Introduction to Complexity Theory/ Time and Space Complexity

(N)		

- Let us consider $A = \{a^n b^n : n \ge 0\}.$
- How much time does a single-tape TM need to decide *A*?
- Consider
 - M_1 = "On input string *w*:
 - Scan the tape and reject if an *a* appears after a *b*.
 - 2 Repeat if *a* or *b* appear on the tape:

• Scan across the tape, cross an *a* and a *b*.

- If a's or b's still remain, reject. Otherwise, accept."
- How much "time" does *M*₁ need for an input *w*?

Definition 1

Let *M* be a TM that halts on all inputs. The <u>running time</u> (or <u>time</u> <u>complexity</u>) of *M* is the function $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the running time of *M* on any input of length *n*.

- If *f*(*n*) is the running time of *M*, we say *M* runs in time *f*(*n*) and *M* is an *f*(*n*) time TM.
- In <u>worst-case analysis</u>, the longest running time of all inputs of a particular length is considered.
- In <u>average-case analysis</u>, the average of all running time of inputs of a particular length is considered instead.
- We only consider worst-case analysis in the course.

イロト イ理ト イヨト イヨト

Big-O and Small-O

Definition 2

Let $f, g : \mathbb{N} \to \mathbb{R}^+$. $\underline{f(n) = O(g(n))}$ if there are $c, n_0 \in \mathbb{Z}^+$ such that for all $n \ge n_0$,

 $f(n) \le c(g(n)).$

- g(n) is an <u>upper bound</u> (or an <u>asymptotic upper bound</u>) for f(n).
 n^c(c ∈ ℝ⁺) is a <u>polynomial bound</u>.
- $2^{n^d}(d \in \mathbb{R}^+)$ is an <u>exponential bound</u>.

Definition 3

Let $f, g : \mathbb{N} \to \mathbb{R}^+$. <u>f (n) = o (g (n))</u> if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

That is, for any $c \in \mathbb{R}$, there is an n_0 that f(n) < c(g) for all $n \ge n_0$.

(NTU EE)

Time Complexity of *M*₁

- Recall $M_1 = "On input string w:$
 - Scan the tape and reject if an *a* appears after a *b*.
 - 2 Repeat if *a* or *b* appear on the tape:

Scan across the tape, cross an *a* and a *b*.

- If a's or b's still remain, reject. Otherwise, accept."
- Let |w| = n.
 - Step 1 takes O(n) (precisely, $\leq n$).
 - Step 2 has O(n) iterations (precisely, $\leq n/2$).
 - ★ An iteration takes O(n) (precisely, $\leq n$).
 - Step 3 takes O(n) (precisely, $\leq n$).
- The TM M_1 decides $A = \{a^n b^n : n \ge 0\}$ in time $O(n^2)$.
 - $\blacktriangleright O(n^2) = O(n) + O(n) \times O(n) + O(n).$

Definition 4

Let $t : \mathbb{N} \to \mathbb{R}^+$. The <u>time complexity class TIME(t(n))</u> is the collection of all languages that are decided by a 1-tape O(t(n)) time deterministic TM.

- $A = \{a^n b^n : n \ge 0\}$ is decided by M_1 in time $O(n^2)$. $A \in TIME(n^2)$.
- Time complexity classes characterizes languages, not TM's.
 - We don't say $M_1 \in TIME(n^2)$.
- A language may be decided by several TM's.
- Can A be decided more quickly asymptotically?

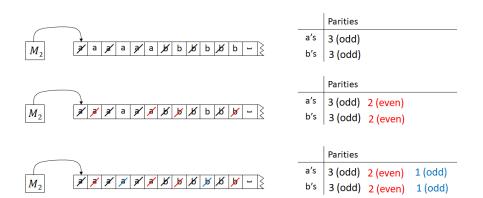
Deciding $\{a^nb^n : n \ge 0\}$ Faster

- Consider the following TM: *M*₂ = "On input string *w*:
 - Scan the tape and reject if an *a* appears after a *b*.
 - 2 Repeat if *a* or *b* appear on the tape:
 - Scan the tape, cross every other *a* and *b* Reject if even/odd parities disagree
 - Accept if all crossed off.
- Analysis of M_2 .
 - Step 1 takes O(n).
 - Step 2 has O(log n)(= log₂(n)) iterations (why?). Each iteration takes O(n).
 - ▶ Step 3 takes *O*(*n*).
- M_2 decides A in time $O(n \log n)$.

It can be shown (not trivial) that

Theorem 5

A 1-tape TM cannot decide A by using fewer than $n \log n$ steps.

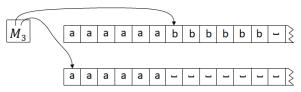


> < 프 > < 프 >

< D > < 🗗

Deciding $\{a^n b^n : n \ge 0\}$ Using a Two-tape TM

- Consider the following two-tape TM: $M_3 =$ "On input string *w*:
 - $w_3 = On mput string w:$
 - Scan tape 1 and reject if an *a* appears after a *b*.
 - Scan tape 1 and copy the *a*'s onto tape 2.
 - Scan tape 1 and cross an a on tape 2 for a b on tape 1.
 - If all *a*'s are crossed off before reading all *b*'s, reject. If some *a*'s are left after reading all *b*'s, reject. Otherwise, accept."
- Analysis of *M*₃.
 - ► Each step takes *O*(*n*).



- **Computability theory**: model independence All reasonable variants of TM's decide the same language (Church-Turing thesis). Therefore model choice doesn't matter.
- **Complexity theory**: model dependence Different variants of TM's may decide the same in different time.
 - For the same language $A = \{a^n b^n : n \ge 0\}$.
 - ***** TM M_1 decides A in time $O(n^2)$,
 - ***** TM M_2 decides A in time $O(n \log n)$,
 - ***** Two-tape M_3 decides A in time O(n).

Complexity Relationship with Multitape TM's

Theorem 6

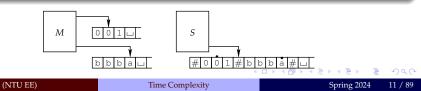
Let t(n) *be a function with* $t(n) \ge n$ *. Every* t(n) *time multitape Turing machine has an equivalent* $O(t^2(n))$ *time single-tape TM.*

Proof.

We analyze the simulation of a *k*-tape TM *M* is by the TM *S*. Observe that each tape of *M* has length at most t(n) (why?). For each step of *M*, *S* has two passes:

- The first pass gathers information (*O*(*kt*(*n*))).
- The second pass updates information with at most k shifts $(O(k^2t(n)))$.

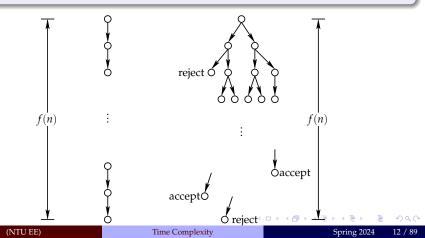
Hence *S* takes $O(n) + O(k^2t^2(n)) (= O(n) + O(t(n)) \times O(k^2t(n)))$. Since $t(n) \ge n$, we have *S* runs in time $O(t^2(n))$ (*k* is independent of the input).



Time Complexity of Nondterministic TM's

Definition 7

Let *N* be a nondeterministic TM that is a decider. The <u>running time</u> of *N* is a function $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of steps among any branch of *N*'s computation on input of length *n*.



Complexity Relationship with NTM's

Theorem 8

Let t(n) be a function with $t(n) \ge n$. Every t(n) time single-tape NTM has an equivalent $2^{O(t(n))}$ time single-tape TM.

Proof.

Let *N* be an NTM running in time t(n). Recall the simulation of *N* by a 3-tape TM *D* with the address tape alphabet $\Sigma_b = \{1, 2, ..., b\}$ (*b* is the maximal number of choices allowed in *N*).

