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Reducibility

Eulerian path (resp., cycle) problem: Given graph G and two
nodes s and t, determine whether there is a path from s to t (resp.,
cycle from s to s) visiting each edge in G exactly once.
To answer Eulerian path problem for G (EP(G)), construct a graph
G′ that is identical to G except an additional edge between s and t.

I If EC(G′) returns true, there is a Eulerian path from s to t.
I If EC(G′) returns false, there is no Eulerian path from s to t.

We use EC(G′) as a subroutine.
We say the Eulerian path problem is reduced to the Eulerian cycle
problem, abbrev. as EP ≤ EC.
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Reducibility

Let us say A and B are two problems and A is reduced to B (or
equivalently, B is reduced from A).
Notation-wise, we often write A ≤ B.
If we solve B, we solve A as well.

I B is easy→ A is easy.
I If we solve the Eulerian cycle problem, we solve the Eulerian path

problem.
If we can’t solve A, we can’t solve B.

I A is hard→ B is hard.

To show a problem P is not decidable, it suffices to reduce ATM to
P.
We will give examples in this chapter.
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The Halting Problem for Turing Machines

The halting problem is to test whether a TM M halts on a string w.
As usual, we first give a language-theoretic formulation.

HALTTM = {〈M,w〉 : M is a TM and M halts on the input w}.

Theorem 1
HALTTM is undecidable.

Proof.
Suppose TM R decides HALTTM. Consider TM S using R as subroutine
S = “On input 〈M,w〉where M is a TM and w is a string:

1 Run TM R on the input 〈M,w〉.
2 If R rejects, reject.
3 If R accepts, simulate M on w until it halts.
4 If M accepts, accept; if M rejects, reject.”

Then S decides ATM - a contradiction.
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Emptiness Problem for Turing Machines

Consider ETM = {〈M〉 : M is a TM and L(M) = ∅}.

Theorem 2
ETM is undecidable.

Proof.
Suppose TM R decides ETM. Consider TM S using R as subroutine
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M,w〉 to construct
M1 = “On input x:

1 If x 6= w, reject.
2 If x = w, run M on the input x (=w). If M accepts x, accept.”

2 Run R on the input 〈M1〉 to test whether L(M1) = ∅.
3 If R accepts [M rejects w], reject; otherwise [M accepts w],

accept.”
Then ATM is decidable - a contradiction.
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Regularity Problem for Turing Machines

REGULARTM = {〈M〉 : M is a TM and L(M) is regular}.

Theorem 3
REGULARTM is undecidable.

Proof.
Let R be TM deciding REGULARTM. Consider S using R as subroutine
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M,w〉 to construct
M2 = “On input x:

1 If x is of the form 0n1n, accept.
2 Otherwise, run M on the input w. If M accepts w, accepts.” (In this

case, L(M2) = Σ∗)
2 Run R on the input 〈M2〉.
3 If R accepts [L(M2) = Σ∗], accept; otherwise [L(M2) = {0n1n}],

reject.”
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Rice’s Theorem

Consider the language C of all TMs, i.e., C = {〈M〉 |M is a TM} .
A property P is a subset of C such that if L(M1) = L(M2) then
either 〈M1〉 ∈ P⇔ 〈M2〉 ∈ P.

I REGULARTM, i.e., the set of all TMs that accept regular languages,
is a property.

I P′ = {〈M〉 |M has more than 100 states} is NOT a property.
A property P is trivial if (1) P = ∅, or (2) P=C.

I P is non-trivial⇔ ∃M1,M2, 〈M1〉 ∈ P and 〈M2〉 ∈ P.
I {〈M〉 | L(M) = ∅} is NOT a trivial property.

Goal: given a TM M, decide whether 〈M〉 ∈ P.
Rice’s theorem: Undecidable, unless P is a trivial property.
Why trivial properties are decidable?
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Rice’s Theorem

Theorem 4
Let P be a language consisting of TM descriptions such that

1 P is not trivial (P 6= ∅ and there is a TM M with 〈M〉 6∈ P);
2 If L(M1) = L(M2), 〈M1〉 ∈ P iff 〈M2〉 ∈ P.

Then P is undecidable.

