Turing Machines

Recursive/Recursively Enumerable Languages

(NTU EE) Turing Machines Spring 2024 1/40

Schematic of Turing Machines

control

Lofofrfofafrfrfofufufo] -

Figure: Schematic of Turing Machines

A Turing machine has a finite set of control states.
A Turing machine reads and writes symbols on an infinite tape.
A Turing machine starts with an input on the left end of the tape.

A Turing machine moves its read-write head in both directions.
A Turing machine outputs accept or reject by entering its
accepting or rejecting states respectively.

» A Turing machine need not read all input symbols.

» A Turing machine may not accept nor reject an input.

(NTU EE) Turing Machines Spring 2024 2/40

Turing Machines

e Consider B = {a*bFck : k > 0}.
@ M; = “On input string w:
@ Scan right until s while checking if input is in a*b*c*, reject if not
@ Return head to left end.
© Scan right, crossing off single a, b, and c. (Tape alphabet =
{a7b7c7 ﬁ’ /b7 ﬁ’_,})
@ If the last one of each symbol, accept.
© If the last one of some symbol but not others, reject.
O If all symbols remain, return to left end and repeat from (3).

head
input tape
Finite A x| A\ B2 2] -] -] 3

control ‘

i

[accept

(Fig. from M. Sipser’s class notes)

(NTU EE) Turing Machines Spring 2024 3/40

Turing Machines — Formal Definition

Definition 1

A Turing machine is a 7-tuple (Q, 3, T, 6, 40, Gaccept, Greject) Where

(]

Q is the finite set of states;

@ X is the finite input alphabet not containing the blank symbol _;
@ I'is the finite tape alphabet with Ly € I"'and X C I

@ §:QxI'— QxTI x{L,R} is the transition function;

do € Q is the start state;

@ faccept € Q is the accept state; and
@ freject € Q is the reject state with greject 7# Gaccept-

@ The above definition is for deterministic Turing machines.

o Initially, a Turing machine receives its input w = wyw, - - - w, € ¥*
on the leftmost n cells of the tape.

@ Other cells on the tape contain the blank symbol L.

(NTU EE) Turing Machines Spring 2024 4 /40

Configurations of Turing Machines

What is a configuration of an automaton?

@ Intuitively, a configuration is a snapshot of the automaton’s
computation, recoding necessary information that determines
how the automaton progresses further.

@ For FA, a configuration is of the form (g,v) (or abbrev. as qv),
where g € Q and v € ¥* representing the remainder of the input
(i.e., the portion of the input that has not been read).

» If input string abcdef, and the FA in state g after reading c, the
configuration is gdef.
» the prefix abc does not affect how the FA behaves in the future.

@ For PDA, a configuration is of the form (g, v,s), where g € Q is the
current state, v € X* is the remainder of the input, and s € I'*
representing the content of the pushdown stack.

@ For TMs, a configuration is of the form uguv, whereg € Q, u,v € I'*
such that uv is the content of the tape and TM is reading the first
symbol of v.

(NTU EE) Turing Machines Spring 2024 5/ 40

Computation of Turing Machines

e A configuration of a Turing machine contains its current states,
current tape contents, and current head location.
o Letg € Qand u,v € I'. We write uqo to denote the configuration

where the current state is g, the current tape contents is uv, and the
current head location is the first symbol of v.

» When we say “the current tape contents is uv,” we mean an infinite
tape contains uv -
@ Consider the configuration 0014,1101. The Turing machine

> is at the state gp;
» has the tape contents 0011101; and
» has its head location at the second 1 from the left.

q2

lofofafafafoafufo]]uf -

(NTU EE) Turing Machines Spring 2024

Computation of Turing Machines

@ Let C; and C; be configurations. We say C; yields C, (written as
C1 F &) if the Turing machine can go from C; to C; in one step.

e Formally, leta,b,c € I', u,v € I'*, and g;, q; € Q.

uaq;bo - ugjaco if 6(q;,b) = (gj, ¢, L)
qibv - gjcv if 0(q;,b) = (gj,¢,L)
uaq;bo - uacqio if 6(q;,b) = (g;, ¢, R)

@ Note the 2nd case when the current head location is the leftmost
cell of the tape.

» A Turing machine updates the leftmost cell without moving its
head.