Since *N* runs in time t(n), the computation tree of *N* has $O(b^{t(n)})$ nodes. For each node, *D* simulates it from the start configuration and thus takes time O(t(n)). Hence the simulation of *N* on the 3-tape *D* takes $2^{O(t(n))}(=O(t(n)) \times O(b^{t(n)}))$ time.

By Theorem 6, *D* can be simulated by a single-tape TM in time $(2^{O(t(n))})^2 = 2^{O(t(n))}$.

< ロト < 同

▶ < Ξ >

The Class P

- It turns out that reasonable deterministic variants of TM's can be simulated by a TM with a polynomial time overhead.
 - multitape TM's, TM's with random access memory, etc.
- The polynomial time complexity class is rather robust.
 - ► That is, it remains the same with different computational models.

Definition 9

P is the class of languages decidable in polynomial time on a determinsitic single-tape TM. That is,

$$P = \bigcup_k TIME(n^k).$$

- We are interested in intrinsic characters of computation and hence ignore the difference among variants of TM's in this course.
- Solving a problem in time O(n) and $O(n^{100})$ certainly makes lots of difference in practice.

(NTU EE)

The Nondeterministic Time Complexity Class

Definition 10 NTIME (t (n)) = { L : L is a language decided by a O (t (n)) time NTM }.

Definition 11

$$NP = \bigcup_k NTIME(n^k).$$

• Recall that class *TIME*(*t*(*n*)) and

$$P = \bigcup_k TIME(n^k).$$

(NTU EE)

Another View of the Class NP

Definition 12

A <u>verifier</u> for a language *A* is an algorithm *V* where

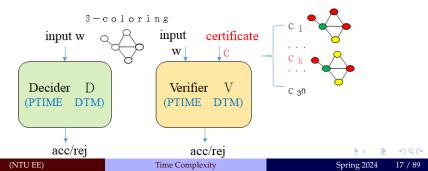
 $A = \{w : V \text{ accepts } \langle w, c \rangle \text{ for some } c\}.$

c is a certificate or proof of membership in *A*. A polynomial time verifier runs in polynomial time in |w| (not $\langle w, c \rangle$). A language *A* is polynomially verifiable if it has a polynomial time verifier.

- Note that a certificate has a length polynomial in |w|.
 - Otherwise, *V* cannot run in polynomial time in |w|.
- Compare the verifier version of NP with the following: Language C is Turing-recognizable ⇔ there is a decidable language D such that C = {x | ∃y, ⟨x, y⟩ ∈ D, x, y ∈ Σ*}
 - ▶ Recognizable lang. \leftrightarrow *NP*; Decidable lang. \leftrightarrow *P*
 - ► $x \in C$ if $\exists y, \langle x, y \rangle \in D \iff$ $w \in A$ if $\exists c, \langle w, c \rangle$ accepted by Ptime DTM *V*.

Decider vs. Verifier

- **3-colorability problem:** Decide whether vertices of a graph *G* can be 3-colored with adjacent vertices colored differently.
- There are 3^{*n*} possible colorings for a graph with *n* vertices. Checking all of them by a decider requires exponential time.
- *G* is 3-colorable $\Leftrightarrow \exists$ a valid 3-color assignment, which serves as a proof.
- Verifier *V*'s work is to, given a certificate, checking whether it is indeed a "proof".



Theorem 13

A language is in NP if and only if has a polynomial time verifier.

Proof.

Let *V* be a verifier for a language *A* running in time n^k . Consider N = "On input *w* of length *n*:

- Nondeterministically select string *c* of length $\leq n^k$.
- **2** Run *V* on $\langle w, c \rangle$.
- If *V* accepts, accept; otherwise, reject."

Conversely, let the NTM *N* decide *A* and *c* the address of an accepting configuration in the computation tree of *N*. Consider

$$V =$$
 "On input $\langle w, c \rangle$:

- Simulate *N* on *w* from the start configuration by *c*.
 - If the configuration with address *c* is accepting, accept; otherwise, reject."

(N)	EE)

NP and Ptime Verifiers

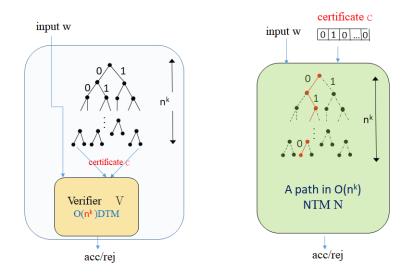


Figure: (Left) Verifier $V \Rightarrow \text{NTM } N$. (Right) NTM $N \Rightarrow \text{Verifier } V$.

(NTU EE)

Spring 2024 19 / 89

Hamiltonian Paths

• A <u>Hamiltonian path</u> in a directed graph *G* is a path that goes through every node exactly once.

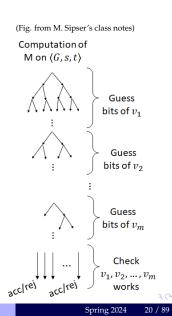
Theorem 14

 $HAMPATH \in NP.$

Proof.

"On input $\langle G, s, t \rangle$ (assume *G* has *m* nodes)

- Nondeterministically write a sequence v₁, v₂, ..., v_m of *m* nodes.
- Accept if $v_1 = s$, $v_m = t$, each (v_i, v_{i+1}) is an edge and no v_i repeats.
- Reject if any condition fails"



Definition 15

 $coNP = \{L : \overline{L} \in NP\}.$

- $\overline{HAMPATH} \in coNP$ since $\overline{HAMPATH} = HAMPATH \in NP$.
 - ▶ *HAMPATH* does not appear to be polynomial time verifiable.
 - What is a certificate showing there is no Hamiltonian path?
- We do not know if *coNP* is different from *NP*.
- Recall

- ► *P* is the class of languages which membership can be decided quickly.
- ► *NP* is the class of languages which membership can be verified quickly.

 $L \in P$ implies $L \in NP$ for every language L.

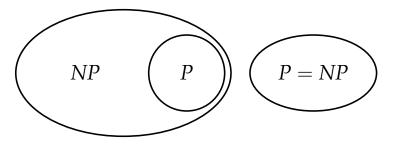


Figure: Possible Relation between P and NP

• To the best of our knowledge, we only know

$$NP \subseteq EXPTIME = \bigcup_{k} TIME(2^{n^{k}}).$$
 (Theorem 8)

• Particularly, we do no know if $P \stackrel{?}{=} NP$.

(NTU EE)

Satisfiability

- Let $\mathbb{B} = \{0, 1\}$ be the <u>truth values</u>.
- A Boolean variable takes values from B.
- Recall the Boolean operations

• A <u>Boolean formula</u> is an expression constructed from Boolean variables and opearations.

• $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$ is a Boolean formula.

- A Boolean formula is <u>satisfiable</u> if an assignments of 0's and 1's to Boolean variables makes the formula evaluate to 1.
 - ϕ is satisfiable by taking $\{x \mapsto \mathbf{0}, y \mapsto \mathbf{1}, z \mapsto \mathbf{0}\}$.

The Satisfiability Problem

- The <u>satisfiability problem</u> is to test whether a Boolean formula is satisfiable.
- Consider

 $SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiable Boolean formula} \}.$

Theorem 16 (Cook-Levin) $SAT \in P$ if and only if P = NP.



(NTU EE)

Polynomial Time Reducibility

Definition 17

 $f: \Sigma^* \to \Sigma^*$ is a <u>polynomial time computable function</u> if a polynomial time TM *M* halts with only f(w) on its tape upon any input *w*.

Definition 18

A language *A* is polynomial time mapping reducible (polynomial time reducible, or polynomial time many-one reducible) to a language *B* (written $A \leq_P B$) if there is a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ that

```
w \in A if and only if f(w) \in B for every w.
```

f is called the polynomial time reduction of *A* to *B*.

• Recall the definitions of computable functions and mapping reducibility.

(NTU EE)

Properties about Polynomial Time Reducibility

Theorem 19

If $A \leq_P B$ and $B \in P$, $A \in P$.

Proof.