Proof.
Let R be a TM deciding P. Let T∅ be a TM with L(T∅) = ∅. WLOG, assume 〈T∅〉 6∈ P.
Moreover, pick a TM T with 〈T〉 ∈ P. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M,w〉 to construct

Mw = “On input x:

1 Run M on w. If M halts and rejects, reject.
2 If M accepts w, run T on x.”

2 Run R on 〈Mw〉.
3 If R accepts, accept; otherwise, reject.”
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Rice’s Theorem

〈T∅〉 6∈ P and 〈T〉 ∈ P, where L(T∅) = ∅.
M accepts w will ”trigger” the execution of T on input x.
Hence,

I M accepts w⇒ L(Mw) = L(T) ∈ P
I M does not accept w⇒ L(Mw) = L(T∅) 6∈ P

Does REGULARTM fit into the above framework?
How about ETM?
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Language Equivalence Problem for Turing Machines

Consider

EQTM = {〈M1,M2〉 : M1 and M2 are TM’s with L(M1) = L(M2)}.

Theorem 5

EQTM is undecidable.

Proof.
We reduce the emptiness problem to the language equivalence
problem this time. Let the TM R decide EQTM and TM M1 with
L(M1) = ∅. Consider
S = “On input 〈M〉where M is a TM:

1 Run R on 〈M,M1〉.
2 If R accepts, accept; otherwise, reject.”
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Computation History

Definition 6
Let M be a TM and w an input string. An accepting computation
history for M on w is a sequence of configurations C1,C2, . . . ,Cl where

C1 is the start configuration of M on w;
Cl is an accepting configuration of M; and
Ci yields Ci+1 in M for 1 ≤ i < l.

A deterministic Turing machine has at most one computation
history on any given input.
A nondeterminsitic Turing machine may have several
computation histories on an input.
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Languages Associated with Computation Histories

Suppose α ` β is a single step of a TM M.

left move right move
α abcdqefgh abcdqefgh
β abcq′de′fgh abcde′q′fgh

Notice that in α and β, at most 3 positions may change.

Can you check abc dqe fgh#(abc q’de’ fgh)R using a PDA?
(Keep (dqe, q′de′) in finite state, process ”abc” ”fgh” using stack)

How about abc dqe fgh#abc q’de’ fgh?

Consider accepting computation α0 ` α1 ` α2 ` α3 ` · · · ` αn

CS: α0#α1#α2#α3# · · ·#αn

CSR: α0#αR
1 #α2#αR

3 # · · ·#αn

CSR is the intersection of two CFL Lodd and Leven, where
Lodd = {α0#αR

1 #α2#αR
3 # · · ·#αn | αi ` αi+1, i is odd}

Leven = {α0#αR
1 #α2#αR

3 # · · ·#αn | αi ` αi+1, i is even}
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Linear Bounded Automaton

control

0 01 1 0110

Figure: Schematic of Linear Bounded Automata

Definition 7
A linear bounded automaton is a nondeterministic Turing machine
whose tape head is not allowed to move off the portion of its input. If
an LBA tries to move its head off the input, the head stays.

With a larger tape alphabet than its input alphabet, we may allow
an LBA to use c× |w| tape cells on input w, where c is a constant.
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Acceptance Problem for Linear Bounded Automata

Consider

ALBA = {〈M,w〉 : M is an LBA and M accepts w}.

Lemma 8
Let M be an LBA. There are |Q| × n× |Γ|n different configurations of M for a
tape of length n.

An LBA has |Q| × n× |Γ|n different configurations on an input of
length n. If an LBA runs for longer, it must repeat some
configuration and thus will never halt.
Many langauges can be decided by LBA’s.

I For instance, ADFA,ACFG,EDFA, and ECFG.

Every context-free langauges can be decided by LBA’s.
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Acceptance Problem for Linear Bounded Automata

Theorem 9
ALBA is decidable.

Proof.
Consider
L = “On input 〈M,w〉where M is an LBA and w a string:

1 Simulate M on w for |Q| × n× |Γ|n steps or until it halts. (|Q|, n,
and |Γ| are obtained from 〈M〉 and w.)

2 If M does not halt in |Q| × n× |Γ|n steps, reject.
3 If M accepts w, accept; if M rejects w, reject.”

The acceptance problem for LBA’s is decidable. What about the
emptiness problem for LBA’s?

