bi ∨ ci, add three corresponding nodes to G.
I G has 3k nodes.

For each pair of nodes in G, add an edge except when
I the pair of nodes correspond to literals in a clause.
I the pair of nodes correspond to complementary literals (such as a and ā)

Claim: φ is satisfiable if and only if G has a k-clique.
(⇒) Take any satisfying assignment to φ. Pick 1 true literal in each
clause. The corresponding nodes in G are a k-clique because they
don’t have forbidden edges.
(⇐) Take any k-clique in G. It must have 1 node in each clause. Set
each corresponding literal True. That gives a satisfying
assignment to φ.

(NTU EE) Time Complexity Spring 2024 30 / 89

3SAT ≤P CLIQUE

x2

x2

x1

x1

x2

x1 x2x2

x1

(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

(NTU EE) Time Complexity Spring 2024 31 / 89

NP-Completeness

Definition 21
A language B is NP-complete if

B is in NP; and
every A in NP is polynomial time reducible to B.

Theorem 22
If B is NP-complete and B ∈ P, then P = NP.

Theorem 23

If C ∈ NP, B is NP-complete, and B ≤P C, then C is NP-complete.

Proof.
Since B is NP-complete, there is a polynomial time reduction f of A to
B for any A ∈ NP. Since B ≤P C, there is a polynomial time reduction g
of B to C. g ◦ f is a polynomial time reduction of A to C.

(NTU EE) Time Complexity Spring 2024 32 / 89

Cook-Levin Theorem

Theorem 24

SAT is NP-complete.

Proof.
(In NP) For any Boolean formula φ, an NTM nondeterministically choose a truth
assignment. It checks whether the assignment satisfies φ. If so, accept; otherwise,
reject. Hence SAT ∈ NP.
(NP-hard) To show SAT to be NP-hard,we need to show ∀ A ∈ NP, A ≤p SAT.

Question: as there are infinitely many languages A in NP, how to check A ∈ NP?

Answer: each such language A is parameterized by an NTM N and a time
bound nk. I.e., for input w, N operates in |w|k time, and L(N) = A.

We establish a polynomial-time reduction f : A→ SAT such that

f : Σ∗ → formulas
f (w) = 〈φN,w〉
w ∈ A iff φN,w is satisfiable.

(NTU EE) Time Complexity Spring 2024 33 / 89

Cook-Levin Theorem

q0 w0 w1 wj wn xyxy

nk

nk

#
#
#

#

#
#
#

#

window

Proof (cont’d).
Let A ∈ NP and the NTM N decide A in nk time. For any input w, a tableau for N on w
is an nk × nk table whose rows are the configurations along a branch of the
computation of N on w. A tableau of size nk × nk has nk × nk cells. We assume each
configuration starts and ends with a # symbol. A tableau is accepting if any of its
rows is an accepting configuration.
Each accepting tableau for N on w corresponds to an accepting computation of N on
w. We therefore construct a Boolean formula φ such that φ is satisfiable if and only if
there is an accepting tableau for N on w.

(NTU EE) Time Complexity Spring 2024 34 / 89

Cook-Levin Theorem

Proof (cont’d).
Let C = Q ∪ Γ ∪ {#}where Q and Γ are the states and the tape alphabet of N.

The variables for φN,w are xi,j,s, for 1 ≤ i, j ≤ nk and s ∈ C.

The Boolean variable denotes the content of the cell cell[i, j]. That is, xi,j,s is 1 if
and only if cell[i, j] = s.

A satisfiable truth assignment to φN,w captures a accepting computation of N on
w.

φN,w = φcell ∧ φstart ∧ φmove ∧ φaccept

To force each cell to contain exactly one symbol from C, consider

φcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s 6=t

(xi,j,s ∨ xi,j,t)

 .

(NTU EE) Time Complexity Spring 2024 35 / 89

Cook-Levin Theorem

Proof (cont’d).
To force the tableau to begin with the start configuration, consider

φstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3,xy ∧ · · · ∧ x1,nk−1,xy ∧ x1,nk,#.

To force an accepting configuration to appear in the tableau, consider

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept .

To force the configuration at row i yields the configuration at row i + 1, consider a
window of 2× 3 cells. For example, assume δ(q1,a) = {(q1,b,R)} and
δ(q1,b) = {(q2,c, L), (q2,a,R)}. The following windows are valid:

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b
b a
b a

a b a
a b q2

b b b
c b b

(NTU EE) Time Complexity Spring 2024 36 / 89

Cook-Levin Theorem

Proof.
Since C is finite, there are only a finite number of valid windows. For any window W

c1 c2 c3

c4 c5 c6
, consider

ψW = xi,j−1,c1 ∧ xi,j,c2 ∧ xi,j+1,c3 ∧ xi+1,j−1,c4 ∧ xi+1,j,c5 ∧ xi+1,j+1,c6

To force every window in the tableau to be valid, consider

φmove =
∧

1≤i≤nk,1≤j<nk

(∨
W is a valid

ψW

)
.

