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Context-Free Grammars

Here is an example of a context-free grammar G1:

A −→ 0A1
A −→ B
B −→ #

Each line is a substitution rule (or production).
A,B are variables.
0,1,# are terminals.
The left-hand side of the first rule (A) is the start variable.
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Grammars and Languages

A −→ 0A1
A −→ B
B −→ #

A grammar describes a language.
A grammar generates a string of its language as follows.

1 Write down the start variable.
2 Find a written variable and a rule whose left-hand side is that

variable.
3 Replace the written variable with the right-hand side of the rule.
4 Repeat steps 2 and 3 until no variable remains.

For example, consider the following derivation of the string
00#11 generated by G1:

A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11

Any language that can be generated by some context-free
grammar is called a context-free language.

(NTU EE) Context-Free Languages Spring 2024 3 / 46



Grammars and Languages

With respect to the following derivation of the string 00#11
generated by G1:

A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11

we also use a parse tree to denote a string generated by a
grammar:

A

B

A

A

#0 10 1
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Context-Free Grammars – Formal Definition

Definition
A context-free grammar is a 4-tuple (V,Σ,R,S) where

V is a finite set of variables (also called non-terminals);
Σ is a finite set of terminals where V ∩ Σ = ∅;
R is a fintie set of production rules. Each rule consists of a variable
and a string of variables and terminals; and
S ∈ V is the start variable.

Let u, v,w are strings of variables and terminals, and A −→ w a
rule. We say uAv yields uwv (written uAv⇒ uwv).

u derives v (written u ∗
=⇒ v) if u = v or there is a sequence

u1,u2, . . . ,uk (k ≥ 0) that u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ : S ∗
=⇒ w}.
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Context-Free Languages – Examples

Example (Balanced Parentheses)
Consider G3 = ({S}, {(, )},R,S) where R is

S −→ (S) | SS | ε.

A −→ w1 | w2 | · · · | wk stands for

A −→ w1
A −→ w2

...
A −→ wk

Examples of the strings generated by G3: ε, (), (())(), . . ..
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Parse Trees vs. Derivation Sequences

Consider the following grammar: E→ E + E | E× E | (E) | a

The following two derivation sequences have the same parse tree.
E⇒ E + E⇒ a + E⇒ a + E× E⇒ a + E× a⇒ a + a× a
E⇒ E + E⇒ E + E× E⇒ a + E× E⇒ a + a× E⇒ a + a× a
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Context-Free Languages – Examples

From a DFA M, we can construct a context-free grammar GM such
that the language of G is L(M).
Let M = (Q,Σ, δ, q0,F) be a DFA. Define GM = (V,Σ,P,S) where

I V = {Ri : qi ∈ Q} and S = {R0}; and
I P = {Ri −→ aRj : δ(qi,a) = qj} ∪ {Ri −→ ε : qi ∈ F}.

Recall M3 and construct GM3 = ({R1,R2}, {0,1},P, {R1}) with

R1 −→ 0R1 | 1R2 | ε
R2 −→ 0R1 | 1R2.

The above is a right-linear grammar for which the right-hand-side
contains at most one variable at the end of the rule.

0

q1 q2

0

1
1

Figure: M3
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Subclasses of Context-Free Grammars

• Right-Linear Grammar

R1 −→ 0R1 | 1R2 | ε
R2 −→ 0R1 | 1R2

• Left-Linear Grammar
R1 −→ R10 | R21 | ε
R2 −→ R10 | R21

• Linear Grammar
R1 −→ 0R11 | ε

Note: Left- and Right-Linear Grammars only generate regular languages, while
Linear Grammar could generate non-regular languages such as {0n1n | n ≥ 0}.
•How about rules contain both RL and LL rules? (Can you use such to
generate {0n1n | n ≥ 0}?)

R1 −→ R21 | ε
R2 −→ 0R1

(NTU EE) Context-Free Languages Spring 2024 9 / 46



Context-Free vs. Context-Sensitive Grammars

1 Context-Free Rules: A −→ β, β ∈ (V ∪ Σ)∗

2 Context-Sensitive Rules: αAγ −→ αβγ, α, γ ∈ (V ∪ Σ)∗,
β ∈ (V ∪ Σ)+

Similarity: both replace A by β.
Difference: in (2), replacing A by β could only take place if A is
surrounded by (in the context of) α and γ.
Context-sensitive grammars are more powerful than context-free
grammars.