@ Recall that uag; is in fact uag; ..
@ Can you define the - relation for FA and PDA?

@ How many symbols in a configuration change in one step?
(Answer: at most 3. See uaq;bv - ugjacv and uagq;bv +- uacq;v)

(NTU EE) Turing Machines Spring 2024 7 /40

Accept, Reject, and Halting

@ The start configuration of M on input w is gow.

@ An accepting configuration of M is a configuration whose state is
Haccept (ie., WJacceptv)~

@ A rejecting configuration of M is a configuration whose state is
EIreject (i~e~/ UEIrejectU)'

@ Accepting and rejecting configurations are halting configurations
and do not yield further configurations.

@ A TM has 3 possible outcomes for each input w

Q Accept w (enter Gaccepr)
@ Reject w (ener Greject)
© Reject w by looping (running forever)

(NTU EE) Turing Machines Spring 2024 8 /40

Recognizable Languages

@ For binary relation -, let * be the reflexive transitive closure of |-.
o A Turing machine M accepts an input w if there is a sequence of
configurations Cq, Cy, ..., C; such that
» C; is the start configuration of M on input w;
» each C; F Ciyq; and
» Cy is an accepting configuration.

@ The language of M or the language recognized by M (written
L(M)) is thus

L(M) = {w : M accepts w}.
or equivalently

L(M) = {w : qow =" UfacceptV}-

Definition 2

A language is Turing-recognizable or recursively enumerable (abbrev.
as r.e.) if some Turing machine recognizes it.

v

(NTU EE) Turing Machines Spring 2024 9 /40

Decidable Languages

@ When a Turing machine is processing an input, there are three
outcomes: accept, reject, or loop.

» “Loop” means it never enters a halting configuration.
@ A deterministic finite automaton or deterministic pushdown
automaton have only two outcomes: accept or reject.

@ For a nondeterministic finite automaton or nondeterminsitic
pushdown automaton, it can also loop.

» “Loop” means it does not finish reading the input (e-transitions).
@ A Turing machine that halts on all inputs is called a decider.

@ When a decider recognizes a language, we say it decides the
language.

Definition 3

A language is Turing-decidable (decidable, or recursive) if some
Turing machine decides it.

(NTU EE) Turing Machines Spring 2024 10 / 40

Turing-Decidable vs. Recognizable Languages

@ Ais T-recognizable if A = L(M) for some TM M.
@ Ais T-decidable if A = L(M) for some TM M that halts on all

inputs.
— .
Accept Reject Infinite loop
halt

decidable

Figure: Relationship among Different Languages

(NTU EE) Turing Machines Spring 2024 11 /40

Turing Machines — Example

@ We now formally define M; = (Q, X, T, 6,41, Gaccept, Greject) Which
decides B = {w#w : w € {0,1}*}.

° Q={q1,---,q14, faccept, Qreject}}

o X ={0,1,#}and ' = {0, 1, #, %, }.

x — R

—R 0 =R @
s accept
l%x‘Ru

(NTU EE) Turing Machines Spring 2024 12 / 40

Turing Machines whose Heads can Stay

@ Recall that the transition function of a Turing machine indicate
whether its read-write head moves left or right.

@ Consider a new Turing machine whose head can stay (i.e., a
stationary move).

@ Hencewehaved: Q xI' - Q xI' x {L,R, S}.

@ Is the new Turing machine more powerful?

e Of course not, we can always simulate S by an R and then an L.

(NTU EE) Turing Machines Spring 2024 13 / 40

Multitape Turing Machines

o Initially, the input appears on the tape 1.

o If a multitape Turing machine has k tapes, its transition function
now becomes
§:QxTF 5 QxTIkx{L R}

e 0(gi,a1,...,ar) = (gj,b1, ..., by, d1, ..., dy) means that if the
machine is in state g; and reads a; from tape i for 1 <i <k, it goes
to state g;, writes b; to tape i for 1 <i < k, and moves the tape head
i towards the direction d; for 1 <i < k.

@ Are multitape Turing machines more powerful than signel-tape
Turing machines?

")

L inputtape
Finite |

control : } work tapes, initially blank

/_‘W

all tapes read/write

(NTU EE) Turing Machines Spring 2024 14 / 40

Multitape Turing Machines

Theorem 4

Every multitape Turing machine has an equivalent single-tape Turing
machine.

