
Context-Free Languages and Pushdown Automata

(NTU EE) Context-Free Languages Spring 2024 1 / 46

Context-Free Grammars

Here is an example of a context-free grammar G1:

A −→ 0A1
A −→ B
B −→ #

Each line is a substitution rule (or production).
A,B are variables.
0,1,# are terminals.
The left-hand side of the first rule (A) is the start variable.

(NTU EE) Context-Free Languages Spring 2024 2 / 46

Grammars and Languages

A −→ 0A1
A −→ B
B −→ #

A grammar describes a language.
A grammar generates a string of its language as follows.

1 Write down the start variable.
2 Find a written variable and a rule whose left-hand side is that

variable.
3 Replace the written variable with the right-hand side of the rule.
4 Repeat steps 2 and 3 until no variable remains.

For example, consider the following derivation of the string
00#11 generated by G1:

A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11

Any language that can be generated by some context-free
grammar is called a context-free language.

(NTU EE) Context-Free Languages Spring 2024 3 / 46

Grammars and Languages

With respect to the following derivation of the string 00#11
generated by G1:

A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11

we also use a parse tree to denote a string generated by a
grammar:

A

B

A

A

#0 10 1

(NTU EE) Context-Free Languages Spring 2024 4 / 46

Context-Free Grammars – Formal Definition

Definition
A context-free grammar is a 4-tuple (V,Σ,R,S) where

V is a finite set of variables (also called non-terminals);
Σ is a finite set of terminals where V ∩ Σ = ∅;
R is a fintie set of production rules. Each rule consists of a variable
and a string of variables and terminals; and
S ∈ V is the start variable.

Let u, v,w are strings of variables and terminals, and A −→ w a
rule. We say uAv yields uwv (written uAv⇒ uwv).

u derives v (written u ∗
=⇒ v) if u = v or there is a sequence

u1,u2, . . . ,uk (k ≥ 0) that u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ : S ∗
=⇒ w}.

(NTU EE) Context-Free Languages Spring 2024 5 / 46

Context-Free Languages – Examples

Example (Balanced Parentheses)
Consider G3 = ({S}, {(,)},R,S) where R is

S −→ (S) | SS | ε.

A −→ w1 | w2 | · · · | wk stands for

A −→ w1
A −→ w2

...
A −→ wk

Examples of the strings generated by G3: ε, (), (())(),

(NTU EE) Context-Free Languages Spring 2024 6 / 46

Parse Trees vs. Derivation Sequences

Consider the following grammar: E→ E + E | E× E | (E) | a

The following two derivation sequences have the same parse tree.
E⇒ E + E⇒ a + E⇒ a + E× E⇒ a + E× a⇒ a + a× a
E⇒ E + E⇒ E + E× E⇒ a + E× E⇒ a + a× E⇒ a + a× a

(NTU EE) Context-Free Languages Spring 2024 7 / 46

Context-Free Languages – Examples

From a DFA M, we can construct a context-free grammar GM such
that the language of G is L(M).
Let M = (Q,Σ, δ, q0,F) be a DFA. Define GM = (V,Σ,P,S) where

I V = {Ri : qi ∈ Q} and S = {R0}; and
I P = {Ri −→ aRj : δ(qi,a) = qj} ∪ {Ri −→ ε : qi ∈ F}.

Recall M3 and construct GM3 = ({R1,R2}, {0,1},P, {R1}) with

R1 −→ 0R1 | 1R2 | ε
R2 −→ 0R1 | 1R2.

The above is a right-linear grammar for which the right-hand-side
contains at most one variable at the end of the rule.

0

q1 q2

0

1
1

Figure: M3
(NTU EE) Context-Free Languages Spring 2024 8 / 46

Subclasses of Context-Free Grammars

• Right-Linear Grammar

R1 −→ 0R1 | 1R2 | ε
R2 −→ 0R1 | 1R2

• Left-Linear Grammar
R1 −→ R10 | R21 | ε
R2 −→ R10 | R21

• Linear Grammar
R1 −→ 0R11 | ε

Note: Left- and Right-Linear Grammars only generate regular languages, while
Linear Grammar could generate non-regular languages such as {0n1n | n ≥ 0}.
•How about rules contain both RL and LL rules? (Can you use such to
generate {0n1n | n ≥ 0}?)

R1 −→ R21 | ε
R2 −→ 0R1

(NTU EE) Context-Free Languages Spring 2024 9 / 46

Context-Free vs. Context-Sensitive Grammars

1 Context-Free Rules: A −→ β, β ∈ (V ∪ Σ)∗

2 Context-Sensitive Rules: αAγ −→ αβγ, α, γ ∈ (V ∪ Σ)∗,
β ∈ (V ∪ Σ)+

Similarity: both replace A by β.
Difference: in (2), replacing A by β could only take place if A is
surrounded by (in the context of) α and γ.
Context-sensitive grammars are more powerful than context-free
grammars.