Finally, consider the following Boolean formula:

φ = φcell ∧ φstart ∧ φaccept ∧ φmove.

|φcell| = O(n2k), |φstart| = O(nk), |φaccept| = O(n2k), and |φmove| = O(n2k). Hence
|φ| = O(n2k). Moreover, φ can be constructed from N in time polynomial in n.

(NTU EE) Time Complexity Spring 2024 37 / 89

3SAT is NP-Complete

Corollary 25
3SAT is NP-complete.

Proof.
We convert the Boolean formula φ in the proof of Theorem 24 into a 3CNF-formula.
We begin by converting φ into a CNF-formula.
Observe that the conjunction of CNF-formulae is again a CNF-formula. Note that φcell,
φstart, and φaccept are already in CNF (why?). φmove is of the following form:

∧
1≤i≤nk,1≤j<nk

(∨
W is valid

(l1 ∧ l2 ∧ l3 ∧ l4 ∧ l5 ∧ l6)

)

By the law of distribution, φmove can be converted into a CNF-formula. Note that the
conversion may increase the size of φmove. Yet the size is independent of |w|. Hence
the size of the CNF-formula φ still polynomial in |w|.
To a clause of k literals into clauses of 3 literals, consider l1 7→ (l1 ∨ l1 ∨ l1),
l1 ∨ l2 7→ (l1 ∨ l2 ∨ l2), and
l1 ∨ l2 ∨ · · · lp 7→ (l1 ∨ l2 ∨ z1) ∧ (z1 ∨ l3 ∨ z2) ∧ · · · ∧ (zp−3 ∨ lp−1 ∨ lp).

(NTU EE) Time Complexity Spring 2024 38 / 89

Variants of SAT

A Boolean formula is in disjunctive normal form (or a
DNF-formula) if it is a disjunction (∨) of clauses.

(x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x2 ∧ x2 ∧ x5) ∨ (x4 ∧ x6) is a DNF-formula.
Consider DNF-SAT = {〈φ〉 : φ is a satisfiable DNF-formula}.

I Is is well known that any CNF formula φ can be converted into an
equivalent DNF formula φ′, and vice versa.

I So ..., is DNF-SAT NP-complete? If not, why?
Planar-SAT: Planar-SAT =
{〈φ〉 : φ, whose induced graph is planar, is satisfiable}.

I Fact: Planar-SAT is NP-complete.

(Fig. from Wiki)(NTU EE) Time Complexity Spring 2024 39 / 89

More NP-Complete Problems

To find more NP-complete problems, we apply Theorem 23.
Concretely, to show C is NP-complete, do

I prove C is in NP; and
I find a polynomial time reduction of an NP-complete problem (say,

3SAT) to C.

In Theorem 20, we have shown 3SAT ≤P CLIQUE. Therefore

Corollary 26
CLIQUE is NP-complete.

(NTU EE) Time Complexity Spring 2024 40 / 89

Space Complexity

Definition 27
Let M be a TM that halts on all inputs. The space complexity of M is
f : N→ N where f (n) is the maximum number of tape cells that M
scans on any input of length n.
If the space complexity of M is f (n), we say M runs in space f (n).

Definition 28
If N is an NTM wherein all branches of its computation halts on all
inputs. The space complexity of N is f : N→ N where f (n) is the
maximum number of tape cells that N scans on any branch of its
computation for any input of length n.
If the space complexity of N is f (n), we say N runs in space f (n).

(NTU EE) Time Complexity Spring 2024 41 / 89

Space Complexity Classes

Definition 29
Let f : N→ R+. The space complexity classes, SPACE(f (n)) and
NSPACE(f (n)), are

SPACE(f (n)) = {L : L is decided by an O(f (n)) space TM}
NSPACE(f (n)) = {L : L is decided by an O(f (n)) space NTM}

(NTU EE) Time Complexity Spring 2024 42 / 89

SAT ∈ SPACE(n)

Example 30
Give a TM that decides SAT in space O(n).

Proof.
Consider
M1 = “On input 〈φ〉where φ is a Boolean formula:

1 For each truth assignment to x1, x2, . . . , xm of φ, do
1 Evaluate φ on the truth assignment.

2 If φ ever eavluates to 1, accept; otherwise, reject.”
M1 runs in space O(n) since it only needs to store the current truth
assignment for m variables and m ∈ O(n).