Proof.

We use a special new symbol # to separate contents of k tapes.
Moreover, k marks are used to record locations of the k virtual heads.
S = “Oninput w = wywy - - wy :

@ Write w in the correct format: #z51w2 oo H

@ Scan the tape and record all symbols under virtual heads. Then
update the symbols and virtual heads by the transition function of
the k-tape Turing machine.

@ If S moves a virtual head to the right onto a #, S writes a blank
symbol and shifts the tape contents from this cell to the rightmost
one cell to the right. Then S resumes simulation.” O

(NTU EE) Turing Machines Spring 2024 15/ 40

Multitape Turing Machines

1
M [ofof1]] S

' GBBELT ont
blo]p[a]] ERHBERARE

e A “mark” is in fact a different tape symbol.
» Say the tape alphabet of the multitape TM M is {0, 1, a,b, }.

» Then S has the tape alphabet {#,0,1,a,b, L, (.J, 1,a,b,00}.

#]|

4
a

Corollary 5

A language is Turing-Recognizable if and only if some multitape Turing
machine recognizes it.

(NTU EE) Turing Machines Spring 2024 16 / 40

Turing Machines with 2-way Infinite Tape

Theorem 6

A TM with a 2-way infinite tape can be simulated by one with a 1-way

infinite tape.

The new tape alphabet is I' x I', where I" is the tape alphabet of the

original TM.

(NTU EE)

Turing Machines

Spring 2024

17 / 40

Nondeterministic Turing Machines

@ A nondeterministic Turing machine has its transition function of
typed: Q xI' = P(Q x T x {L,R}).
» Equivalently, in some textbooks § € Q x I' x Q x I x {L, R}.
» d(q,a) = {(q1,b1,R), (42, b2, L)} is the same as
(9,a,91,b1,R), (g,a,92,b2,L) € 4.
@ Are nondeterministic Turing machines more powerful than
deterministic Turing machines?
» Recall that nondeterminism does not increase the expressive power
in finite automata.
> Yet nondeterminism does increase the expressive power in
pushdown automata.

NTM

N | GRBEELD

A

(NTU EE) Turing Machines Spring 2024 18 / 40

accept

Nondeterministic Turing Machines

Theorem 7

Every nondeterministic Turing machine has an equivalent deterministic
Turing machine.

Proof.

Nondeterministic computation can be seen as a tree. The root is the
start configuration. The children of a tree node are all possible
configurations yielded by the node. By ordering children of a node, we
associate an address with each node. For instance, € is the root; 1 is the
first child of the root; 21 is the first child of the second child of the root.
We simulate an NTM N with a 3-tape DTM D. Tape 1 contains the
input; tape 2 is the working space; and tape 3 records the address of
the current configuration.

Let b be the maximal number of choices allowed in N. Define

Yy ={1,2,...,b}. We now describe the Turing machine D.

(NTU EE) Turing Machines Spring 2024 19 / 40

Nondeterministic Turing Machines

Proof.
Q Initially, tape 1 contains the input w; tape 2 and 3 are empty.

@ Copy tape 1 to tape 2.
@ Simulate N from the start state on tape 2 according to the address
on tape 3.

When compute the next configuration, choose the transition by the
next symbol on tape 3.
If no more symbol is on tape 3, the choice is invalid, or a rejecting
configuration is yielded, go to step 4.
If an accepting configuration is yielded, accept the input.

© Replace the string on tape 3 with the next string lexicographically
and go to step 2. O

(NTU EE) Turing Machines Spring 2024 20 / 40

Nondeterministic Turing Machines

NTM

N | GLBREER

fag—

[a[a[b[b[a]-[-] - -- input-tape
D —

[alc[b[b] " work-tape

A2[-1-1-T""" 2 address-tape

/\ accept

@ In the computation tree, the red configuration can be encoded as
//13//.

@ Basically, the simulation is to do a “breadth-first search” of the
“possibly” infinite tree. Can we do ”depth-first search” instead?

(NTU EE) Turing Machines S 4 21 /40

Nondeterministic Turing Machines

Corollary 8

A language is Turing-recognizable if and only if some nondeterministic
Turing machine recognizes it.