Let the TM *M* decide *B* and *f* a polynomial time reduction of *A* to *B*. Consider

N = "On input *w*:

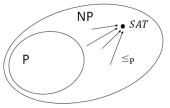
- Compute f(w).
- 2 Run M on f(w)."

Since the composition of two polynomials is again a polynomial, *N* runs in polynomial time.

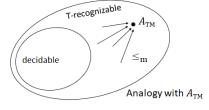
(N	т	ΓT	F	E)
 (+ •		0	-	-

Polynomial Time Reducibility

f is computable in polynomial time



Idea to show $SAT \in P \rightarrow P = NP$



(Fig. from M. Sipser's class notes)

	•	ロト・日本・日本・日本・日本	うくで
(NTU EE)	Time Complexity	Spring 2024	27 / 89

The 3SAT Problem

- A <u>literal</u> is a Boolean variable or its negation.
- A clause is a disjunction (\lor) of literals.
 - $x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4$ is a clause.
- A Boolean formula is in <u>conjunctive normal form</u> (or a CNF-formula) if it is a conjunction (∧) of clauses.
 - $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_2 \lor x_2 \lor \overline{x_5}) \land (x_4 \lor x_6)$ is a CNF-formula.
- In a satisfiable CNF-formula, each clause must contain at least one literal assigned to 1.
- A Boolean formula is a <u>3CNF-formula</u> if it is a CNF-formula whose clauses have three literals.
 - $(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor x_2 \lor \overline{x_5}) \land (x_4 \lor x_5 \lor \overline{x_6})$ is a 3CNF-formula.

Consider

 $3SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiable 3CNF-formula} \}.$

$3SAT \leq_P CLIQUE$

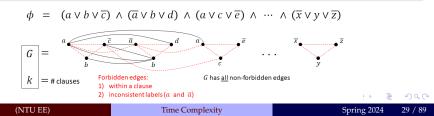
- A <u>k-clique</u> of graph *G* is a *k*-vertex complete subgraph of *G*.
- $CLIQUE = \{\langle G, k \rangle | \text{ graph } G \text{ contains a } k clique \}$

Theorem 20

 $3SAT \leq_P CLIQUE.$

Proof.

Given a 3CNF-formula $\phi = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_k \lor b_k \lor c_k)$, find graph *G* and a number *k* s.t. $\langle \phi \rangle \in 3SAT$ iff $\langle G, k \rangle \in CLIQUE$. E.g.,



$3SAT \leq_P CLIQUE$

Proof.

We need gadgets to simulate Boolean variables and clauses in ϕ .

- For each clause a_i ∨ b_i ∨ c_i, add three corresponding nodes to G.
 G has 3k nodes.
- For each pair of nodes in *G*, add an edge except when
 - the pair of nodes correspond to literals in a clause.
 - the pair of nodes correspond to complementary literals (such as a and \bar{a})

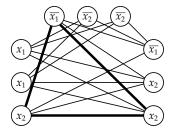
Claim: ϕ is satisfiable if and only if *G* has a *k*-clique.

- (⇒) Take any satisfying assignment to φ. Pick 1 true literal in each clause. The corresponding nodes in G are a *k*-clique because they don't have forbidden edges.
- (⇐) Take any *k*-clique in *G*. It must have 1 node in each clause. Set each corresponding literal True. That gives a satisfying assignment to φ.

< ロト < 同

▶ < Ξ >

$3SAT \leq_P CLIQUE$



 $(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

イロト イポト イヨト イヨト

NP-Completeness

Definition 21

A language *B* is <u>NP-complete</u> if

- *B* is in *NP*; and
- every *A* in *NP* is polynomial time reducible to *B*.

Theorem 22

If B is NP-complete and $B \in P$ *, then* P = NP*.*

Theorem 23

If $C \in NP$, *B is NP-complete*, *and* $B \leq_P C$, *then C is NP-complete*.

Proof.

Since *B* is *NP*-complete, there is a polynomial time reduction *f* of *A* to *B* for any $A \in NP$. Since $B \leq_P C$, there is a polynomial time reduction *g* of *B* to *C*. $g \circ f$ is a polynomial time reduction of *A* to *C*.

(NTU EE)

Cook-Levin Theorem

Theorem 24

SAT is NP-complete.

Proof.

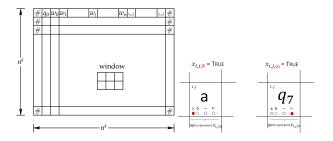
(**In NP**) For any Boolean formula ϕ , an NTM nondeterministically choose a truth assignment. It checks whether the assignment satisfies ϕ . If so, accept; otherwise, reject. Hence $SAT \in NP$.

(NP-hard) To show *SAT* to be NP-hard, we need to show $\forall A \in NP, A \leq_p SAT$.

- **Question:** as there are infinitely many languages *A* in *NP*, how to check *A* ∈ *NP*?
- Answer: each such language A is parameterized by an NTM N and a time bound n^k. I.e., for input w, N operates in |w|^k time, and L(N) = A.
- We establish a polynomial-time reduction $f : A \rightarrow SAT$ such that

 $f: \Sigma^* \to \text{formulas}$ $f(w) = \langle \phi_{N,w} \rangle$ $w \in A \text{ iff } \phi_{N,w} \text{ is satisfiable.}$

Cook-Levin Theorem



Proof (cont'd).

Let $A \in NP$ and the NTM N decide A in n^k time. For any input w, a <u>tableau</u> for N on w is an $n^k \times n^k$ table whose rows are the configurations along a branch of the computation of N on w. A tableau of size $n^k \times n^k$ has $n^k \times n^k$ cells. We assume each configuration starts and ends with a # symbol. A tableau is <u>accepting</u> if any of its rows is an accepting configuration.

Each accepting tableau for *N* on *w* corresponds to an accepting computation of *N* on *w*. We therefore construct a Boolean formula ϕ such that ϕ is satisfiable if and only if there is an accepting tableau for *N* on *w*.

Proof (cont'd).

Let $C = Q \cup \Gamma \cup \{\#\}$ where Q and Γ are the states and the tape alphabet of N.

- The variables for $\phi_{N,w}$ are $x_{i,j,s}$, for $1 \le i,j \le n^k$ and $s \in C$.
- The Boolean variable denotes the content of the cell *cell*[*i*, *j*]. That is, *x*_{*i*,*j*,*s*} is 1 if and only if *cell*[*i*, *j*] = *s*.
- A satisfiable truth assignment to φ_{N,w} captures a accepting computation of N on w.

$$\phi_{N,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$$

To force each cell to contain exactly one symbol from C, consider

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i, j, s} \right) \land \left(\bigwedge_{s, t \in C, s \ne t} (\overline{x_{i, j, s}} \lor \overline{x_{i, j, t}}) \right) \right]$$

.

Proof (cont'd).

To force the tableau to begin with the start configuration, consider

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\square} \wedge \dots \wedge x_{1,n^{k}-1,\square} \wedge x_{1,n^{k},\#}.$$

To force an accepting configuration to appear in the tableau, consider

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_{\text{accept}}}.$$

To force the configuration at row *i* yields the configuration at row *i* + 1, consider a window of 2 × 3 cells. For example, assume $\delta(q_1, a) = \{(q_1, b, R)\}$ and $\overline{\delta(q_1, b)} = \{(q_2, c, L), (q_2, a, R)\}$. The following windows are valid:

Proof.