(NTU EE) Time Complexity Spring 2024 43 / 89

Savitch’s Theorem

Theorem 31 (Savitch)
For f : N→ R+ with f (n) ≥ n, NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.
Let N be an NTM deciding A in space f (n). Assume N has a unique accepting
configuration caccept (how?). We construct a TM M deciding A in space O(f 2(n)). Let w
be an input to N, c1, c2 configurations of N on w, and t ∈ N. Consider
CANYIELD = “On input c1, c2, and t [The goal is to check c1

t→ c2]:

1 If t = 1, test c1 = c2, or c1 ` c2 in N. If either succeeds, accept; otherwise, reject.

2 If t > 1, repeat for all configurations cm that uses f (n) space

1 Recursively test CANYIELD(c1, cm,
t
2) ∧ CANYIELD(cm, c2,

t
2).

(i.e., c1

t
2→ cm ∧ cm

t
2→ c2)

2 If both accept, accept.
3 Reject.”

(NTU EE) Time Complexity Spring 2024 44 / 89

Savitch’s Theorem

Proof (cont’d).
The number of configurations is bounded
by |Q| × f (n)×mf (n) = 2df (n) for some d,
where m = |Γ| and n = |w|.
M = ”On input w:

1 Run CANYIELD(cstart, caccept, 2df (n)).

(i.e., test cstart
2df(n)
→ caccept)”

Since t = 2df (n), the depth of recusion is
O(lg 2df (n)) = O(f (n)). Moreover,
CANYIELD can store its step number,
c1, c2, t in space O(f (n)). Thus M runs in
space O(f (n)× f (n)) = O(f 2(n)).

(Fig. from M. Sipser’s class notes)

(NTU EE) Time Complexity Spring 2024 45 / 89

The Class PSPACE

Definition 32
PSPACE is the class of languages decidable by TM’s in polynomial
space. That is,

PSPACE =
⋃

k

SPACE(nk).

Consider the class of langauges decidable by NTM’s in
polynomial space NPSPACE =

⋃
k NSPACE(nk).

By Savitch’s Theorem, NSPACE(nk) ⊆ SPACE(n2k). Clearly,
SPACE(nk) ⊆ NSPACE(nk). Hence NPSPACE = PSPACE.
Consider ALLNFA = {M |M is an NFA,L(M) = Σ∗}.

I ALLNFA ∈ coNSPACE(n).
(Why? Can you show ALLNFA ∈ NSPACE(n)? Hint: if L(M) 6= ∅,
then ∃w ∈ L(M), |w| ≤ 2|Q| (Why?))

I By Savitch’s Theorem, ALLNFA ∈ NSPACE(n) ⊆ SPACE(n2). Hence
ALLNFA ∈ PSPACE.

(NTU EE) Time Complexity Spring 2024 46 / 89

P, NP, PSPACE, and EXPTIME

P ⊆ PSPACE
I A TM running in time t(n) uses space t(n) (provided t(n) ≥ n).

Similarly, NP ⊆ NPSPACE and thus NP ⊆ PSPACE.
PSPACE ⊆ EXPTIME = ∪kTIME(2nk

)
I A TM running in space f (n) has at most f (n)2O(f (n)) different

configurations (provided f (n) ≥ n).
F A configuration contains the current state, the location of tape head,

and the tape contents.
In summary, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

I We will show P 6= EXPTIME.

P NP EXPTIMEPSPACE
NPSPACE

(NTU EE) Time Complexity Spring 2024 47 / 89

PSPACE-Completeness

Definition 33
A language B is PSPACE-complete if it satisfies

B ∈ PSPACE; and
A ≤P B for every A ∈ PSPACE.

If B only satisfies the second condition, we say it is PSPACE-hard.

We do not define “polynomial space
reduction” nor use it. Why?
Intuitively, a complete problem is
most difficult in the class. If we can
solve a complete problem, we can
solve all problems in the same class
easily.

(NTU EE) Time Complexity Spring 2024 48 / 89

TQBF

Recall the universal quantifier ∀ and the existential quantifier ∃.
When we use quantifiers, we should specify a universe.

I ∀x∃y[x < y ∧ y < x + 1] is false if Z is the universe.
I ∀x∃y[x < y ∧ y < x + 1] is true if Q is the universe.

A quantified Boolean formula is a quantified Boolean formula
over the universe B.
Any formula with quantifiers can be converted to a formula
begins with quantifiers.

I ∀x[x ≥ 0 =⇒ ∃y[y2 = x]] is equivalent to ∀x∃y[x ≥ 0 =⇒ y2 = x].
I This is called prenex normal form.

We always consider formulae in prenex normal form.
If all variables are quantified in a formula, we say the formula is
fully quantified (or a sentence).
Consider

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.

(NTU EE) Time Complexity Spring 2024 49 / 89

TQBF is PSPACE-Complete

Theorem 34

TQBF is PSPACE-complete.