@ A nondeterministic Turing machine is a decider if all branches
halt on all inputs.

o If the NTM N is a decider, a slight modification of the proof makes
D always halt. (How?)

Corollary 9

A language is decidable if and only if some nondeterministic Turing machine
decides it.

(NTU EE) Turing Machines Spring 2024 22 /40

Schematic of Enumerators
% o | CECCCEET

control read/write tape — initially blank
printer

Figure: Schematic of Enumerators

(Fig. from M. Sipser’s class notes)

@ An enumerator is a Turing machine with a printer.
@ An enumerator starts with a blank input tape.
@ An enumerator outputs a string by sending it to the printer.
@ The language enumerated by an enumerator is the set of strings
printed by the enumerator.
» Since an enumerator may not halt, it may output an infinite
number of strings.
» An enumerator may output the same string several times.

(NTU EE) Turing Machines S g 23 /40

Enumerators for TM Recongnizable /Decidable

Languages

Consider the lexicographical order s1, 57, ... of ¥*.
E.g., for ¥ = {0,1}, the sequence ¢, 0, 1,00, 01, 10, 11, 000, 001, 010, ...

o Lis a TM decidable language < an Enumerator E generates L in
lexicographical order. E.g. E outputs ¢,1,001,1011, 010011,
» = E simulates TM M for strings in lexicographical order until
halting. If accepts, outputs the string.
» < Oninput w, TM M simulates E until (1) E generates w, then

accepts; or (2) E generates a string “following” w in lex. order, then
rejects.

@ Lis a TM recognizable language < an Enumerator E generates L.
E.g. E outputs 010011, (10)!%% ¢ 1011, 1,001,

» = Note that the set {(7,}) | i,j € N} is countable. When dealing with
(i,7), E simulates string s; for j steps. If accepts, outputs s;.
Question: Can't E simulate s; directly?

» < Oninput w, M simulates E. If E outputs w, M accepts.

(NTU EE) Turing Machines Spring 2024 24 / 40

Enumerators

Theorem 10

A language is Turing-decidable if and only if some enumerator enumerates it
in lexicographical order.

Proof.
Let E be an enumerator. Consider the following TM M:
M = “Oninput w :

© Run E and compare each generated output string with w.

@ Accept if E ever outputs w; reject if E outputs a w’ with w < w'”
Conversely, let M be a TM deciding A, and assume that > = {0, 1}.
E = “Ignore the input.

@ Repeat for w = ¢,0,1,00, 01,10, 11, 000, . ..

@ Run M on w;

@ If M accepts w, output s;;
@ If M rejects w, exit O

(NTU EE) Turing Machines Spring 2024 25/ 40

Enumerators

Theorem 11

A language is Turing-recognizable if and only if some enumerator enumerates
it.

Proof.
Let E be an enumerator. Consider the following TM M:
M = “Oninput w :

@ Run E and compare any output string with w.

@ Accept if E ever outputs w.”

Conversely, let M be a TM recognizing A. Consider
E = “Ignore the input.
Q Repeatfori=1,2,...
@ Letsy,sy,...,s; be the first i strings in ¥* (say, lexicographically).
@ Run M for i steps on each of 51,5, ... ,S;.
© If M accepts s; for 1 <j < i, outputs;. O

(NTU EE) Turing Machines Spring 2024 26 / 40

Algorithms

@ Let us suppose we lived before the invention of computers.
» say, circa 300 BC, around the time of Euclid.

@ Consider the following problem:
Given two positive integers a and b, find the largest integer r such
that r divides 2 and r divides b, i.e., finding the greatest common
divisor (GCD).
@ How do we “find” such an integer?
@ Euclid’s method is in fact an algorithm.
» GCD(A,B) = GCD(B, R), where R the remainder of A divided by B.
» GCD(35,30) = GCD(30,5).
@ Keep in mind that the concept of algorithms has been in
mathematics long before the advent of computer science.

(NTU EE) Turing Machines Spring 2024 27 / 40

Hilbert’s Problems

@ Mathematician David Hilbert listed 23 problems in 1900.
(#1) Problem of the continuum (Does set A exist where |N| < |A| < |R|?).
(#10) Give an algorithm for solving Diophantine equations.
» Example: 3x? — 2xy — y?z = 7; solution: x = 1,y =2,z = -2
» Goal: devise “a process according to which it can be determined by
a finite number of operations,” that tests whether a polynomial has
an integral root.