Since *C* is finite, there are only a finite number of valid windows. For any window *W* $\frac{c_1}{c_4}$ $\frac{c_2}{c_5}$ $\frac{c_3}{c_6}$, consider

 $\psi_{W} = x_{i,j-1,c_{1}} \land x_{i,j,c_{2}} \land x_{i,j+1,c_{3}} \land x_{i+1,j-1,c_{4}} \land x_{i+1,j,c_{5}} \land x_{i+1,j+1,c_{6}}$

To force every window in the tableau to be valid, consider

$$\phi_{\text{move}} = \bigwedge_{1 \le i \le n^k, 1 \le j < n^k} \left(\bigvee_{\text{W is a valid}} \psi_{\text{W}} \right).$$

Finally, consider the following Boolean formula:

 $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}.$

 $|\phi_{\text{cell}}| = O(n^{2k}), |\phi_{\text{start}}| = O(n^k), |\phi_{\text{accept}}| = O(n^{2k}), \text{ and } |\phi_{\text{move}}| = O(n^{2k}).$ Hence $|\phi| = O(n^{2k})$. Moreover, ϕ can be constructed from N in time polynomial in n.

-(N)	ΠU	EE)
(+ •	10	·,

3SAT is NP-Complete

1

Corollary 25

3SAT is NP-complete.

Proof.

We convert the Boolean formula ϕ in the proof of Theorem 24 into a 3CNF-formula. We begin by converting ϕ into a CNF-formula.

Observe that the conjunction of CNF-formulae is again a CNF-formula. Note that ϕ_{cell} , ϕ_{start} , and ϕ_{accept} are already in CNF (why?). ϕ_{move} is of the following form:

$$\bigwedge_{\leq i \leq n^k, 1 \leq j < n^k} \left(\bigvee_{\text{W is valid}} (l_1 \land l_2 \land l_3 \land l_4 \land l_5 \land l_6) \right)$$

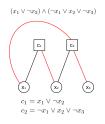
By the law of distribution, ϕ_{move} can be converted into a CNF-formula. Note that the conversion may increase the size of ϕ_{move} . Yet the size is independent of |w|. Hence the size of the CNF-formula ϕ still polynomial in |w|. To a clause of *k* literals into clauses of 3 literals, consider $l_1 \mapsto (l_1 \vee l_1 \vee l_1)$, $l_1 \vee l_2 \mapsto (l_1 \vee l_2 \vee l_2)$, and $l_1 \vee l_2 \vee \cdots \wedge l_p \mapsto (l_1 \vee l_2 \vee z_1) \wedge (\overline{z_1} \vee l_3 \vee z_2) \wedge \cdots \wedge (\overline{z_{p-3}} \vee l_{p-1} \vee l_p)$.

Variants of SAT

• A Boolean formula is in disjunctive normal form (or a DNF-formula) if it is a disjunction (∨) of clauses.

 $(x_1 \wedge \overline{x_2} \wedge \overline{x_3} \wedge x_4) \lor (x_2 \wedge x_2 \wedge \overline{x_5}) \lor (x_4 \wedge x_6)$ is a DNF-formula.

- Consider DNF- $SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiable DNF-formula} \}.$
 - Is is well known that any CNF formula *φ* can be converted into an equivalent DNF formula *φ'*, and vice versa.
 - ► So ..., is DNF-SAT NP-complete? If not, why?
- Planar-SAT: Planar-SAT =
 - $\{\langle \phi \rangle : \phi, \text{ whose induced graph is planar, is satisfiable}\}.$
 - **Fact:** Planar-SAT is NP-complete.



▶ < 프 ▶ < 프 ▶</p>

- To find more *NP*-complete problems, we apply Theorem 23.
- Concretely, to show *C* is *NP*-complete, do
 - prove C is in NP; and
 - ▶ find a polynomial time reduction of an *NP*-complete problem (say, *3SAT*) to *C*.
- In Theorem 20, we have shown $3SAT \leq_P CLIQUE$. Therefore

Corollary 26 CLIQUE is NP-complete.

Definition 27

Let *M* be a TM that halts on all inputs. The <u>space complexity</u> of *M* is $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of tape cells that *M* scans on any input of length *n*.

If the space complexity of *M* is f(n), we say *M* <u>runs in space</u> f(n).

Definition 28

If *N* is an NTM wherein all branches of its computation halts on all inputs. The <u>space complexity</u> of *N* is $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of tape cells that *N* scans on any branch of its computation for any input of length *n*. If the space complexity of *N* is f(n), we say *N* runs in space f(n).

イロト イポト イヨト イヨト

Definition 29

Let $f : \mathbb{N} \to \mathbb{R}^+$. The space complexity classes, $\underline{SPACE(f(n))}$ and $\underline{NSPACE(f(n))}$, are

 $SPACE(f(n)) = \{L : L \text{ is decided by an } O(f(n)) \text{ space TM} \}$ $NSPACE(f(n)) = \{L : L \text{ is decided by an } O(f(n)) \text{ space NTM} \}$

(N	TΤ	I E	E.
(1.4	10		ш,

イロト イポト イヨト イヨト

Example 30

Give a TM that decides *SAT* in space O(n).

Proof.

Consider

 $M_1 =$ "On input $\langle \phi \rangle$ where ϕ is a Boolean formula:

- For each truth assignment to x_1, x_2, \ldots, x_m of ϕ , do
 - Evaluate ϕ on the truth assignment.
- 2 If ϕ ever eavluates to 1, accept; otherwise, reject."

 M_1 runs in space O(n) since it only needs to store the current truth assignment for *m* variables and $m \in O(n)$.

(NTU E	(E)
--------	-----

Theorem 31 (Savitch)

For $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge n$, $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Proof.

Let *N* be an NTM deciding *A* in space f(n). Assume *N* has a unique accepting configuration c_{accept} (how?). We construct a TM *M* deciding *A* in space $O(f^2(n))$. Let *w* be an input to *N*, c_1, c_2 configurations of *N* on *w*, and $t \in \mathbb{N}$. Consider *CANYIELD* = "On input c_1, c_2 , and *t* [The goal is to check $c_1 \xrightarrow{t} c_2$]:

- **1** If t = 1, test $c_1 = c_2$, or $c_1 \vdash c_2$ in *N*. If either succeeds, accept; otherwise, reject.
- 2 If t > 1, repeat for all configurations c_m that uses f(n) space
 - Recursively test $CANYIELD(c_1, c_m, \frac{t}{2}) \wedge CANYIELD(c_m, c_2, \frac{t}{2})$.

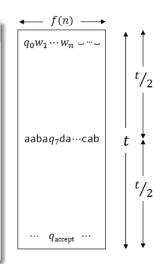
(i.e.,
$$c_1 \xrightarrow{\frac{t}{2}} c_m \wedge c_m \xrightarrow{\frac{t}{2}} c_2$$
)

2 If both accept, accept.

8 Reject."

Proof (cont'd). The number of configurations is bounded by $|Q| \times f(n) \times m^{f(n)} = 2^{df(n)}$ for some d, where $m = |\Gamma|$ and n = |w|. M ="On input w: • Run CANYIELD($c_{\text{start}}, c_{\text{accept}}, 2^{df(n)}$). (i.e., test $c_{start} \stackrel{2^{df(n)}}{\rightarrow} c_{accept})''$ Since $t = 2^{df(n)}$, the depth of recusion is $O(\lg 2^{df(n)}) = O(f(n))$. Moreover,

CANYIELD can store its step number, c_1, c_2, t in space O(f(n)). Thus *M* runs in space $O(f(n) \times f(n)) = O(f^2(n))$.



(Fig. from M. Sipser's class notes)

The Class *PSPACE*

Definition 32

PSPACE is the class of languages decidable by TM's in polynomial space. That is,

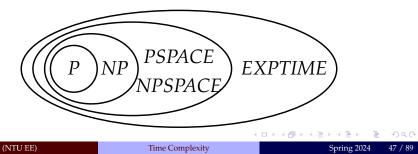
$$PSPACE = \bigcup_{k} SPACE(n^{k}).$$

- Consider the class of langauges decidable by NTM's in polynomial space $NPSPACE = \bigcup_k NSPACE(n^k)$.
- By Savitch's Theorem, $NSPACE(n^k) \subseteq SPACE(n^{2k})$. Clearly, $SPACE(n^k) \subseteq NSPACE(n^k)$. Hence NPSPACE = PSPACE.
- Consider $ALL_{NFA} = \{M \mid M \text{ is an NFA}, L(M) = \Sigma^*\}.$
 - ► $ALL_{NFA} \in coNSPACE(n)$. (Why? Can you show $\overline{ALL_{NFA}} \in NSPACE(n)$? Hint: if $L(M) \neq \emptyset$, then $\exists w \in L(M), |w| \leq 2^{|Q|}$ (Why?))
 - ▶ By Savitch's Theorem, $\overline{ALL_{NFA}} \in NSPACE(n) \subseteq SPACE(n^2)$. Hence $ALL_{NFA} \in PSPACE$.