ELBA = {〈M〉 : M is an LBA with L(M) = ∅}.
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Emptiness Problem for Linear Bounded Automata

Theorem 10
ELBA is undecidable.

Proof.
Reduce ATM to ELBA. Let R be a TM deciding ELBA. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Construct
B = “On input 〈C1,C2, . . . ,Cl〉,Ci’s are configurations of M on w:

1 If C1 (resp., Cl) is not start (resp. accepting) config., reject.
2 For each 1 ≤ i < l, if Ci does not yield Ci+1, reject.
3 Otherwise, accept.”

2 Run R on 〈B〉.
3 If R rejects [L(B) 6= ∅], accept [〈M,w〉 ∈ ATM]; otherwise, reject.”
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Context Sensitive Grammars

A context sensitive grammar (CSG) is a grammar where all
productions are of the form

αAβ → αγβ, α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+,

During derivation non-terminal A will be replaced by γ only
when it is present in context of α and β.
This definition shows clearly one aspect of this type of grammar;
it is noncontracting, in the sense that the length of successive
sentential forms can never decrease.
The production S→ ε is also allowed if S is the start symbol and it
does not appear on the right side of any production.
A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = L(G).
An alternative definition of CSG:

u→ v, |u| ≤ |v|,u, v ∈ (N ∪ Σ)+,
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An Example

{anbncn | n ≥ 1} is a CSL.

Consider the following CSG G

S → ε | abc | aTBc
T → abC | aTBC
CB → CX; CX→ BX; BX→ BC
bB → bb
Cc → cc

E.g., To generate aaabbbccc, consider the following derivation:

S⇒ aTBc⇒ aaTBCBc⇒ aaabCBCBc⇒ aaabBCCBc⇒ aaabBCBCc⇒
aaabBBCCc⇒ aaabbBCCc⇒ aaabbbCCc⇒ aaabbbCcc⇒ aaabbbccc
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More on CSLs

CSLs are closed under
1 Union
2 Intersection
3 Concatenation
4 Kleene closure
5 Complement

Immerman-Szelepcsenyi theorem (1987).
(1)-(4) can be shown using LBA constructions. (5) follows from
”nondeterministic space being closed under complement,” whose
proof is not trivial.
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LBA ≡ CSG

Theorem 11
A language is context-sensitive iff it can be accepted by a linear-bounded
automaton.

Proof.
(⇒) Recall in CSG, if u→ v, then |u| ≤ |v|. Use LBA’s tape to keep the
current derivation sentence, which never exceeds |w| (Why?)
(⇐) Intuitive Idea.
Suppose LBA M has accepting comput. q0abcd ∗⇒ aeqfd ∗⇒ eqaccfgh. CSG
G simulates the above in the following way

S ∗⇒ V(a,q0a)V(b,b)V(c,c)V(d,d)
∗⇒ V(a,a)V(b,e)V(c,qf )V(d,d)

∗⇒ V(a,e)V(b,qaccf )V(c,g)V(d,h) ⇒ V(a,e)bV(c,g)V(d,h) ⇒ V(a,e)bcV(d,h)
∗⇒ abcd
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Proof (Cont’d)

Proof.
To realize the above, need rules such as

V(x,qa)V(y,b) → V(x,c)V(y,pb) if δ(q, a) = (p, c,R); [...qab...→ ...cpb...]
V(y,b)V(x,qa) → V(x,pb)V(y,c) if δ(q, a) = (p, c,L); [...bqa...→ ...pbc...]
V(x,qaccy) → x; xV(y,z) → xy; V(y,z)x→ yx

What rules are needed for S ∗⇒ V(a,q0a)V(b,b)V(c,c)V(d,d)? Easy!
Why does the above grammar construction fail for r.e. languages?

I A bit tricky! You may generate
S ∗⇒ V(a,q0a)V(b,b)V(c,c)V(d,d)V(xy,xy)...V(xy,xy) to ”reserve” worktape
locations.

I But then you need rules to ”contract” those xy’s (rules such as
xV(xy,y) → x, which is not allowed in CSG.

I If contraction rules allowed, we have unrestricted grammars (or
called Type-0 grammars)
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Universality of Context-Free Grammars

Consider a problem related to the emptiness problem for CFL’s

ALLCFG = {〈G〉 : G is a CFG and L(G) = Σ∗}.