@ If such an algorithm exists, we just need to invent it.
@ What if there is no such algorithm?

» How can we argue Hilbert’s 10th problem has no solution?
@ We need a precise definition of algorithms!

(NTU EE) Turing Machines Spring 2024 28 / 40

Church-Turing Thesis

In 1936, two papers came up with definitions of algorithms.

Alonzo Church used A-calculus to define algorithms.

» If you don’t know A-calculus, take Programming Languages.
Alan Turing used Turing machines to define algorithms.

» If you don’t know TM now, please consider dropping this course.

It turns out that both definitions are equivalent!

The connection between the informal concept of algorithms and
the formal definitions is called the Church-Turing thesis.

(NTU EE) Turing Machines Spring 2024 29 / 40

Hilbert’s 10th Problem

@ In 1970, Yuri Matijasevi¢ showed that Hilbert’s 10th problem is
not solvable.

» That is, there is no algorithm for testing whether a polynomial has
an integral root.
@ Define D = {p : p is a polynomial with an integral root}.
@ Consider the following TM:
M = “The input is a polynomial p over variables x1, x2, ..., x
© Evaluate p on an enumeration of k-tuple of integers.
@ If p ever evaluates to 0, accept.”

@ M recognizes D but does not decide D.

) — Turing
Algorithm — .
machine
Intuitive Formal

(NTU EE) Turing Machines Spring 2024 30 / 40

Encodings of Turing Machines

To represent a Turing machine
M= (Qv {07 1}7 ', 0, q1, ‘—‘7P)

as a binary string, we must first assign integers to the states, tape
symbols, and directions L and R:

@ Assume the states are 41,92, ..., g, for some r. The start state is q;,
and the only accepting state is g».

@ Assume the tape symbols are X1, Xo, ..., X; for some s. Then:
OIXl,l :Xz,andl_::Xg,.

@ L =Djand R = Ds.

@ Encode the transition rule 6(g;, X;) = (qk, Xi, D) by
0'10/10%10'10™. Note that there are no two consecutive 1s.

@ Encode an entire Turing machine by concatenating, in any order,
the codes C; of its transition rules, separated by
11: C111Co11 - - - G 111G,

(NTU EE) Turing Machines Spring 2024 31 /40

= ({91,92,93},{0,1},{0,1, 4}, 6,41, s, {42}) with
(S(qla 1) = (573:0-/12)/ (5(‘1370) = (qla 17R)/ 5(‘13,1) = (q2707R)/ and
5(’737 ‘—‘) = (q37 17L)'

@ Codes for the transition rules:
n 1=X, q3 0 R=D,

A T N
0 10010001 0 1 00 0001010100100
00010010010100 0001000100010010

@ Code for M: 0100100010100110001010100100
00010010010100110001000100010010

Given a Turing machine M with code w; , we can now associate an
integer to it: M is the ith Turing machine, referred to as M;. Many
integers do no correspond to any Turing machine at all. Examples:
11001 and 001110.

If w; is not a valid TM code, then we shall take M; to be the Turing
machine (with one state and no transitions) that immediately halts on
any input. Hence L(M;) = 0 if w; is not a valid TM code.

(NTU EE) Turing Machines Spring 2024 32 /40

Acceptance Problem for TM’s

@ Notation: (O1, Oy, ..., Ok) encodes objects O1, Oy, ..., Ok as a single
string. E.g., (0011,10111) can be represented as 0011#10111.
o Consider

Arv = {(M,w) : M isa TM and M accepts w}

@ Consider the following TM:
U = “On input (M, w) where M is a TM and w is a string:
© Simulate M on the input w.
@ If M enters its accept state, accept; if M enters its reject state, reject.”

@ Does U decide Arv? Why not?
@ The TM U is called the universal Turing machine.

(Fig. from https://people.csail. mit.edu/devadas/6.004/Lectures/lect13/sld012.htm)

(NTU EE) Turing Machines Spring 2024 33 /40

Counting Arguments

@ Recall that |N| = |Z| = |Z*| = Rp (X is finite).
@ Also recall that |P(X*)| > No.
» In fact, any subset of ¥* can be uniquely represented as an infinite
string of 0’s and 1’s. E.g. {¢, b, ba,aab, ...} C {a,b}* corresponds to

€ b ba aab
AN AN AN A
10100100 1

Note that the lex. order of {a,b}* is €,a,b,aa,ab, ba, bb, aaa, aab...