(NTU EE)

P, NP, PSPACE, and EXPTIME

- $P \subseteq PSPACE$
 - A TM running in time t(n) uses space t(n) (provided $t(n) \ge n$).
- Similarly, $NP \subseteq NPSPACE$ and thus $NP \subseteq PSPACE$.
- $PSPACE \subseteq EXPTIME = \cup_k TIME(2^{n^k})$
 - A TM running in space f(n) has at most f(n)2^{O(f(n))} different configurations (provided f(n) ≥ n).
 - * A configuration contains the current state, the location of tape head, and the tape contents.
- In summary, $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$.
 - We will show $P \neq EXPTIME$.



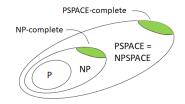
Definition 33

A language *B* is *PSPACE*-complete if it satisfies

- $B \in PSPACE$; and
- $A \leq_P B$ for every $A \in PSPACE$.

If *B* only satisfies the second condition, we say it is *PSPACE*-hard.

- We do not define "polynomial space reduction" nor use it. Why?
- Intuitively, a complete problem is most difficult in the class. If we can solve a complete problem, we can solve all problems in the same class easily.



() くぼうく

< ロト < 同

TQBF

- Recall the <u>universal quantifier</u> \forall and the <u>existential quantifier</u> \exists .
- When we use quantifiers, we should specify a universe.
 - ► $\forall x \exists y [x < y \land y < x + 1]$ is false if \mathbb{Z} is the universe.
 - ► $\forall x \exists y [x < y \land y < x + 1]$ is true if \mathbb{Q} is the universe.
- A <u>quantified Boolean formula</u> is a quantified Boolean formula over the universe **B**.
- Any formula with quantifiers can be converted to a formula begins with quantifiers.
 - $\forall x[x \ge 0 \implies \exists y[y^2 = x]] \text{ is equivalent to } \forall x \exists y[x \ge 0 \implies y^2 = x].$
 - This is called prenex normal form.
- We always consider formulae in prenex normal form.
- If all variables are quantified in a formula, we say the formula is <u>fully quantified</u> (or a sentence).
- Consider

 $TQBF = \{\langle \phi \rangle : \phi \text{ is a true fully quantified Boolean formula} \}.$

Theorem 34

TQBF is PSPACE-complete.

Proof.

We first show $TQBF \in PSPACE$. Consider

- T= "On input $\langle \phi \rangle$ where ϕ is a fully quantified Boolean formula:
 - If ϕ has no quantifiers, it has no variables. If ϕ = TRUE, accept; or ϕ = FALSE, reject.
 - ② If ϕ is $\exists x\psi$, call *T* recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If <u>either</u> accepts, accept; otherwise, reject.
 - **③** If ϕ is $\forall x\psi$, call *T* recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If <u>both</u> accepts, accept; otherwise, reject.

The depth of recursion is the number of variables. At each level, *T* needs to store the value of one variable. Hence *T* runs in space O(n).

< □ > < □ > < □ > < □ > <

Proof (cont'd).

Let *M* be a TM deciding *A* in space n^k . We give a polynomial-time reduction *f* mapping *A* to TQBF.

- $f: \Sigma^* \to QBF$ formulas
- $f(w) = \langle \phi_{M,w} \rangle$
- $w \in A$ iff $\phi_{M,w}$ is true

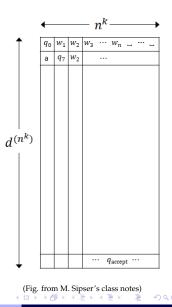
• (First attempt): Try the Tableau method, which involves:

• n^k columns and d^{n^k} rows

A nave $\phi_{M,w}$ is of length $n^k \times d^{n^k}$, which is exponential $- \times$ Too long!

Notice that such $\phi_{M,w}$ does not use \exists, \forall quantifiers

room for improvement.



• (Second attempt): Given configurations c_i and c_j , construct $\phi_{c_i,c_j,t}$ certifying $c_i \xrightarrow{t} c_j$ recursively.

$$\phi_{c_i,c_j,t} = \exists c_{mid} [\phi_{c_i,c_{mid},\frac{t}{2}} \land \phi_{c_{mid},c_j,\frac{t}{2}}]$$

- $\exists c_{mid_1} [\phi_{c_i, c_{mid_1}, \frac{t}{4}} \land \phi_{c_{mid_1}, c_{mid}, \frac{t}{4}}] \\ \exists c_{mid_2} [\phi_{c_{mid}, c_{mid_2}, \frac{t}{4}} \land \phi_{c_{mid_2}, c_j, \frac{t}{4}}] \\ \vdots \dots$
- $\phi_{\dots,1}$ is expressed using a 2 × 3 window, like in Cook-Levin's proof.
- Unfortunately, $\phi_{c_{start}, c_{accept}, d^{n^k}}$ is exponential in |w|, as each recursion doubles the size \times Too long!
- For improvement, notice that the above ϕ does not use \forall quantifiers.

Proof (cont'd).

(3rd Attempt) For t > 1, let $\phi_{c_i,c_i,t} =$

$$\exists c_{mid} \forall c_g \forall c_h \left[((c_g = c_i \land c_h = c_{mid}) \lor (c_g = c_{mid} \land c_h = c_j)) \implies \overbrace{\phi_{c_g, c_h, \frac{t}{2}}}^{(1)} \right]$$

$$(1): \phi_{c_g,c_h,\frac{t}{2}} = \\ \exists c_{m_1} \forall c_{g_1} \forall c_{h_1} [((c_{g_1} = c_g \land c_{h_1} = c_{m_1}) \lor (c_{g_1} = c_{m_1} \land c_{h_1} = c_h)) \\ \implies \phi_{c_{g_1},c_{h_1},\frac{t}{4}}$$

2 ...

• $\phi_{\dots,1}$ is expressed using a 2 × 3 window, like in Cook-Levin's proof. Each level increases the size of $\phi_{c_i,c_i,t}$ by $O(n^k)$. Hence $|\phi_{c_{\text{start}}, c_{\text{accept}}, 2^{dn^k}}| \in O(n^{2k}).$ (NTU EE)

• The 3rd (correct) attempt uses formula of the form

of alternations=
$$O(n^k)$$

 $\exists ... \forall ... \exists ... \forall ... \psi,$

where ψ is an unquantified Boolean formula which can be checked in polynomial time.

- Quantifiers allow us to "reuse" subformulas, to make $|\phi_{c_{\text{start}}, c_{\text{accept}}, 2^{dn^k}}|$ short, i.e., $\in O(n^{2k})$!
- Recall that an *NP* language *L* can be expressed as *x* ∈ *L* ⇔
 ∃*cR*(*x*, *c*), where *R*() is a polynomial time predicate and *c* is the certificate.

of alt=O(k)

- How about $\exists ... \forall ... \exists ... \forall ... \psi$?
 - The *k*-level of the polynomial-time hierarchy.

TM's with Sublinear Space

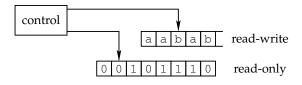


Figure: Schematics for TM's using Sublinear Space

- For sublinear space, we consider TM's with two tapes.
 - a read-only input tape containing the input string; and
 - a read-write work tape.
- The input head cannot move outside the portion of the tape containing the input.
- The cells scanned on the work tape contribute to the space complexity.