Let x be a string. Write xR for the string x in reverse order.
Let C1,C2, . . . ,Cl be the accepting configuration of M on input w.
Consider the following string in the next theorem:

#〈C1〉#〈C2〉R# · · ·#〈C2k−1〉#〈C2k〉R# · · ·#〈Cl〉#

Consider the following PDA:

(Fig. from M. Sipser’s class notes)
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Universality of Context-Free Grammars

Theorem 12
ALLCFG is undecidable.

Proof.
We reduce ATM to ALLCFG. We construct a nondeterministic PDA D that accepts all
strings if and only if M does not accept w. The input and stack alphabets of D contain
symbols to encode M’s configurations.
D = “On input #x1#x2# · · ·#xl#:

1 Do one of the following branches nondeterministically:

I If x1 6= 〈C1〉where C1 is the start configuration of M on w, accept.
I If xl 6= 〈Cl〉where Cl is a rejecting configuration of M, accept.
I Choose odd i nondeterministically. If xi 6= 〈C〉, xR

i+1 6= 〈C′〉, or C
does not yield C′ (C,C′ are configurations of M), then accept.”

I Choose even i nondeterministically. If xR
i 6= 〈C〉, xi+1 6= 〈C′〉, or C

does not yield C′ (C,C′ are configurations of M), then accept.”
M accepts w iff the accepting computation history of M on w is not in L(D) iff
CFG(D) 6∈ ALLCFG.
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Post Correspondence Problem (PCP)

A domino is a pair of strings:
[

t
b

]
A match is a sequence of dominos

[
t1
b1

] [
t2

b2

]
· · ·

[
tk
bk

]
such

that t1t2 · · · tk = b1b2 · · · bk.
The Post correspondence problem is to test whether there is a
match for a given set of dominos.

PCP = {〈P〉 : P is an instance of the PCP with a match}

Consider

P =

{[
b
ca

]
,

[
a
ab

]
,

[
ca
a

]
,

[
abc
c

]}
A match in P:[

a
ab

] [
b
ca

] [
ca
a

] [
a
ab

] [
abc
c

]
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The Modified Post Correspondence Problem

The modified Post correspondence problem is a PCP where a
match starts with the first domino. That is,

MPCP = {〈P〉 : P is an instance of the PCP with a match
starting with the first domino}

Theorem 13

PCP is undecidable.

Proof idea.
We reduce the acceptance problem for TM’s to PCP. Given a TM M and
a string w, we first construct an MPCP P′ such that 〈P′〉 ∈MPCP if and
only if M accepts w. The MPCP P′ encodes an accepting computation
history of M on w. Finally, we reduce MPCP P′ to PCP P.

(NTU EE) Decidability Spring 2024 25 / 55



The Post Correspondence Problem

Proof.
Let the TM R decide MPCP. Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be the given TM and
w = w1w2 · · ·wn the input. The set P′ of dominos has[

#

#q0w1w2 · · ·wn#

]
as the first domino. Begin with the start configuration

(bottom).

#

# q0 w1 w2 · · · wn #
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The Post Correspondence Problem

Proof (cont’d).[
qa
br

]
if δ(q, a) = (r, b,R) with q 6= qreject. Reads a at state q (top); writes b and

moves right (bottom).[
cqa
rcb

]
if δ(q, a) = (r, b, L) with q 6= qreject. Reads a at state q (top); writes b and

moves left (bottom).[
a
a

]
if a ∈ Γ. Keeps other symbols intact.

#

# q0 0 1 0 0 #

0 1 0 0

2 q7

q0

1 0 0

δ(q0,0) = (q7,2,R)
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The Post Correspondence Problem

Proof (cont’d).[
#

#

]
and

[
#

xy#

]
Matches previous # (top) with a new # (bottom). Adds xy

when M moves out of the right end.

#

# q0 0 1 0 0 #

0 1 0 0 #

2 q7

q0

1 0 0 #
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The Post Correspondence Problem

Proof (cont’d).[
aqaccept

qaccept

]
and

[
qaccepta
qaccept

]
if a ∈ Γ. Eats up tape symbols around qaccept.[

qaccept##

#

]
. Completes the match.