The Chomsky Hierarchy

Grammars Rules Languages Automata
Type 3 / Right-linear A→ aB, A→ ε Regular DFA/NFA

Type 2 / CFG A→ α CFL PDA
Type 1 / CSG αAγ → αβγ, |β| > 0 CSL LBA

Type 0 / Unrestricted αAγ → β r.e. Turing Machine
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Context-Free Languages – Examples

Example (Fragment of C Grammar)
Consider G4 = (V,Σ,R, 〈EXPR〉) where

V = {〈EXPR〉, 〈TERM〉, 〈FACTOR〉}, Σ = {a,+,×, (, )}; and
R is

〈EXPR〉 −→ 〈EXPR〉+〈TERM〉 | 〈TERM〉
〈TERM〉 −→ 〈TERM〉×〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 −→ (〈EXPR〉) | a

a + aa ×

〈FACTOR〉〈FACTOR〉

〈TERM〉〈TERM〉

〈TERM〉

〈EXPR〉

〈EXPR〉

〈FACTOR〉
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Ambiguity

Example (Fragment of C Grammar)
Consider G5:

〈EXPR〉 −→ 〈EXPR〉+〈EXPR〉 | 〈EXPR〉×〈EXPR〉 | (〈EXPR〉) | a

We have two parse trees for a + a× a.

a aa ×

〈EXPR〉 〈EXPR〉

+

〈EXPR〉 〈EXPR〉

〈EXPR〉

a aa ×

〈EXPR〉

+

〈EXPR〉

〈EXPR〉

〈EXPR〉〈EXPR〉

If a grammar generates (w.r.t. parse trees) the same in different
ways, the string is derived ambiguously in that grammar.
If a grammar generates some string ambiguously, it is ambiguous.
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Ambiguity

A derivation is a leftmost derivation if the leftmost variable is the
one replaced at every step.
Two leftmost derivations of a + a× a:

〈EXPR〉 ⇒ 〈EXPR〉×〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉×〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉 ⇒ a+〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

Theorem
A string is derived ambiguously in a grammar if it has two or more different
leftmost derivations.

If a language can only be generated by ambiguous grammars, we
call it is inherently ambiguous.

I {aibjck : i = j or j = k} is inherently ambiguous.
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Chomsky Normal Form (CNF)

Definition
A context-free grammar is in Chomsky normal form if every rule is of
the form

S −→ ε
A −→ BC
A −→ a

where a is a terminal, S is the start variable, A is a variable, and B,C
are non-start variables.

RHS is (1) ε (only from S), (2) exactly two non-start variables, (3)
exactly one terminal.

Theorem
Any context-free language is generated by a context-free grammar in
Chomsky normal form.
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Chomsky Normal Form

Proof.
Given a context-free grammar for a context-free language, we will
convert the grammar into Chomsky normal form.

1 (start variable) Add a new start variable S0 and a rule S0 −→ S.
2 (ε-rules) For each ε-rule A −→ ε(A 6= S0), remove it. Then for each

occurrence of A on the right-hand side of a rule, add a new rule
with that occurrence deleted.

I R −→ uAvAw becomes R −→ uAvAw | uvAw | uAvw | uvw.
3 (unit rules) For each unit rule A −→ B, remove it. Add the rule

A −→ u for each B −→ u.
4 For each rule A −→ u1u2 · · · uk(k ≥ 3) and ui is a variable or

terminal, replace it by A −→ u1A1, A1 −→ u2A2, . . . ,
Ak−2 −→ uk−1uk.

5 For each rule A −→ u1u2 with u1 a terminal, replace it by
A −→ U1u2, U1 −→ u1. Similarly when u2 is a terminal.

(NTU EE) Context-Free Languages Spring 2024 15 / 46



Chomsky Normal Form – Example

Consider G6 on the left. We add a new start variable on the right.