(NTU EE)

Space Complexity Classes L and NL

Definition 35

 $L (= SPACE(\log n))$ is the class of languages decidable by a TM in logarithmic space.

 \underline{NL} (= *NSPACE*(log *n*)) is the class of languages decidable by an NTM in logarithmic space.

Example 36

$$A = \{0^k 1^k : k \ge 0\} \in L.$$

Proof.

Consider

M = "On input w:

- Check if *w* is of the form 0*1*. If not, reject.
- 2 Count the number of 0's and 1's on the work tape.
- S If they are equal, accept; otherwise, reject."

(NTU EE)

Time Complexity

PATH is in NL

Example 37

Recall $PATH = \{ \langle G, s, t \rangle : G \text{ is a directed graph with a path from } s \text{ to } t \}.$ Show $PATH \in NL$.

Proof.

Consider

N = "On input $\langle G, s, t \rangle$ where G is a directed graph with nodes s and t:

Repeat *m* times (*m* is the number of nodes in *G*)

- Nondeterministically select the next node for the path. If the next node is *t*, accept.
- 2 Reject.

N only needs to store the current node on the work tape. Hence *N* runs in space $O(\lg n)$.

• We do not know if $PATH \in L$.

(N	ΓU	EE)

Definition 38

Let M be a TM with a separate read-only input tape and w an input string. A <u>configuration</u> of M on w consists of a state, the contents of work tape, and locations of the two tape heads.

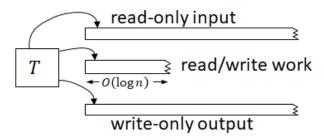
- Note that the input *w* is no longer a part of the configuration.
- If *M* runs in space f(n) and |w| = n, the number of configurations of *M* on *w* is at most $|Q| \times n \times f(n) \times |\Gamma|^{f(n)} = n2^{O(f(n))}$.
- Note that when $f(n) \ge \lg n, n2^{O(f(n))} = 2^{O(f(n))}$.

Savitch's Theorem Revisited

- Recall that we assume $f(n) \ge n$ in the theorem.
- We can in fact relax the assumption to $f(n) \ge \lg n$.
- The proof is identical except that we are simulating an NTM *N* with a read-only input tape.
- When $f(n) \ge \lg n$, the depth of recursion is $\lg(n2^{O(f(n))}) = \lg n + O(f(n)) = O(f(n))$. At each level, $\lg(n2^{O(f(n))}) = O(f(n))$ space is needed.
- Hence $NSPACE(f(n)) \subseteq SPACE(f^2(n))$ when $f(n) \ge \lg n$.

Definition 39

A log space transducer is a TM with a read-only input tape, a write-only output tape, and a read-write work tape. The work tape may contain $O(\lg n)$ symbols.



(Fig. from M. Sipser's class notes)

	4	₽ ► < E	× ≡ ×	jų.	500
(NTU EE)	Time Complexity		Spring 2024	1	60 / 89

Definition 40

 $f: \Sigma^* \to \Sigma^*$ is a log space computable function if there is a log space transducer that halts with f(w) in its work tape on every input w.

Definition 41

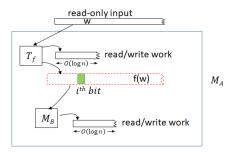
A language *A* is log space reducible to a language *B* (written $A \leq_L B$) if there is a log space computable function *f* such that $w \in A$ if and only if $f(w) \in B$ for every *w*.

Properties about Log Space Reducibility

Theorem 42

If $A \leq_L B$ and $B \in L$, $A \in L$.

(First attempt)



• Can we write down f(w) on M_B 's work tape?

▶ No. *f*(*w*) may need more than logarithmic space.

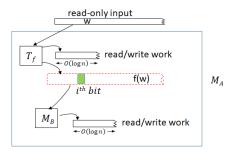
(NTU EE)

Properties about Log Space Reducibility

Theorem 42

If $A \leq_L B$ and $B \in L$, $A \in L$.

(First attempt)



• Can we write down f(w) on M_B 's work tape?

▶ No. *f*(*w*) may need more than logarithmic space.

(NTU EE)

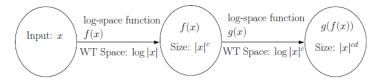
Spring 2024 62 / 89

Proof.

- Let a TM M_B decide *B* in space $O(\lg n)$. Consider
- $M_A =$ "On input w:
 - Compute the first symbol of f(w).
 - **2** Simulate M_B on the current symbol.
 - If M_B ever changes its input head, compute the symbol of f(w) at the new location.
 - More precisely, restart the computation of f(w) and ignore all symbols of f(w) except the one needed by M_B .
 - If M_B accepts, accepts; otherwise, reject.

Properties about Log Space Reducibility

- We know that polynomial-time reductions are transitive: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$
- We also crucially used the following similar property: If $A \leq_p B$ and $B \in P$, then $A \in P$ If $A \leq_p B$ and $B \in NP$, then $A \in NP$
- Do we have similar results under \leq_L ?
- Difficulty:



- Total space used $O(\log |x| + \log |x|^c) = O(\log |x|)$. Problem?
- We have to store intermediate result f(x) of size $|x|^c$.

(NTU EE)

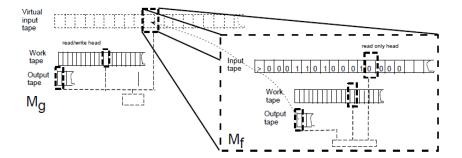
Spring 2024 64 / 89

Transitivity of \leq_L

Goal: To compute the string g(f(x)), given x

- Imagine that we have computed f(x), and its on Tape 1
- The tape-head for Tape 1 is at the start position.
- Now, given this imaginary input string, start computing *g*(*f*(*x*)) on Tape 2, just like before
- We know that the work tape Tape 2 needs $\log |f(x)|$ space
- At each step:
 - Read one bit of f(x) from Tape 1 from tape-head position
 - Read one bit of work-tape from tape-head position
 - Move Tape 1, Tape 2 heads by transition function
 - Write one bit on Tape 2, maybe write one bit on Output tape
- Read one bit of f(x) from Tape 1 from tape-head position
 - Don't have f(x) lying around on the imaginary Tape 1
 - ▶ Instead, store position of Tape 1 head: $O(\log |f(x)|)$ space
 - Need to read $f(x)_i$: compute using $\log |x|$ space
 - Increment or decrement the pointer for Tape 1 head

Transitivity of \leq_L



(NTU E	E)
--------	----

Э

イロト イポト イヨト イヨト

NL-Completeness

Definition 43

A language *B* is <u>NL-complete</u> if

- $B \in NL$; and
- $A \leq_L B$ for every $A \in NL$.
- Note that we require $A \leq_L B$ instead of $A \leq_P B$.
- We will show $NL \subseteq P$ (Corollary 46).
- Hence every two problems in *NL* (except Ø and Σ*) are polynomial time reducible to each other (why?).

Corollary 44

If any NL-complete language is in L, then L = NL.

NL-Completeness

Theorem 45

PATH is NL-complete.

Proof.

Let an NTM *M* decide *A* in $O(\lg n)$ space. We assume *M* has a unique accepting configuration. Given *w*, we construct $\langle G_{M,w}, s, t \rangle$ in log space such that *M* accepts *w* if and only if $G_{M,w}$ has a path from *s* to *t*. $G_{M,w}$ has

- Nodes: all configurations of *M* on *w*,
- Edges: (c_1, c_2) is in $G_{M,w}$ if c_1 yields c_2 in one step.
- *s* and *t* are the start and accepting configurations of *M* on *w* respectively.

Clearly, *M* accepts *w* iff $G_{M,w}$ has a path from *s* to *t*. It remains to show that $G_{M,w}$ can be computed by a log space transducer.

T = "on input w

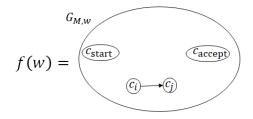
• For all pairs (c_i, c_j) of configurations of M on w.