#

# 2 qaccept 0 0 #

0 0

2 1

2

qaccept 0 #

1 #

1

qaccept

· · ·

#

#

qaccept #

· · ·

qaccept # #

#
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The Post Correspondence Problem

Proof (cont’d).
So far, we have reduced the acceptance problem of TM’s to MPCP. To complete the
proof, we need to reduce MPCP to PCP.
Let u = u1u2 · · · un. Define

?u = ∗ u1 ∗ u2 ∗ · · · ∗ un

u? = u1 ∗ u2 ∗ · · · ∗ un ∗
?u? = ∗ u1 ∗ u2 ∗ · · · ∗ un ∗

Given a MPCP P′: {[
t1

b1

]
,

[
t2

b2

]
, . . . ,

[
tk

bk

]}
Construct a PCP P: {[

?t1

?b1?

]
,

[
?t2

b2?

]
, . . . ,

[
?tk

bk?

]
,

[
∗♦
♦

]}

Any match in P must start with the domino
[

?t1

?b1?

]
.
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Some Applications of PCP

Theorem 14
Given two CFGs G1 and G2, ”L(G1) ∩ L(G2) = ∅?” is undecidable.

Proof.

For a PCP instance
[

t1
b1

] [
t2

b2

]
· · ·

[
tk
bk

]
, where ti, bi ∈ Σ∗, construct

G1 : S1 → a1S1t1 | a2S1t2... | akS1tk | a1t1 | a2t2... | aktk

G2 : S2 → a1S2b1 | a2S2b2... | akS2bk | a1b1 | a2b2... | akbk

where ai, 1 ≤ i ≤ k, are new symbols not in Σ. Clearly
L(G1) ∩ L(G2) 6= ∅ ⇔ PCP has a match.

Why do we need a1, ..., ak?
Can you modify the above construction to yield the following?

Theorem 15
Given a CFG G, checking whether G is ambiguous is undecidable.

Proof.
Add S→ S1 | S2 to the above construction.
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More Undecidability Results for CFLs

Theorem 16
Given two CFGs G1 and G2,and a regular language R, the following are
undecisable:

1 L(G1) = L(G2)

2 L(G1) ⊆ L(G2)

3 L(G1) = R
4 R ⊆ L(G1)

Proof.
For (1) and (2), let L(G1) = Σ∗. For (3) and (4), let R = Σ∗.
Undecidability following from the undecidablity of ALLCFG.
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More on CFLs

Note, in contrast, that checking L(G1) ⊆ R is decidable.

Let M be a FA accepting R.

L(G1) ⊆ R⇔ L(G1) ∩ L(M) = ∅.

The decidability result follows from L(G1) ∩ L(M) being CFL, and
the emptiness problem being decidable for CFLs.
Why can we use a similar argument for R ⊆ L(G1)?

I Note that L(G1) may not be a CFL. E.g., Σ∗ − {anbncn | n ≥ 0} is CF.
Why?
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Computable Functions

Definition 17
f : Σ∗ → Σ∗ is computable if some Turing machine M, on input w, halts
with f (w) on its tape.

Usual arithmetic operations on integers are computable functions.
For instance, the addition operation is a computable function
mapping 〈m,n〉 to 〈m + n〉where m,n are integers.
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Mapping Reducibility

Definition 18
A language A is mapping reducible (or many-one reducible) to a
language B (written A ≤m B) if there is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B, for every w ∈ Σ∗.

f is called the reduction of A to B.
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Properties of Reducibility

Theorem 19

If A ≤m B and B is decidable, A is decidable.

Proof.
Let the TM M decide B and f the reduction of A to B. Consider
N = “On input w:

1 Construct f (w).
2 Run M on f (w).
3 If M accepts, accept; otherwise reject.

Corollary 20
If A ≤m B and A is undecidable (i.e., not recursive), then B is undecidable.
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Transitivity of Mapping Reductions

Lemma 21
If A ≤m B and B ≤m C, A ≤m C.

Proof.
Let f and g be the reductions of A to B and B to C respectively. g ◦ f is a
reduction of A to C.

Example 22
Give a mapping reduction from ATM to PCP.

Proof.
The proof of Theorem 13 gives such a reduction. We first show
ATM ≤m MPCP. Then we show MPCP ≤m PCP.
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More Properties about Mapping Reductions

Theorem 23
If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof.
Similar to the proof of Theorem 19 except that M and N are TM’s, not
deciders.