Proof.
We first show TQBF ∈ PSPACE. Consider
T = “On input 〈φ〉where φ is a fully quantified Boolean formula:

1 If φ has no quantifiers, it has no variables. If φ = TRUE, accept; or φ = FALSE,
reject.

2 If φ is ∃xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If either accepts, accept;
otherwise, reject.

3 If φ is ∀xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If both accepts, accept;
otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the
value of one variable. Hence T runs in space O(n).

(NTU EE) Time Complexity Spring 2024 50 / 89

TQBF is PSPACE-Complete

Proof (cont’d).

Let M be a TM deciding A in space nk. We
give a polynomial-time reduction f
mapping A to TQBF.

f : Σ∗ → QBF formulas
f (w) = 〈φM,w〉
w ∈ A iff φM,w is true

• (First attempt): Try the Tableau method, which
involves:

nk columns and dnk
rows

A nave φM,w is of length nk × dnk
, which is

exponential – × Too long!
Notice that such φM,w does not use ∃, ∀ quantifiers
– room for improvement. (Fig. from M. Sipser’s class notes)

(NTU EE) Time Complexity Spring 2024 51 / 89

TQBF is PSPACE-Complete

• (Second attempt): Given configurations ci and cj, construct φci,cj,t

certifying ci
t→ cj recursively.

φci,cj,t = ∃cmid[

(1)︷ ︸︸ ︷
φci,cmid,

t
2
∧

(2)︷ ︸︸ ︷
φcmid,cj,

t
2
]

1 ∃cmid1 [φci,cmid1
, t

4
∧ φcmid1

,cmid,
t
4
]

2 ∃cmid2 [φcmid,cmid2 ,
t
4
∧ φcmid2 ,cj,

t
4
]

3 ...
4 φ...,1 is expressed using a 2× 3 window, like in Cook-Levin’s proof.
• Unfortunately, φcstart,caccept,dnk is exponential in |w|, as each recursion
doubles the size – × Too long!
• For improvement, notice that the above φ does not use ∀ quantifiers.

(NTU EE) Time Complexity Spring 2024 52 / 89

TQBF is PSPACE-Complete

Proof (cont’d).
(3rd Attempt) For t > 1, let φci,cj,t =

∃cmid∀cg∀ch

((cg = ci ∧ ch = cmid) ∨ (cg = cmid ∧ ch = cj)) =⇒
(1)︷ ︸︸ ︷

φcg,ch,
t
2


1 (1): φcg,ch,

t
2

=

∃cm1∀cg1∀ch1

[
((cg1 = cg ∧ ch1 = cm1) ∨ (cg1 = cm1 ∧ ch1 = ch))

=⇒ φcg1 ,ch1
, t

4

2 ...
3 φ...,1 is expressed using a 2× 3 window, like in Cook-Levin’s proof.

Each level increases the size of φci,cj,t byO(nk). Hence
|φcstart,caccept,2dnk | ∈ O(n2k).

(NTU EE) Time Complexity Spring 2024 53 / 89

TQBF is PSPACE-Complete

The 3rd (correct) attempt uses formula of the form

of alternations=O(nk)︷ ︸︸ ︷
∃...∀...∃...∀... ψ,

where ψ is an unquantified Boolean formula which can be
checked in polynomial time.
Quantifiers allow us to ”reuse” subformulas, to make
|φcstart,caccept,2dnk | short, i.e., ∈ O(n2k)!

Recall that an NP language L can be expressed as x ∈ L⇔
∃cR(x, c), where R() is a polynomial time predicate and c is the
certificate.

How about

of alt=O(k)︷ ︸︸ ︷
∃...∀...∃...∀... ψ?

I The k-level of the polynomial-time hierarchy.

(NTU EE) Time Complexity Spring 2024 54 / 89

TM’s with Sublinear Space

0 01 1 0110

control
b ba a a

read-only

read-write

Figure: Schematics for TM’s using Sublinear Space

For sublinear space, we consider TM’s with two tapes.
I a read-only input tape containing the input string; and
I a read-write work tape.

The input head cannot move outside the portion of the tape
containing the input.
The cells scanned on the work tape contribute to the space
complexity.

(NTU EE) Time Complexity Spring 2024 55 / 89

Space Complexity Classes L and NL

Definition 35
L (= SPACE(log n)) is the class of languages decidable by a TM in
logarithmic space.
NL (= NSPACE(log n)) is the class of languages decidable by an NTM
in logarithmic space.

Example 36

A = {0k1k : k ≥ 0} ∈ L.

Proof.
Consider
M = “On input w:

1 Check if w is of the form 0∗1∗. If not, reject.
2 Count the number of 0’s and 1’s on the work tape.
3 If they are equal, accept; otherwise, reject.”