S −→ ASA | aB
A −→ B | S
B −→ b | ε

S0 −→ S
S −→ ASA | aB
A −→ B | S
B −→ b | ε

Remove B −→ ε (left) and then A −→ ε (right):
S0 −→ S
S −→ ASA | aB | a
A −→ B | S | ε
B −→ b

S0 −→ S
S −→ ASA | aB | a | SA | AS | S
A −→ B | S
B −→ b

Remove S −→ S (left) and then S0 −→ S (right):
S0 −→ S
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b
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Chomsky Normal Form – Example

Remove A −→ B (left) and then A −→ S (right):

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ S | b
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ b | ASA | aB | a | SA | AS
B −→ b

Remove S0 −→ ASA, S −→ ASA, and A −→ ASA:
S0 −→ AA1 | aB | a | SA | AS
S −→ AA1 | aB | a | SA | AS
A −→ b | AA1 | aB | a | SA | AS
B −→ b

A1 −→ SA
Add U −→ a:

S0 −→ AA1 | UB | a | SA | AS
S −→ AA1 | UB | a | SA | AS
A −→ b | AA1 | UB | a | SA | AS
B −→ b

A1 −→ SA
U −→ a
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Schematic of Pushdown Automata

Each step of the PDA looks like:
Read current symbol and advance head;
Read and pop top-of-stack symbol;
Push in a string of symbols on the stack;
Change state.

Each transition is of the form

(p, a,X)→ (q,Y1Y2...Yk)
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Three Mechanisms of Acceptance

Accept if input is consumed and
1 Stack is empty (Acceptance by Empty Stack),
2 PDA is in a final state (Acceptance by Final State),
3 PDA is in a final state and stack is empty (Acceptance by Final State

and Empty Stack).

It turns out that the three notions of acceptance are equivalent.
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Pushdown Automata

Consider L = {0n1n : n ≥ 0}.
We have the following table:

Language Automata
Regular Finite

Context-free Pushdown
A pushdown automaton is a finite automaton with a stack.

I A stack is a last-in-first-out storage.
I Stack symbols can be pushed and poped from the stack.

Computation depends on the content of the stack.
It is not hard to see L is recognized by a pushdown automaton.
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Pushdown Automata – Formal Definition

Definition
A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0,F) where

Q is the set of states;
Σ is the input alphabet;
Γ is the stack alphabet;
δ : Q× Σε × Γε → P(Q× Γε) is the transition function;
q0 ∈ Q is the start state; and
F ⊆ Q is the accept states.

Recall Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}.
We consider nondeterministic pushdown automata in the
definition. It convers deterministic pushdown automata.
Deterministic pushdown automata are strictly less powerful.
For convenience, we often extend δ to Q× Σε × Γε → P(Q× Γ∗),
i.e., allowing a ∈ Γε in the stack to be replaced by x ∈ Γ∗.
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Computation of Pushdown Automata

A pushdown automaton M = (Q,Σ,Γ, δ, q0, F) accepts input w if w can be
written as w = w1w2 · · ·wm with wi ∈ Σε and there are sequences of states
r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ (representing contents of the
stack) such that

(r0, s0)
w1,−→ (r1, s1) · · · (ri, at)

w1+1, a→b
→ (r1+1, bt) · · · wm,−→ (rm, sm)

where
I r0 = q0 and s0 = ε;
I For 0 ≤ i < m, we have (ri+1, b) ∈ δ(ri,wi+1, a), si = at, and si+1 = bt

for some a, b ∈ Γε and t ∈ Γ∗.
F On reading wi+1, M moves from ri with stack at to ri+1 with stack bt.
F Write c, a→ b(c ∈ Σε and a, b ∈ Γε) to denote that the machine is

reading c from the input and replacing the top of stack a with b.
I rm ∈ F.

The language recognized by M is denoted by L(M).
I That is, L(M) = {w : M accepts w}.