Corollary 24
If A ≤m B and A is not Turing-recognizable (non-r.e.), then B is not
Turing-recognizable.
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More Properties about Mapping Reductions

Observe that A ≤m B if and only if A ≤m B.
I The same reduction applies to A and B as well.

Recall that ATM is not Turing-recognizable.
In order to show B is not Turing-recognizable, it suffices to show
ATM ≤m B (or ATM ≤m B).

I ATM ≤m B implies ATM ≤m B. That is, ATM ≤m B.

(NTU EE) Decidability Spring 2024 39 / 55



Mapping vs. General Reducibility

(General) Reducibility of A to B: Use B solver (as a subroutine) to
solve A.

I Conceptually simpler
I Useful for proving undecidability

A is reducible to A.
A may not be mapping reducible to A.

Note that ATM 6≤m ATM. Why?
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Reducibility - General Framework

To prove B is undecidable (i.e., not recursive):
Show that undecidable A is reducible to B. (e.g., A is ATM)
Approach:

1 Assume TM R decides B.
2 Construct TM S deciding A. Contradiction.

To prove B is Turing-unrecognizable (i.e., non-r.e.):
Show that Turing-unrecognizable A is mapping reducible to B.
(e.g., A is ATM)
Approach:

1 Give many-one reduction function f .
F Show f is computable.
F Show w ∈ A⇔ f (w) ∈ B.
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Examples

Example 25
Give a mapping reduction of ATM to HALTTM.

Proof.
We need to show a computable function f such that 〈M,w〉 ∈ ATM if
and only if 〈M′,w′〉 ∈ HALTTM whenever 〈M′,w′〉 = f (〈M,w〉).
Consider
F = “On input 〈M,w〉:

1 Use 〈M〉 and w to construct
M′ = “On input x:

1 Run M on x.
2 If M accepts, accept.
3 If M rejects, loop.”

2 Output 〈M′,w〉.”
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Examples

Example 26
Give a mapping reduction of ATM to RegularTM = {〈M〉 | L(M) is
regular}.
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Examples

Example 27
Give a mapping reduction from ETM to EQTM.

Proof.
The proof of Theorem 5 gives such a reduction. The reduction maps
the input 〈M〉 to 〈M,M1〉where M1 is a TM with L(M1) = ∅.
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ETM is not Turing-recognizable

Theorem 28
ETM is not Turing-recognizable.

Proof.
Show ATM ≤m ETM.
F = “On input 〈M,w〉:

1 Use 〈M〉 and w to construct
M′ = “On input x:

1 if x 6= w, reject; else run M on w.
2 If M accepts, accept.

2 Output 〈M′〉.”

F is clearly computable. Furthermore, 〈M,w〉 6∈ ATM ⇔ L(M′) = ∅
Is ETM co-Turing-recognizable?
(Nondeterministically generate a w on its tape, run M on w).
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Equivalence Problem for TM’s (revisited)

Theorem 29
EQTM is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.
We first show ATM ≤m EQTM. Consider
F = “On input 〈M,w〉where M is a TM and w a string:

1 Construct
•M1 = “On input x: Reject.”
•M2 = “On input x:

1 Run M on w. If M accepts, accept.”
2 Output 〈M1,M2〉.”

(NTU EE) Decidability Spring 2024 46 / 55



Equivalence Problem for TM’s (revisited)

Proof (cont’d).
Next we show ATM ≤m EQTM. Consider
G = “On input 〈M,w〉where M is a TM and w a string:

1 Construct
•M1 = “On input x: Accept.”
•M2 = “On input x:

1 Run M on w.
2 If M accepts w, accept.”

2 Output 〈M1,M2〉.”
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Strong Rice’s Theorem

Theorem 30
Let P be a non-trivial property of TM descriptions, and M be a TM s.t. L(M) = Σ∗. If
〈M〉 6∈ P, then P is not Turing-recognizable.