(NTU EE) Time Complexity Spring 2024 56 / 89

PATH is in NL

Example 37
Recall PATH = {〈G, s, t〉 : G is a directed graph with a path from s to t}.
Show PATH ∈ NL.

Proof.
Consider
N = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Repeat m times (m is the number of nodes in G)
1 Nondeterministically select the next node for the path. If the next

node is t, accept.
2 Reject.

N only needs to store the current node on the work tape. Hence N runs
in space O(lg n).

We do not know if PATH ∈ L.
(NTU EE) Time Complexity Spring 2024 57 / 89

Configurations of TM’s with Sublinear Space

Definition 38
Let M be a TM with a separate read-only input tape and w an input
string. A configuration of M on w consists of a state, the contents of
work tape, and locations of the two tape heads.

Note that the input w is no longer a part of the configuration.
If M runs in space f (n) and |w| = n, the number of configurations
of M on w is at most |Q| × n× f (n)× |Γ|f (n) = n2O(f (n)).

Note that when f (n) ≥ lg n, n2O(f (n)) = 2O(f (n)).

(NTU EE) Time Complexity Spring 2024 58 / 89

Savitch’s Theorem Revisited

Recall that we assume f (n) ≥ n in the theorem.
We can in fact relax the assumption to f (n) ≥ lg n.
The proof is identical except that we are simulating an NTM N
with a read-only input tape.
When f (n) ≥ lg n, the depth of recursion is lg(n2O(f (n))) =

lg n + O(f (n)) = O(f (n)). At each level, lg(n2O(f (n))) = O(f (n))
space is needed.
Hence NSPACE(f (n)) ⊆ SPACE(f 2(n)) when f (n) ≥ lg n.

(NTU EE) Time Complexity Spring 2024 59 / 89

Log Space Reducibility

Definition 39
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read-write work tape. The work tape
may contain O(lg n) symbols.

(Fig. from M. Sipser’s class notes)

(NTU EE) Time Complexity Spring 2024 60 / 89

Log Space Reducibility

Definition 40
f : Σ∗ → Σ∗ is a log space computable function if there is a log space
transducer that halts with f (w) in its work tape on every input w.

Definition 41
A language A is log space reducible to a language B (written A ≤L B) if
there is a log space computable function f such that w ∈ A if and only
if f (w) ∈ B for every w.

(NTU EE) Time Complexity Spring 2024 61 / 89

Properties about Log Space Reducibility

Theorem 42
If A ≤L B and B ∈ L, A ∈ L.

(First attempt)

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2024 62 / 89

Properties about Log Space Reducibility

Theorem 42
If A ≤L B and B ∈ L, A ∈ L.

(First attempt)

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2024 62 / 89

Properties about Log Space Reducibility

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

(NTU EE) Time Complexity Spring 2024 63 / 89

Properties about Log Space Reducibility

We know that polynomial-time reductions are transitive:
If A ≤p B and B ≤p C, then A ≤p C
We also crucially used the following similar property:
If A ≤p B and B ∈ P, then A ∈ P
If A ≤p B and B ∈ NP, then A ∈ NP
Do we have similar results under ≤L?
Difficulty:

Total space used O(log |x|+ log |x|c) = O(log |x|). Problem?
We have to store intermediate result f (x) of size |x|c.

(NTU EE) Time Complexity Spring 2024 64 / 89

Transitivity of ≤L

Goal: To compute the string g(f (x)), given x
Imagine that we have computed f (x), and its on Tape 1
The tape-head for Tape 1 is at the start position.
Now, given this imaginary input string, start computing g(f (x))
on Tape 2, just like before
We know that the work tape Tape 2 needs log |f (x)| space
At each step:

I Read one bit of f (x) from Tape 1 from tape-head position
I Read one bit of work-tape from tape-head position
I Move Tape 1, Tape 2 heads by transition function
I Write one bit on Tape 2, maybe write one bit on Output tape

Read one bit of f (x) from Tape 1 from tape-head position
I Don’t have f (x) lying around on the imaginary Tape 1
I Instead, store position of Tape 1 head: O(log |f (x)|) space
I Need to read f (x)i: compute using log |x| space
I Increment or decrement the pointer for Tape 1 head

(NTU EE) Time Complexity Spring 2024 65 / 89

Transitivity of ≤L

(NTU EE) Time Complexity Spring 2024 66 / 89

NL-Completeness

Definition 43
A language B is NL-complete if

B ∈ NL; and
A ≤L B for every A ∈ NL.

Note that we require A ≤L B instead of A ≤P B.
We will show NL ⊆ P (Corollary 46).
Hence every two problems in NL (except ∅ and Σ∗) are
polynomial time reducible to each other (why?).

Corollary 44
If any NL-complete language is in L, then L = NL.