(NTU EE) Context-Free Languages Spring 2024 22 / 46



Pushdown Automata – Example

Let M1 = (Q,Σ,Γ, δ, q1,F) where
I Q = {q1, q2, q3, q4}, Σ = {0,1}, Γ = {0, $}, F = {q1, q4}; and
I δ is the following table:

input 0 1 ε
stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2,0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

L(M1) = {0n1n : n ≥ 0}
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Pushdown Automata – Example

Consider the following pushdown automaton M2:

ε, ε→ ε ε, ε→ ε

b, ε→ ε c,a→ εa, ε→ a

b,a→ ε c, ε→ ε

ε, $→ ε

ε, $→ ε

q7

q4

q6q5

q3

q2

q1

ε, ε→ $ ε, ε→ ε

L(M2) = {aibjck : i, j, k ≥ 0 and, i = j or i = k}
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Context-Free Grammars⇒ Pushdown Automata

Idea: Use PDA to simulate derivations
Example: G : A→ 0A1 | B; B→ #

Derivation: A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11
Rule:

I Write the start symbol A onto the stack
I Rewrite variable on top of stack (in reverse) according to

production
I Pop top terminal if it matches input
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Context-Free Grammars⇒ Pushdown Automata

Note
The above construction seems to suggest that the number of states
in a PDA is not very ”important”.
In fact, we can turn an arbitrary PDA into an equivalence one with
a single state, such PDA are sometimes called ”stateless” PDA.

I The ”state” information can be incorporated into a ”stack symbol”,
in a way how a programming language handles the ”call-return”
mechanism in a function call.

(NTU EE) Context-Free Languages Spring 2024 26 / 46



Context-Free Grammars⇒ Pushdown Automata

Lemma
If a language is context-free, some pushdown automaton recognizes it.

Proof.
Let G = (V,Σ,R,S) be a context-free grammar generating the
language. Define
P = ({qstart, qloop, qaccept, . . .},Σ,V ∪ Σ ∪ {$}, δ, qstart, {qaccept}) where

δ(qstart, ε, ε) = {(qloop,S$)}
δ(qloop, ε,A) = {(qloop,w) : A −→ w ∈ R}
δ(qloop, a, a) = {(qloop, ε)}
δ(qloop, ε, $) = {(qaccept, ε)}

Note that (r,u1u2 · · · ul) ∈ δ(q, a, s) is simulated by (q1,ul) ∈ δ(q, a, s),
δ(q1, ε, ε) = {(q2,ul−1)}, . . ., δ(ql−1, ε, ε) = {(r,u1)}.
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Example

Example
Find a pushdown automaton recognizing the language of the
following context-free grammar:

S −→ aTb | b
T −→ Ta | ε

ε, ε→ S

ε, ε→ T

ε,T → a

qloop

qstart
ε, ε→ $

qaccept
ε, $→ ε

ε,S→ b
ε,T → ε
a,a→ ε
b,b→ ε

ε, ε→ T

ε, ε→ aε,S→ b
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Simplified PDA

Has a single accepting state
Empties its stack before accepting
Each transition is either a push, or a pop, but not both
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Pushdown Automata⇒ Context-Free Grammars

Key Idea: For every pair (q, r) of states in PDA, introduce variable
Aqr in CFG so that

I Aqr
∗

=⇒ w iff PDA goes from q to r reading w (with empty stack
both at q and at r)

(NTU EE) Context-Free Languages Spring 2024 30 / 46



Pushdown Automata⇒ Context-Free Grammars

Type 1: Aps → aAqrb
Type 2: Apf → ApsAsf

Type 3: Agg → ε

 

p 

q r 

s f 

Read a push X Read b pop X 

Aps  a Aqr b 

Apf  Aps Asf 

g 

Agg  ε 
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Pushdown Automata⇒ Context-Free Grammars

Lemma
If a pushdown automaton recognizes a language, the language is context-free.

Proof.
Without loss of generality, we consider a pushdown automaton that
has a single accept state qaccept and empties the stack before accepting.
Moreover, its transition either pushes or pops a stack symbol at any
time. Let P = (Q,Σ,Γ, δ, q0, {qaccept}). Define the context-free grammar
G = (V,Σ,R,S) where

V = {Apq : p, q ∈ Q}, S = Aq0,qaccept ; and
R has the following rules:

I For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σε, if (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t), then Apq −→ aArsb ∈ R.

I For each p, q, r ∈ Q, Apq −→ AprArq ∈ R.
I For each p ∈ Q, App −→ ε ∈ R.
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Example

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

We write Ai,j for Aqiqj .
Consider the following context-free grammar:

A14 → A23 since (q2, $) ∈ δ(q1, ε, ε) and (q4, ε) ∈ δ(q3, ε, $)
A23 → 0A231 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q3,1,0)
A23 → 0A221 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q2,1,0)
A22 → ε
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Pushdown Automata⇒ Context-Free Grammars

Lemma
If Apq generates x in G, then x can bring P from p with empty stack to q with
empty stack.