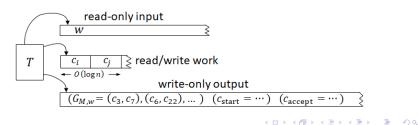
Output those pairs which are legal moves for *M*.

Output cstart and caccept"

(NTU EE)

NL-Completeness





(NTU EE)

$NL \subseteq P$

Corollary 46

 $NL \subseteq P.$

Proof.

A TM using space f(n) has at most $n2^{O(f(n))}$ configurations and hence runs in time $n2^{O(f(n))}$. A log space transducer therefore runs in polynomial time. Hence any problem in *NL* is polynomial time reducible to *PATH*. The result follows by *PATH* \in *P*.

- The polynomial time reduction in the proof of Theorem 34 can be computed in log space.
- Hence *TQBF* is *PSPACE*-complete with respect to log space reducibility.

(NTU EE)

< □ > < □ > < □ > < □ > < □ > < □

Theorem 47 (Immerman - Szelepcsényi)

NL = coNL.

Proof.

(Idea) Give an NTM *M* deciding \overline{PATH} in space $O(\lg n)$. The proof is nontrivial, involving some sort of a counting argument. If interested, check literature.

(NTU EE)

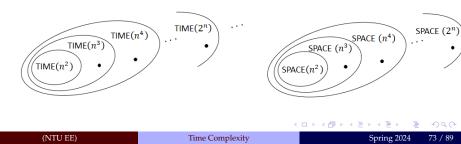
• The relationship between different complexity classes now becomes

 $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

- We will prove $NL \subsetneq PSPACE$ in the next chapter.
- Hence at least on inclusion is proper.
 - But we do not know which one.

Intractability

- Recall $P \subseteq NP \subseteq PSPACE = NSPACE$.
- Yet we have not proved any intractable problem.
 - A problem is <u>intractable</u> if it cannot be solved in polynomial time.
- In this chapter, the most difficult problem appears to be *TQBF* ∈ *PSPACE*.
- But we do not know if $P \stackrel{?}{=} PSPACE$.
- The time and space hierarchy theorems will show

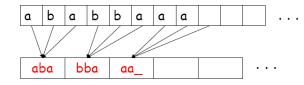


Theorem 48

(*Linear Speedup - Time*) Suppose k-tape TM M decides language L in time f(n). Then for any $\epsilon > 0$, there exists a k-tape TM M' that decides L in time $\epsilon \cdot f(n) + n + 2$.

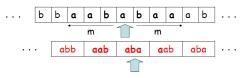
Proof Idea: Suppose $M = (Q, \Sigma, \Gamma...)$

• (Step 1) Compress input (in n + 2 *M*-steps) onto fresh tape, compressing m ($m = \frac{1}{\epsilon}$) symbols into one. I.e., each symbol of M' corresponds to an *m*-tuple of tape symbols of *M*.



Linear Speedup (cont'd)

• (Step 2) Simulate M, m steps at a time, taking 6(f(n)/m) M'-steps



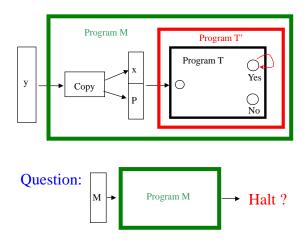
- Read (in 4 *M*'-steps) symbols to the left, right and the current position and "store" in finite state control (using $|Q \times \{1, ..., m\}^k \times \Gamma^{3mk}|$ extra states). What is $\{1, ..., m\}^k$ for?
- Simulate (in 2 *M*'-steps) the next *m* steps of *M* (as *M* can only modify the current position and one of its neighbours),
- M' accepts (rejects) if *M* accepts (rejects).

Using a similar idea, the following also hold:

Theorem 49

(*Linear Speedup - Space*) If *L* is decided in space f(n), then for any $\epsilon > 0$, there is a TM deciding *L* in space $\epsilon f(n) + 2$.

Recall the Diagonalization method for proving the halting problem



- Halt: *T* enters "Yes" \Rightarrow Not Halt
- Not Halt: *T* enters "No" \Rightarrow Halt

(NTU EE)

Spring 2024 76 / 89

Diagonalization Method for Proving the Halting Problem

- Consider the language $HALT_{TM} = \{ \langle M, x \rangle \mid M \text{ halts on input } x \}.$
- Suppose *HALT_{TM}* is decidable via a decider *D*, consider the following table:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	•••	$\langle M_i \rangle$	
M_1	\bigcirc	×	×	• • •		• • •
M_2	×	0	0	• • •	• • •	• • •
M_3	×	×	×	• • •	• • •	•••
•••	• • •	• • •			• • •	
M_i	×	×	×	• • •	?	• • •
•••	• • •	• • •	•••	• • •	• • •	• • •

- Consider language $L = \{ \langle M \rangle \mid D \text{ rejects } \langle M, \langle M \rangle \rangle \}$, i.e., calling D on $\langle M, \langle M \rangle \rangle$, if D accepts, $\langle M \rangle \notin L$; if D rejects, $\langle M \rangle \in L$.
- *L* can clearly be accepted by a TM, say *M*'.
- Suppose $M' = M_i$. What is the value of entry " $(M_i, \langle M_i \rangle)$ "? Contradiction!

Theorem 50

For any space constructible function $f : \mathbb{N} \to \mathbb{N}$, there is a language A decidable in O(f(n)) space but not in o(f(n)) space. In other words, $SPACE(o(f(n)) \subsetneq SPACE(f(n))$.

(Proof Idea)

- The attempt is to use an approach similar to the halting problem proof via diagonalization.
- We design a TM *D* that can simulate an arbitrary TM *M* on input w(|w| = n) for up to $2^{f(n)}$ steps of *M*,
 - ▶ if the simulation takes more than 2^{*f*(*n*)} steps, *D* rejects,
 - ▶ if *M* halts and accepts, *D* rejects,
 - if *M* halts and rejects, *D* accepts.
- Note: *D* needs a memory of length *f*(*n*) (serving as a binary counter) to count up to 2^{*f*(*n*)} steps of *M*.

• Consider the language

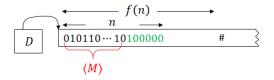
 $L = \{ \langle M \rangle \mid M \text{ rejects } \langle M \rangle \text{ using } f(n) \text{ space} \},\$

i.e., taking the complement of the diagonal elements.

• Clearly
$$L \in SPACE(f(n))$$
 using D .

- Our goal is to show that *L* cannot be accepted by a TM using o(f(n)) space. Suppose otherwise *M*' accepts *L* using o(f(n)) space.
- Just like the halting problem proof, a contradiction relies on the presence of (M', ⟨M'⟩) entry in the table. meaning that *D* can simulates *M*' on ⟨*M*'⟩ till completion.
 - On the surface, it seems okay as o(f(n)) < f(n) = O(f(n))
- Does the above argument really work?
 - ► It is possible that d × g(m) > f(m) even if g(n) = o(f(n)), for some m (e.g., 10⁵n > n² for n = 100). If this is the case, D does not have enough space to simulate M' until halt.

- To overcome the above difficulty, let $L = \{ \langle M \rangle 10^* \mid M \text{ rejects} \\ \langle M \rangle 10^* \text{ using } \leq f(n) \text{ space } \}.$
- By padding the input with 10^{*}, *D* simulates any *M* on an infinite number of inputs ⟨*M*⟩1, ⟨*M*⟩10, ⟨*M*⟩100, ..., ⟨*M*⟩10^m, ...
 - ► Eventually there must be a ⟨*M*⟩10^m so that d × g(|⟨*M*⟩10^m|) < f(|⟨*M*⟩10^m|), meaning that *D* has enough space to complete the simulation.



	E.

▶ ★ 臣 ▶ ★ 臣 ▶

Theorem 51

For any space constructible function $f : \mathbb{N} \to \mathbb{N}$, there is a language A decidable in O(f(n)) space but not in o(f(n)) space. In other words, $SPACE(o(f(n)) \subsetneq SPACE(f(n))$.