Proof.
If we could show ATM ≤m P, which in turn implies ATM ≤m P. Pick a TM T with
〈T〉 ∈ P. Consider
S = “On input 〈M,w〉 :

1 If 〈M,w〉 does not encode a TM and a string, then accept.
2 Use 〈M,w〉 to construct

Mw = “On input x:

1 Run M on w and T on x in parallel,
2 If either accepts, accept x

3 Run the ”supposed” recognizer for P on 〈Mw〉. Output what the recognizer says.

L(Mw) = Σ∗ (〈Mw〉 6∈ P) iff 〈M,w〉 ∈ ATM

L(Mw) = L(T) (〈T〉 ∈ P) iff 〈M,w〉 6∈ ATM
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Applications of Strong Rice’s Theorem

ETM = {〈M〉 | L(M) = ∅} is not Turing-recognizable
I Clearly ETM is a non-trivial property
I For M with L(M) = Σ∗, 〈M〉 6∈ ETM.

Can you think of other applications?
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Arithmetic Hierarchy

A language L is in Σ0 (or Π0) if it is recursive.
A language L is in Σn, where n ≥ 1, if there is a recursive relation
R(x, y1, y2, ..., yn) such that

x ∈ L ⇔ ∃y1∀y2∃y3...QnynR(x, y1, y2, ..., yn).

where Qn is ∃ (resp., ∀) if n is odd (resp., even).
A language L is in Πn, where n ≥ 1, if there is a recursive relation
R(x, y1, y2, ..., yn) such that

x ∈ L ⇔ ∀y1∃y2∀y3...QnynR(x, y1, y2, ..., yn).

where Qn is ∃ (resp., ∀) if n is even (resp., odd).
∆n = Σn ∩Πn.
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Arithmetic Hierarchy
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Some Examples in Arithmetic Hierarchy

In what follows, we let R(M,w,n) be a predicate which is true if TM M
accepts w in ≤ n steps. Clearly, R is a decidable predicate.

ATM = {〈M,w〉 | ∃n,R(M,w,n)}.
I ATM ∈ Σ1

ETM = {〈M〉 | ∀〈w,n〉,¬R(M,w,n)}.
I ETM ∈ Π1

ALLTM = {〈M〉 | L(M) = Σ∗} = {〈M〉 | ∀w∃n,R(M,w,n)}.
I ALLTM ∈ Π2

FINTM = {〈M〉 | L(M) is finite} =
{〈M〉 | ∃m∀〈w,n〉(|w| ≤ m) ∨ ¬R(M,w,n)}.

I FINTM ∈ Σ2

COFINTM = {〈M〉 | L(M) is finite} =
{〈M〉 | ∃m∀w∃n(|w| ≤ m) ∨ R(M,w,n)}.

I COFINTM ∈ Σ3
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Some Examples in Arithmetic Hierarchy

How about the following languages:
EQTM = {〈M1,M2〉 | L(M1) = L(M2)}
Note: EQTM = {〈M1,M2〉 |
∃〈w,n〉∀m(R(M1,w, n) ∧ ¬R(M2,w,m)) ∨ (R(M2,w, n) ∧ ¬R(M1,w,m))}
INFTM = {〈M〉 | L(M) is infinite}
Note: INFTM = {〈M〉 | ∀m∃〈w,n〉(|w| ≥ m) ∧ R(M,w, n)}
REGTM = {〈M〉 | L(M) is regular}
Note: REGTM = {〈M〉 | ∃〈M′〉∀w∃n(R′(M′,w)⇔ R(M,w, n))}, where M′ is a FA,
and R′(M′,w) is true if FA M′ accepts w.

How about
CFLTM = {〈M〉 | L(M) is coontxt-free}?
RECTM = {〈M〉 | L(M) is recursive}?
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Gödel Incompleteness Theorem

A proof system is a collection of axioms.
A proof system is consistent if the axioms don’t contradict each
other.
A proof system is complete if every true statement can be derived
from the set of axioms.

Theorem 31
For a proof system within which a certain amount of elementary arithmetic
can be carried out,

1 if the system is consistent, then it is incomplete.
2 the system cannot prove ”its own consistency”.
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Gödel Incompleteness Theorem

Proof.
To prove (1), consider

Function S(M, program)
{ for each proof P

{
if (P proves S(S) loops) return;
if (P proves S(S) halts) loop;
}

}

Question: Does S(S) loop or halt?
Note: For the system to be complete, either S(S) loops or halts must hold.

if there is a P proving S(S) loops, S(S) halts.

if there is a P proving S(S) halts, S(S) loops.

Both yield inconsistency.
How to prove (2)?
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