Proof.
Prove by induction on the length k of derivation.

k = 1. The only possible derivation of length 1 is App ⇒ ε.

Consider Apq
∗

=⇒ x of length k + 1. Two cases for the first step:
I Apq ⇒ aArsb. Then x = ayb with Ars

∗
=⇒ y. By IH, y brings P from r

to s with empty stack. Moreover, (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t) since Apq −→ aArsb ∈ R. Let P start from p with
empty stack, P first moves to r and pushes t to the stack after
reading a. It then moves to s with t in the stack. Finally, P moves to
q with empty stack after reading b and popping t.

I Apq ⇒ AprArq. Then x = yz with Apr
∗

=⇒ y and Arq
∗

=⇒ z. By IH, P
moves from p to r, and then r to q.
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Pushdown Automata⇒ Context-Free Grammars

Lemma
If x can bring P from p with empty stack to q with empty stack, Apq generates
x in G.

Proof.
Prove by induction on the length k of computation.

k = 0. The only possible 0-step computation is to stay at the same state while
reading ε. Hence x = ε. Clearly, App

∗
=⇒ ε in G.

Two possible cases for computation of length k + 1.
I The stack is empty only at the beginning and end of the computation. If P

reads a, pushes t, and moves to r from p at step 1, (r, t) ∈ δ(q, a, ε). Similarly,
if P reads b, pops t, and moves to q from s at step k + 1, (q, ε) ∈ δ(s, b, t).
Hence Apq −→ aArsb ∈ G. Let x = ayb. By IH, Ars

∗
=⇒ y. We have Apq

∗
=⇒ x.

I The stack is empty elsewhere. Let r be a state where the stack becomes
empty. Say y and z are the inputs read during the computation from p to r
and r to q respectively. Hence x = yz. By IH, Apr

∗
=⇒ y and Arq

∗
=⇒ z. Since

Apq −→ AprArq ∈ G. We have Apq
∗

=⇒ x.
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Context-Free Grammars and Pushdown Automata

Theorem
A language is context-free if and only if some pushdown automaton
recognizes it.

Corollary
Every regular language is context-free.

When we say PDA, we mean ”nondeterministic PDA”
Deterministic PDA (DPDA) are less powerful, they only accept
deterministic context-free languages (DCFL).
DPDA cannot accept {wwR | w ∈ {0, 1}∗} or {anbncn | n ≥ 0}.
The equivalence problem is undecidable for PDA, yet it is
decidable for DPDA.
Regular ( DCFL ( CFL
DCFLs are not closed under union, intersection, concatenation,
but are closed under complement.
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Pumping Lemma for CFLs

Theorem
If A is a context-free language, then there is a number p (the puming length)
such that for every s ∈ A with |s| ≥ p, there is a partition s = uvxyz that

1 for each i ≥ 0, uvixyiz ∈ A;
2 |vy| > 0; and
3 |vxy| ≤ p.

Proof.
Let G = (V,Σ,R,T) be a context-free grammar for A. Define b to be the
maximum number of symbols in the right-hand side of a rule. Observe
that a parse tree of height h has at most bh leaves and hence can
generate strings of length at most bh.
Choose p = b|V|+1. Let s ∈ A with |s| ≥ p and τ the smallest parse tree
for s. Then the height of τ ≥ |V|+ 1. There are |V|+ 1 variables along
the longest branch. A variable R must appear twice.
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Pumping Lemma for CFLs

(Fig. from M. Sipser’s class notes)

Proof. (cont’d).

From Figure (a), we see uvixyiz ∈ A for i ≥ 0.
Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than τ . A
contradiction. Hence |vy| > 0.
Finally, recall R is in the longest branch of length |V|+ 1. Hence the
subtree R generating vxy has height ≤ |V|+ 1. |vxy| ≤ b|V|+1 = p.
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Pumping Lemma – Examples

Example
Show B = {anbncn : n ≥ 0} is not a context-free language.