Proof.

Consider language $L = \{ \langle M \rangle 10^* | M \text{ rejects } \langle M \rangle 10^* \text{ using } \leq f(n) \text{ space } \}.$ Consider D = "On input w:

- Compute f(|w|) by space constructibility and mark off this much tape. If D ever attempts to use more space, reject.
- 2 If *w* is not of the form $\langle M \rangle 10^*$ for some TM *M*, reject.
- Simulate *M* on *w*. If the simulation takes more than 2^{f(n)} *M*-steps, reject.
- If *M* accepts, reject; if *M* rejects, accept."

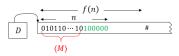
- What is a space constructible function?
 - ▶ Function $f : \mathbb{N} \to \mathbb{N}$ with f(n) at least $O(\lg n)$ is called <u>space</u> <u>constructible</u> if the function that maps 1^n to the binary representation of f(n) is computable in space O(f(n)). Equivalently, there is a TM that can mark off f(n) cells when given an input of length n.

Proof (cont'd).

In Step 3, *D* simulates *M* in *D*'s tape alphabet. The simulation hence introduces a constant factor of **overhead** (independent of |w|). That is, if *M* runs in g(n) space, *D* runs in dg(n) space for some constant *d*. Clearly, *D* is an O(f(n)) space TM. For example, if the alphabet of *M* is $\{0, ..., 9\}$ and that of *D* is $\{0, 1\}$, it takes 4 bits doe *D* to store a symbol of Σ , resulting in $4 \times g(n)$ memory cells needed for *D* to simulate *M*'s tape. We next argue that *L* cannot be decided in o(f(n)).

Proof (cont'd).

Suppose a TM *M*' decides *L* in space g(n) for some $g(n) \in o(f(n))$. Since $g(n) \in o(f(n))$, there is an n_0 that dg(n) < f(n) for every $n \ge n_0$. Consider $\langle M' \rangle 10^{n_0}$. Since $dg(n_0) < f(n_0)$, *D*'s simulation on *M*' has enough space and runs until *M*' halts, or tries to use more than f(n) space of $2^{f(n)}$ steps. In the latter case, *D* rejects. *M*' accepts $\langle M' \rangle 10^{n_0}$ if and only if *M*' rejects $\langle M' \rangle 10^{n_0}$, as L(D) = L.



- Why do we need to "pad" $\langle M \rangle$ with 10*?
 - Suppose we let $L = \{ \langle M \rangle \mid M \text{ rejects } \langle M \rangle \text{ using } \leq f(n) \text{ space } \}$. It is possible that $d \times g(m) > f(m)$ even if g(n) = o(f(n)), for some m (e.g., $10^5n > n^2$ for n = 100). If this is the case, D does not accept $\langle M' \rangle$ as D does not have enough space to simulate M' until halt.
 - By padding the input with 10*, D simulates any M on an infinite number of inputs ⟨M⟩1, ⟨M⟩10, ⟨M⟩100, ..., ⟨M⟩10^m, ... → (ℝ→ ℝ) → ∞∞

(NTU EE)

Time Complexity

Spring 2024 83 / 89

Corollary 52

Let $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ with $f_1(n) \in o(f_2(n))$ and f_2 space constructible. SPACE $(f_1(n)) \subsetneq$ SPACE $(f_2(n))$.

- We can show n^c is space constructible for any $c \in {}^{\geq 0}$.
- Observe that for any $\epsilon_1, \epsilon_2 \in \mathbb{R}^{\geq 0}$ with $\epsilon_1 < \epsilon_2$, there are $c_1, c_2 \in e^{\geq 0}$ that $0 \leq \epsilon_1 < c_1 < c_2 < \epsilon_2$. Therefore

Corollary 53

For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ *with* $0 \le \epsilon_1 < \epsilon_2$ *, SPACE* $(n^{\epsilon_1}) \subsetneq$ *SPACE* (n^{ϵ_2}) *.*

(N	Т	U	Е	E)

More Applications of Space Hierarchy Theorem

Corollary 54 $NL \subsetneq PSPACE$.

Proof.

By Savitch's theorem, $NL \subseteq SPACE(\lg^2 n)$. By space hierarchy theorem, $SPACE(\lg^2 n) \subsetneq SPACE(n)$.

• Recall that *TQBF* is *PSPACE*-complete. Hence *TQBF* \notin *NL*.

Corollary 55 $PSPACE \subseteq EXPSPACE = \bigcup_k SPACE(2^{n^k}).$

• So far, we know

 $NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE.$

Definition 56

 $t : \mathbb{N} \to \mathbb{N}$ with t(n) at least $O(n \lg n)$ is called <u>time constructible</u> if the function that maps 1^n to the binary representation of t(n) is computable in time O(t(n)).

• That is, *t*(*n*) is time constructible if there is an *O*(*t*(*n*)) time TM that always halts with the binary representation of *t*(*n*) on input 1^{*n*}.

Theorem 57

For any time constructible function $t : \mathbb{N} \to \mathbb{N}$, there is a language A decidable in O(t(n)) time but not in $o(\frac{t(n)}{lgt(n)})$ time. In other words, $TIME(o(\frac{t(n)}{lgt(n)})) \subsetneq TIME(t(n)).$

Proof.

Consider D = "On input w:

- Compute t(|w|) by time constructibility and store [t(n)/lgt(n)] in a binary counter. If this counter ever reaches 0, reject.
- 2 If *w* is not of the form $\langle M \rangle 10^*$ for some TM *M*, reject.
- Simulate *M* on *w* for $\frac{t(n)}{lgt(n)}$ steps (by decrementing the binary counter).
 - ▶ if *M* accepts, reject;
 - if M rejects; accept."
 - Why do we lose a factor of lg *t*(*n*)?
 - ► *D* can simulate *M* with a log factor time overhead due to the step counter.

▶ ★ 臣 ▶ ★ 臣 ▶

Applications of Time Hierarchy Theorem

Corollary 58

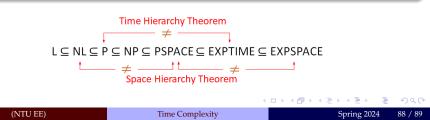
For $t_1, t_2 : \mathbb{N} \to \mathbb{N}$ with $t_1(n) \in o(t_2(n)/\lg t_2(n))$ and t_2 time constructible. TIME $(t_1(n)) \subsetneq TIME(t_2(n))$.

Corollary 59

For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ *with* $0 \le \epsilon_1 < \epsilon_2$ *,* $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$ *.*

Corollary 60

 $P \subsetneq EXPTIME = \cup_k TIME(2^{n^k}).$



A Provable "Natural" Intractable Problem

- A problem (language) is <u>intractable</u> if it cannot be solved in polynomial time. So, are those NP-complete problems "truly" intractable? (Notice that *P* ⊊ *NP* remains open.)
- As *P* ⊊ *EXPTIME* ⊆ *EXPSPACE*, complete problems for *EXPTIME* and *EXPSPACE* are regarded as "truly" intractable.
- Are there "natural" complete problems for *EXPTIME* and *EXPSPACE*? (Being "natural" by NOT containing a TM encoding.)
- Equivalence of regular languages:
 - ▶ { $\langle M_1, M_2 \rangle \mid M_1, M_2$ are DFA, and $L(M_1) = L(M_2)$ } $\in P$
 - ► { $\langle M_1, M_2 \rangle$ | M_1, M_2 are NFA, and $L(M_1) = L(M_2)$ } *PSPACE*-complete
 - ► How about { $\langle R_1, R_2 \rangle$ | R_1, R_2 are regular expressions, and $L(R_1) = L(R_2)$ } ? *EXPSPACE*-complete
- The above suggests that regular expressions are more <u>succinct</u> (compact) than DFA/NFA for representing regular languages.

イロト イポト イヨト イヨト 二日