(NTU EE) Time Complexity Spring 2024 67 / 89

NL-Completeness

Theorem 45
PATH is NL-complete.

Proof.
Let an NTM M decide A in O(lg n) space. We assume M has a unique accepting
configuration. Given w, we construct 〈GM,w, s, t〉 in log space such that M accepts w if
and only if GM,w has a path from s to t. GM,w has

Nodes: all configurations of M on w,

Edges: (c1, c2) is in GM,w if c1 yields c2 in one step.

s and t are the start and accepting configurations of M on w respectively.

Clearly, M accepts w iff GM,w has a path from s to t. It remains to show that GM,w can
be computed by a log space transducer.
T = ”on input w

For all pairs (ci, cj) of configurations of M on w.

I Output those pairs which are legal moves for M.
Output cstart and caccept”

(NTU EE) Time Complexity Spring 2024 68 / 89

NL-Completeness

(Fig. from M. Sipser’s class notes)(NTU EE) Time Complexity Spring 2024 69 / 89

NL ⊆ P

Corollary 46

NL ⊆ P.

Proof.
A TM using space f (n) has at most n2O(f (n)) configurations and hence
runs in time n2O(f (n)). A log space transducer therefore runs in
polynomial time. Hence any problem in NL is polynomial time
reducible to PATH. The result follows by PATH ∈ P.

The polynomial time reduction in the proof of Theorem 34 can be
computed in log space.
Hence TQBF is PSPACE-complete with respect to log space
reducibility.

(NTU EE) Time Complexity Spring 2024 70 / 89

NL = coNL

Theorem 47 (Immerman - Szelepcsényi)
NL = coNL.

Proof.
(Idea) Give an NTM M deciding PATH in space O(lg n). The proof is nontrivial,
involving some sort of a counting argument. If interested, check literature.

(NTU EE) Time Complexity Spring 2024 71 / 89

L,NL,P, and PSPACE

The relationship between different complexity classes now
becomes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

We will prove NL (PSPACE in the next chapter.
Hence at least on inclusion is proper.

I But we do not know which one.

(NTU EE) Time Complexity Spring 2024 72 / 89

Intractability

Recall P ⊆ NP ⊆ PSPACE = NSPACE.
Yet we have not proved any intractable problem.

I A problem is intractable if it cannot be solved in polynomial time.

In this chapter, the most difficult problem appears to be
TQBF ∈ PSPACE.

But we do not know if P ?
= PSPACE.

The time and space hierarchy theorems will show

(NTU EE) Time Complexity Spring 2024 73 / 89

Linear Speedup

Theorem 48
(Linear Speedup - Time) Suppose k-tape TM M decides language L in time
f (n). Then for any ε > 0, there exists a k-tape TM M′ that decides L in time
ε · f (n) + n + 2.

Proof Idea: Suppose M = (Q,Σ,Γ...)

(Step 1) Compress input (in n + 2 M-steps) onto fresh tape,
compressing m (m = 1

ε) symbols into one. I.e., each symbol of M′

corresponds to an m-tuple of tape symbols of M.

(NTU EE) Time Complexity Spring 2024 74 / 89

Linear Speedup (cont’d)

(Step 2) Simulate M, m steps at a time, taking 6(f (n)/m) M′-steps

1 Read (in 4 M′-steps) symbols to the left, right and the current
position and ”store” in finite state control (using
|Q× {1, ...,m}k × Γ3mk| extra states). What is {1, ...,m}k for?

2 Simulate (in 2 M′-steps) the next m steps of M (as M can only
modify the current position and one of its neighbours),

3 M′ accepts (rejects) if M accepts (rejects).

Using a similar idea, the following also hold:

Theorem 49
(Linear Speedup - Space) If L is decided in space f (n), then for any ε > 0,
there is a TM deciding L in space εf (n) + 2.

(NTU EE) Time Complexity Spring 2024 75 / 89

Recall the Diagonalization method for proving the
halting problem

Yes

No

Program T

P

x

Program T’

Copy y

Program M

M Program M Halt ?
Question:

Halt: T enters ”Yes”⇒ Not Halt
Not Halt: T enters ”No”⇒ Halt

(NTU EE) Time Complexity Spring 2024 76 / 89

Diagonalization Method for Proving the Halting
Problem

Consider the language HALTTM = {〈M, x〉 |M halts on input x}.
Suppose HALTTM is decidable via a decider D, consider the
following table:

〈M1〉 〈M2〉 〈M3〉 · · · 〈Mi〉 · · ·
M1 © × × · · · · · · · · ·
M2 × © © · · · · · · · · ·
M3 × × × · · · · · · · · ·
· ·
Mi × × × · · · ? · · ·
· ·

Consider language L = {〈M〉 | D rejects 〈M, 〈M〉〉}, i.e., calling D
on 〈M, 〈M〉〉, if D accepts, 〈M〉 6∈ L; if D rejects, 〈M〉 ∈ L.
L can clearly be accepted by a TM, say M′.
Suppose M′ = Mi. What is the value of entry ”(Mi, 〈Mi〉)”?
Contradiction!