Proof.

Let p be the pumping length. s =

uvxyz︷ ︸︸ ︷
apbpcp ∈ B. Consider a partition

s = uvxyz with |vy| > 0. There are two cases:
v or y contain more than one type of symbol, e.g.,

u︷︸︸︷
aaaa

v︷︸︸︷
aab

xyz︷ ︸︸ ︷
bbbbbcccccc. Then uv2xy2z 6∈ B.

v and y contain only one type of symbol, e.g.,
u︷︸︸︷

aaa
v︷︸︸︷

aa

x︷︸︸︷
ab

y︷︸︸︷
bb

z︷ ︸︸ ︷
bbbcccccc. Then one of a, b, or c does not appear

in v nor y (pigeon hole principle). Hence uv2xy2z 6∈ B for
|vy| > 0.
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Pumping Lemma – Examples

Example

Show C = {aibjck : 0 ≤ i ≤ j ≤ k} is not a context-free language.

Proof.
Let p be the pumping length and s = apbpcp ∈ C. Consider any
partition s = uvxyz with |vy| > 0. There are two cases:

v or y contain more than one type of symbol. Then uv2xy2z 6∈ C.
v and y contain only one type of symbol. Then one of a, b, or c
does not appear in v nor y. We have three subcases:

I a does not appear in v nor y. uxz 6∈ C for it has more a then b or c.
I b does not appear in v nor y. Since |vy| > 0, a or c must appear in v

or y. If a appears, uv2xy2z 6∈ C for it has more a than b. If c appears,
uxy 6∈ C for it has more b than c.

I c does not appear in v nor y. uv2xy2z 6∈ C for it has less c than a or
b.
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Pumping Lemma – Examples

Example
Show D = {ww : w ∈ {0,1}∗} is not a context-free language.

Proof.
Let p be the pumping length and s = 0p1p0p1p. Consider a partition
s = uvxyz with |vy| > 0 and |vxy| ≤ p.

If 0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·10p1p, uv2xy2z moves 1 into the second half
and thus uv2xy2z 6∈ D. Similarly, uv2xy2z moves 0 into the first half if

0p1p0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·1.

It remains to consider 0p1 · · ·1
vxy︷ ︸︸ ︷

1 · · ·10 · · ·00 · · ·01p. But then
uxz = 0p1i0j1p with i < p or j < p for |vy| > 0. uxz 6∈ D.
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Non-Decision Properties

Many questions that can be decided for regular sets cannot be
decided for CFLs.

Example: Are two CFLs the same?

Example: Are two CFLs disjoint?

Need theory of Turing machines and decidability to prove no
algorithm exists.
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Testing Membership (Cocke-Younger-Kasami Algo.)

Test ”w = a1...an ∈ L(G)?”, assuming G in CNF.
Algorithm (CYK) is a good example of dynamic programming
and runs in time O(n3), where n = |w|.

I We construct an n-by-n lower triangular array of sets of variables.
I Xij = {A | A ∗

=⇒ wi,j}, where wi,j = ai · · · aj. Finally, ask if S ∈ X1n.
Basis: Xii = {A | A→ ai is a production}
To compute Xij inductively, try all possible ways of splitting ai...aj
into substrings.

(NTU EE) Context-Free Languages Spring 2024 42 / 48



CYK Algorithm V (2)

Basis: Xii = {A | A→ ai is a production }.
Induction: Xij = {A | there is a production A→ BC and an
integer k, i < k < j ,B ∈ Xik ,C ∈ Xk+1,j}.

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

—————————
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Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

———————-
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Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa
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Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa
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Testing Emptiness

Given a CFG G = (V,Σ,P,S) in CNF, construct a set
T = {A | A ∗

=⇒ w,w ∈ Σ∗} iteratively in the following way:
1 Let T = {A | A→ a ∈ P, a ∈ Σε}.
2 For all rules B→ CD ∈ P, if C,D ∈ T, then T = T ∪ {B}.
3 Repeat Step (2) until no more variable is added to T.