Corollary 12

Some languages are not Turing-recognizable.

Proof.

The set of all Turing machines is countable since each TM M has an
encoding (M) in ¥*.

The set of all languages over X is P(X*) and hence is uncountable. [

e Can we find a concrete example?

(NTU EE) Turing Machines Spring 2024 34 /40

Undecidability of the Acceptance Problem for TM’s

Theorem 13
Ay = {(M,w) : M is a TM and M accepts w} is not a decidable language.

Proof.
The proof is by contradiction. Suppose there is a TM H deciding Arv. That is,

[accept if M accepts w
H((M, w)) = { reject if M does not accept w

Consider the following TM:
D = “On input (M) where M is a TM:
@ Run H on the input (M, (M)).
© If H accepts, reject. If H rejects, accept.”

Consider
[accept if D does not accept (D)
D) = { reject if D accepts (D)

A contradiction. L]

(NTU EE) Turing Machines Spring 2024

Undecidability of the Acceptance Problem for TM’s

The above proof uses the diagonalization method.

All All TM descriptions:
™S |(My) (Mp) (Ms) (M) ... (D)

M, | acc

M, rej
M, acc

M, acc

(NTU EE) Turing Machines Spring 2024 36 / 40

A Turing-unrecognizable Language

@ A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language.

Theorem 14

A language is decidable if and only if it is Turing-recognizable and
co-Turing-recognizable.

Proof.

If A is decidable, then A and A are both recognizable. Since j =A, Ais
Turing-recognizable agld co-Turing-recognizable.
Now suppose A and A are Turing-recognizable by M; and M,
respectively. Consider
M = “On input w:

© Run both M; and M, on the input w in parallel.

@ If M; accepts, accept; if M, accepts; reject.”

(NTU EE) Turing Machines Spring 2024 37 /40

]

How to Run Two Turing Machines in Parallel?

N
S
LDE Accept Reject

@ Suppose My = (Q1,%,T'1,601,491, 1, F1) and
My = (Q2,3,12,02,92, 1, F2).
@ M has three tapes. Tape 1 (resp., Tape 2) serves as the work tape of
M; (resp., M), Tape 3 contains the input w.
o M=(Q,%,I',0,90, s, F) where Q = Q1 x Q2 x {1,2},
q0 = (41,92, 1), -~
@ On input w, M first copies w from tape 3 to both tape 1 and tape 2.
@ A run of M is of the form
(91,92,1) = (p1,92,2) = (p1,p2,1) = (—, —,2), which alternates
between the executions of My and M.
@ Can M run M; on w, then M, on w?

(NTU EE) Turing Machines Spring 2024 38 /40

A Turing-unrecognizable Language

Corollary 15

Aty is not Turing-recognizable.

Proof.

At is Turing-recognizable. If Aty is Turing-recognizable, Aty is both
Turing-recognizable and co-Turing-recognizable. By Theorem 14, Aty

is decidable. A contradiction.]
Aru Ay
Turing- Turing- Co-Turing-
recognizable | decidable recognizable

(NTU EE) Turing Machines Spring 2024

Turing-recognizable and Decidable Languages

Theorem 16

Language C is Turing-recognizable <> there is a decidable language D such
that C = {x | 3y, (x,y) € D,x,y € £*}

Proof.

(=) Let M be a TM accepting C. Define

D = {(x,y) | M accepts x in y steps}, which is clearly decidable.
Furthermore, x € L(M) < 3y, (x,y) € D.

(<) Let N be a decider for D. Consider TM M, on input x, guesses a y,

C is a “projection” of D

runs N to check whether (x,y) € D; if N accepts, accepts. O
y-axis ?//\7—\
,(’C-J') /\

‘ x x-axis

(NTU EE) Turing Machines Spring 2024 40/ 40

	Turing Machines
	Variants of Turing Machines
	Multitape Turing Machines
	Nondeterministic Turing Machines
	Enumerators

	The Definition of Algorithm
	Acceptance Problem for TM's