(NTU EE) Time Complexity Spring 2024 77 / 89

Space Hierarchy Theorem

Theorem 50
For any space constructible function f : N→ N, there is a language A
decidable in O(f (n)) space but not in o(f (n)) space. In other words,
SPACE(o(f (n)) (SPACE(f (n)).

(Proof Idea)
The attempt is to use an approach similar to the halting problem
proof via diagonalization.
We design a TM D that can simulate an arbitrary TM M on input
w (|w| = n) for up to 2f (n) steps of M,

I if the simulation takes more than 2f (n) steps, D rejects,
I if M halts and accepts, D rejects,
I if M halts and rejects, D accepts.

Note: D needs a memory of length f (n) (serving as a binary
counter) to count up to 2f (n) steps of M.

(NTU EE) Time Complexity Spring 2024 78 / 89

Space Hierarchy Theorem

Consider the language

L = {〈M〉 |M rejects 〈M〉 using f (n) space},

i.e., taking the complement of the diagonal elements.
Clearly L ∈ SPACE(f (n)) using D.
Our goal is to show that L cannot be accepted by a TM using
o(f (n)) space. Suppose otherwise M’ accepts L using o(f (n)) space.
Just like the halting problem proof, a contradiction relies on the
presence of (M′, 〈M′〉) entry in the table. meaning that D can
simulates M′ on 〈M′〉 till completion.

I On the surface, it seems okay as o(f (n)) < f (n) = O(f (n))

Does the above argument really work?
I It is possible that d× g(m) > f (m) even if g(n) = o(f (n)), for some m

(e.g., 105n > n2 for n = 100). If this is the case, D does not have
enough space to simulate M′ until halt.

(NTU EE) Time Complexity Spring 2024 79 / 89

Space Hierarchy Theorem

To overcome the above difficulty, let L = {〈M〉10∗ |M rejects
〈M〉10∗ using ≤ f (n) space }.
By padding the input with 10∗, D simulates any M on an infinite
number of inputs 〈M〉1, 〈M〉10, 〈M〉100, ..., 〈M〉10m, ...

I Eventually there must be a 〈M〉10m so that
d× g(|〈M〉10m|) < f (|〈M〉10m|), meaning that D has enough space to
complete the simulation.

(NTU EE) Time Complexity Spring 2024 80 / 89

Space Hierarchy Theorem

Theorem 51
For any space constructible function f : N→ N, there is a language A
decidable in O(f (n)) space but not in o(f (n)) space. In other words,
SPACE(o(f (n)) (SPACE(f (n)).

Proof.
Consider language L = {〈M〉10∗ |M rejects 〈M〉10∗ using ≤ f (n)
space }.
Consider D = “On input w:

1 Compute f (|w|) by space constructibility and mark off this much
tape. If D ever attempts to use more space, reject.

2 If w is not of the form 〈M〉10∗ for some TM M, reject.

3 Simulate M on w. If the simulation takes more than 2f (n) M-steps,
reject.

4 If M accepts, reject; if M rejects, accept.”
(NTU EE) Time Complexity Spring 2024 81 / 89

Space Hierarchy Theorem

What is a space constructible function?
I Function f : N→ N with f (n) at least O(lg n) is called space

constructible if the function that maps 1n to the binary
representation of f (n) is computable in space O(f (n)). Equivalently,
there is a TM that can mark off f (n) cells when given an input of
length n.

Proof (cont’d).
In Step 3, D simulates M in D’s tape alphabet. The simulation hence introduces a
constant factor of overhead (independent of |w|). That is, if M runs in g(n) space, D
runs in dg(n) space for some constant d. Clearly, D is an O(f (n)) space TM. For
example, if the alphabet of M is {0, ..., 9} and that of D is {0, 1}, it takes 4 bits doe D to
store a symbol of Σ, resulting in 4× g(n) memory cells needed for D to simulate M’s
tape. We next argue that L cannot be decided in o(f (n)).

(NTU EE) Time Complexity Spring 2024 82 / 89

Space Hierarchy Theorem

Proof (cont’d).
Suppose a TM M′ decides L in space g(n) for some g(n) ∈ o(f (n)). Since g(n) ∈ o(f (n)),
there is an n0 that dg(n) < f (n) for every n ≥ n0. Consider 〈M′〉10n0 . Since
dg(n0) < f (n0), D’s simulation on M′ has enough space and runs until M′ halts, or tries
to use more than f (n) space of 2f(n) steps. In the latter case, D rejects. M′ accepts
〈M′〉10n0 if and only if M′ rejects 〈M′〉10n0 , as L(D) = L.