Claim: S ∈ T iff L(G) 6= ∅.
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Testing Infiniteness

The idea is essentially the same as for regular languages.
Use the pumping lemma constant n. If there is a string in the
language of length between n and 2n− 1, then the language is
infinite; otherwise not.
 

|w| ≦ n

|w| ≦ 2n

|w| > 2n 

s

s’
s’=uv0w 

s’’
t
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Closure Properties of CFLs

CFLs are closed under union, concatenation, and Kleene closure.

Also, under reversal, homomorphisms and inverse homomorphisms.

But not under intersection or difference.
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Closure of CFLs Under Reversal

If L is a CFL with grammar G, form a grammar for LR by reversing
the right side of every production.

Example: Let G have S → 0S1 | 01.

The reversal of L(G ) has grammar S → 1S0 | 10.
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Closure of CFLs Under Homomorphism

Let L be a CFL with grammar G .

Let h be a homomorphism on the terminal symbols of G .

Construct a grammar for h(L) by replacing each terminal symbol a by
h(a).

Example

G has productions S → 0S1 | 01. h is defined by h(0) = ab, h(1) = ε.
h(L(G )) has the grammar with productions S → abS | ab.
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Closure of CFLs Under Inverse Homomorphism

Here, grammars don’t help us.

But a PDA construction serves nicely.

Intuition: Let L = L(P) for some PDA P.

Construct PDA P ′ to accept h−1(L).

P ′ simulates P, but keeps, as one component of a two-component
state a buffer that holds the result of applying h to one input symbol.
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Closure of CFLs Under Inverse Homomorphism

Consider a homomorphism h(0) = aba, h(1) = bc. Suppose PDA P
accepts ababc. The following is the way how P′ accepts h−1(ababc) = 01.

Each state of P′ is of the form [q, z], where q is a state of P and
z ∈ {a, b, c}∗.
P′ starts in state [q0, ε], upon reading input 0, P′ moves to [q0, aba];
then simulate P’s computation on aba as follows

I [q0, ε]
0,ε→ε→ [q0, aba]

ε,α→β→ [q1, ba]
ε→ [q2, a]

ε,−→ [q3, ε]

I in the above, [q0, aba]
ε,α→β→ [q1, ba] simulates (q1, α→ β) ∈ δ(q0, a)

(i.e., specified in the transition function of P).
in state [q3, ε], upon reading input 1, P′ moves to [q3, bc]; then
simulate P’s computation on bc as follows

I [q3, ε]
1,ε→ε→ [q3, bc] ε,−→ [q4, c]

ε,−→ [q5, ε], where q5 is an accept state.

Hence, P′ accepts 01.
P′ updates the stack in the same way as P does.
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Construction of P ′

States are pairs [q, b], where:
1 q is a state of P.
2 b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible
values for b.

Stack symbols of P ′ are those of P.

Start state of P ′ is [q0, ε].

Input symbols of P ′ are the symbols to
which h applies.

Final states of P ′ are the states [q, ε] such
that q is a final state of P.
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Transitions of P ′

1 δ′(([q, ε], a,X ) = {([q, h(a)],X )} for any input symbol a of P ′ and
any stack symbol X .

I When the buffer is empty, P ′ can reload it.

2 δ′([q, bw ], ε,X ) contains ([p,w ], α) if δ(q, b,X ) contains (p, α),
where b is either an input symbol of P or ε.

I Simulate P from the buffer.
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Intersection with a Regular Language

Intersection of two CFL’s need not be
context free.

But the intersection of a CFL with a
regular language is always a CFL.

Proof involves running a DFA in parallel
with a PDA, and noting that the
combination is a PDA. (PDAs accept by
final state.)
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Formal Construction

Let the DFA A have transition function δA.

Let the PDA P have transition function δP .

States of combined PDA are [q, p], where q is a state of A and p a
state of P.

δ([q, p], a,X ) contains ([δA(q, a), r ], α) if δP(p, a,X ) contains (r , α).
Note a could be ε, in which case δA(q, a) = q.

Accepting states of combined PDA are those [q, p] such that q is an
accepting state of A and p is an accepting state of P.

Easy induction: ([q0, p0],w ,Z0)
∗
` ([q, p], ε, α) if and only if

δA(q0,w) = q and in P : (p0,w ,Z0)
∗
` (p, ε, α).
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{xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} Not a DPDA Language

Theorem
CFL L = {xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} cannot be acceptable by a DPDA.