Why do we need to ”pad” 〈M〉with 10∗?
I Suppose we let L = {〈M〉 |M rejects 〈M〉 using ≤ f (n) space }. It

is possible that d× g(m) > f (m) even if g(n) = o(f (n)), for some m
(e.g., 105n > n2 for n = 100). If this is the case, D does not accept
〈M′〉 as D does not have enough space to simulate M′ until halt.

I By padding the input with 10∗, D simulates any M on an infinite
number of inputs 〈M〉1, 〈M〉10, 〈M〉100, ..., 〈M〉10m, ...

(NTU EE) Time Complexity Spring 2024 83 / 89

Space Hierarchy Theorem

Corollary 52
Let f1, f2 : N→ N with f1(n) ∈ o(f2(n)) and f2 space constructible.
SPACE(f1(n)) (SPACE(f2(n)).

We can show nc is space constructible for any c ∈≥0.
Observe that for any ε1, ε2 ∈ R≥0 with ε1 < ε2, there are c1, c2 ∈≥0

that 0 ≤ ε1 < c1 < c2 < ε2. Therefore

Corollary 53
For any ε1, ε2 ∈ R with 0 ≤ ε1 < ε2, SPACE(nε1) (SPACE(nε2).

(NTU EE) Time Complexity Spring 2024 84 / 89

More Applications of Space Hierarchy Theorem

Corollary 54
NL (PSPACE.

Proof.
By Savitch’s theorem, NL ⊆ SPACE(lg2 n). By space hierarchy theorem,
SPACE(lg2 n) (SPACE(n).

Recall that TQBF is PSPACE-complete. Hence TQBF 6∈ NL.

Corollary 55

PSPACE (EXPSPACE = ∪kSPACE(2nk
).

So far, we know

NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

(NTU EE) Time Complexity Spring 2024 85 / 89

Time Constructibility

Definition 56
t : N→ N with t(n) at least O(n lg n) is called time constructible if the
function that maps 1n to the binary representation of t(n) is
computable in time O(t(n)).

That is, t(n) is time constructible if there is an O(t(n)) time TM that
always halts with the binary representation of t(n) on input 1n.

Theorem 57
For any time constructible function t : N→ N, there is a language A
decidable in O(t(n)) time but not in o(t(n)

lgt(n)) time. In other words,

TIME(o(t(n)
lgt(n))) (TIME(t(n)).

(NTU EE) Time Complexity Spring 2024 86 / 89

Time Hierarchy Theorem

Proof.
Consider D = “On input w:

1 Compute t(|w|) by time constructibility and store dt(n)/ lg t(n)e in a binary
counter. If this counter ever reaches 0, reject.

2 If w is not of the form 〈M〉10∗ for some TM M, reject.

3 Simulate M on w for t(n)
lgt(n) steps (by decrementing the binary counter).

I if M accepts, reject;
I if M rejects; accept.”

Why do we lose a factor of lg t(n)?
I D can simulate M with a log factor time overhead due to the step

counter.

(NTU EE) Time Complexity Spring 2024 87 / 89

Applications of Time Hierarchy Theorem

Corollary 58
For t1, t2 : N→ N with t1(n) ∈ o(t2(n)/ lg t2(n)) and t2 time constructible.
TIME(t1(n)) (TIME(t2(n)).

Corollary 59
For any ε1, ε2 ∈ R with 0 ≤ ε1 < ε2, TIME(nε1) (TIME(nε2).

Corollary 60

P (EXPTIME = ∪kTIME(2nk
).

(NTU EE) Time Complexity Spring 2024 88 / 89

A Provable ”Natural” Intractable Problem

A problem (language) is intractable if it cannot be solved in
polynomial time. So, are those NP-complete problems ”truly”
intractable? (Notice that P (NP remains open.)
As P (EXPTIME ⊆ EXPSPACE, complete problems for
EXPTIME and EXPSPACE are regarded as ”truly” intractable.
Are there ”natural” complete problems for EXPTIME and
EXPSPACE? (Being ”natural” by NOT containing a TM encoding.)
Equivalence of regular languages:

I {〈M1,M2〉 | M1,M2 are DFA, and L(M1) = L(M2)} ∈ P
I {〈M1,M2〉 | M1,M2 are NFA, and L(M1) = L(M2)} –

PSPACE-complete
I How about { 〈R1,R2〉 | R1,R2 are regular expressions, and

L(R1) = L(R2) } ? – EXPSPACE-complete

The above suggests that regular expressions are more succinct
(compact) than DFA/NFA for representing regular languages.

(NTU EE) Time Complexity Spring 2024 89 / 89

	Hierarchy Theorems