Proof.
Assume, otherwise, that DPDA M accepts L. We construct a new DPDA M0 which
consists of ”two modified copies” M1 and M2 of M in the following way:

the initial state of M0 is the initial state of M1, and the final states of M0 are the
final states of M2,

remove all x transitions from M2,

replace all the y transitions of M2 with z transitions,

for each y transition emanating from an accept state of M1, remove that
transition and add a z transition to its ”copy” in M2,

remove all x transitions emanating from accept states of M1,

update on the stack remains unchanged.
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{xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} Not a DPDA Language

Proof.
Claim: L(M0) ⊆ x∗y∗z∗

I The prefix before entering M2 must be accepted by M1. Hence, the
prefix must be of the form xnyn or xny2n.

If M0 accepts xnynzi (i ≥ 1), then M must accept xnyn+i, only
possible if i = n.
Hence, M0 accepts {xnynzn | n ≥ 1} – a contradiction.
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Deterministic Context-Free Languages

Deterministic PDA: in state q reading a with x at top of stack, at
most one transition can apply.

I if q ε,ε→ε→ p exists, it is the only transition in q;
I q

a,x→y→ p cannot co-exist with either q a,ε→z→ p′ or q a,x→z→ p′′.

Theorem
Reg ( DCFL ( CFL

Theorem
DCFLs are closed under complement, union/intersection with regular
languages.
DCFLs are not closed under union, intersection, concatenation.
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Closure Properties of DCFL

Proof.
(Complementation - YES) [Proof Idea] swap accept/non-accept
states but need to make sure that DPDA reads the entire string.

I L = {anbncn | n ≥ 0} is not CF, yet its complement L is CF (Why?).
So {anbncn | n ≥ 0} is NOT a DCFL.

(Union/Concatenation with Regular - YES):
Proof IdeaDPDA × DFA→ DPDA.
(Union - NO) L =

1 {aibjck | i 6= j} ∪ {aibjck | i 6= k} ∪ {aibjck | j 6= k} ∪
2 {anything with ba, cb, ca}

Each of the above four sub-languages is DCFL. However, (1) is not
DCFL; otherwise, L is DCFL.

(Intersection - NO): L ∪M = L ∩M.
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Closure Properties of DCFL

Proof.
(Concatenation - NO):

I Let L1 = {aibjck | i 6= j} and L2 = {aibjck | j 6= k}; both are DCFLs.
I L3 = 0L1 ∪ L2 is a DCFL.
I Claim: A = 0∗L3 is not a DCFL.

F Suppose A is a DCFL. Then A ∩ 0a∗b∗c∗ is a DCFL.
F A∩ 0a∗b∗c∗ = 0L1 ∪ 0L2 (a DCFL) implies L1 ∪ L2 is a DCFL. However,

L1 ∪ L2 = L1 ∩ L2 = {anbncn | n ≥ 0} − {anything with ba, cb, ca}
F As {anbncn | n ≥ 0} is not a DCFL, L1 ∪ L2 is not a DCFL – a

contradiction.

Note:
If L is a DCFL and R is regular, LR is always a DCFL but RL may
not be a DCFL
DCFLs are interesting as they are closed under complementation,
but not closed under union, intersection, concatenation.
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Using Idea behind PDA⇒ CFG to Show Closure with
Regular Sets

Theorem
CFLs are closed under intersection with regular languages.

Proof.
Let G = (V,Σ,R,S) be a CFG in CNF and N = (Q,Σ, δ, q0, {qf}) be an
NFA with a unique accept state. We construct G′ = (V′,Σ,R′,S′) as
follows. A variable in V′ is of the form (qi,A, qj), where
qi, qj ∈ Q,A ∈ V

S′ = (q0,S, qf ),
(qi,S, qj)→ ε if S→ ε in R, and qj ∈ δ(qi, ε),
(qi,A, qj)→ a if A→ a in R, and qj ∈ δ(qi, a),
(qi,A, qj)→ (qi,B, qk)(qk,C, qj) if A→ BC in R, ∀qk ∈ Q.

Claim: (qi,A, qj)
∗

=⇒ w in G′ iff qi
w→ qj in N and A ∗

=⇒ w in G.
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