The Chomsky Hierarchy

Grammars Rules Languages Automata
Type 3 / Right-linear A→ aB, A→ ε Regular DFA/NFA

Type 2 / CFG A→ α CFL PDA
Type 1 / CSG αAγ → αβγ, |β| > 0 CSL LBA

Type 0 / Unrestricted αAγ → β r.e. Turing Machine
(NTU EE) Context-Free Languages Spring 2024 10 / 46

Context-Free Languages – Examples

Example (Fragment of C Grammar)
Consider G4 = (V,Σ,R, 〈EXPR〉) where

V = {〈EXPR〉, 〈TERM〉, 〈FACTOR〉}, Σ = {a,+,×, (,)}; and
R is

〈EXPR〉 −→ 〈EXPR〉+〈TERM〉 | 〈TERM〉
〈TERM〉 −→ 〈TERM〉×〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 −→ (〈EXPR〉) | a

a + aa ×

〈FACTOR〉〈FACTOR〉

〈TERM〉〈TERM〉

〈TERM〉

〈EXPR〉

〈EXPR〉

〈FACTOR〉

(NTU EE) Context-Free Languages Spring 2024 11 / 46

Ambiguity

Example (Fragment of C Grammar)
Consider G5:

〈EXPR〉 −→ 〈EXPR〉+〈EXPR〉 | 〈EXPR〉×〈EXPR〉 | (〈EXPR〉) | a

We have two parse trees for a + a× a.

a aa ×

〈EXPR〉 〈EXPR〉

+

〈EXPR〉 〈EXPR〉

〈EXPR〉

a aa ×

〈EXPR〉

+

〈EXPR〉

〈EXPR〉

〈EXPR〉〈EXPR〉

If a grammar generates (w.r.t. parse trees) the same in different
ways, the string is derived ambiguously in that grammar.
If a grammar generates some string ambiguously, it is ambiguous.

(NTU EE) Context-Free Languages Spring 2024 12 / 46

Ambiguity

A derivation is a leftmost derivation if the leftmost variable is the
one replaced at every step.
Two leftmost derivations of a + a× a:

〈EXPR〉 ⇒ 〈EXPR〉×〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉×〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉 ⇒ a+〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

Theorem
A string is derived ambiguously in a grammar if it has two or more different
leftmost derivations.

If a language can only be generated by ambiguous grammars, we
call it is inherently ambiguous.

I {aibjck : i = j or j = k} is inherently ambiguous.

(NTU EE) Context-Free Languages Spring 2024 13 / 46

Chomsky Normal Form (CNF)

Definition
A context-free grammar is in Chomsky normal form if every rule is of
the form

S −→ ε
A −→ BC
A −→ a

where a is a terminal, S is the start variable, A is a variable, and B,C
are non-start variables.

RHS is (1) ε (only from S), (2) exactly two non-start variables, (3)
exactly one terminal.

Theorem
Any context-free language is generated by a context-free grammar in
Chomsky normal form.

(NTU EE) Context-Free Languages Spring 2024 14 / 46

Chomsky Normal Form

Proof.
Given a context-free grammar for a context-free language, we will
convert the grammar into Chomsky normal form.

1 (start variable) Add a new start variable S0 and a rule S0 −→ S.
2 (ε-rules) For each ε-rule A −→ ε(A 6= S0), remove it. Then for each

occurrence of A on the right-hand side of a rule, add a new rule
with that occurrence deleted.

I R −→ uAvAw becomes R −→ uAvAw | uvAw | uAvw | uvw.
3 (unit rules) For each unit rule A −→ B, remove it. Add the rule

A −→ u for each B −→ u.
4 For each rule A −→ u1u2 · · · uk(k ≥ 3) and ui is a variable or

terminal, replace it by A −→ u1A1, A1 −→ u2A2, . . . ,
Ak−2 −→ uk−1uk.

5 For each rule A −→ u1u2 with u1 a terminal, replace it by
A −→ U1u2, U1 −→ u1. Similarly when u2 is a terminal.

(NTU EE) Context-Free Languages Spring 2024 15 / 46

Chomsky Normal Form – Example

Consider G6 on the left. We add a new start variable on the right.

S −→ ASA | aB
A −→ B | S
B −→ b | ε

S0 −→ S
S −→ ASA | aB
A −→ B | S
B −→ b | ε

Remove B −→ ε (left) and then A −→ ε (right):
S0 −→ S
S −→ ASA | aB | a
A −→ B | S | ε
B −→ b

S0 −→ S
S −→ ASA | aB | a | SA | AS | S
A −→ B | S
B −→ b

Remove S −→ S (left) and then S0 −→ S (right):
S0 −→ S
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b

(NTU EE) Context-Free Languages Spring 2024 16 / 46

Chomsky Normal Form – Example

Remove A −→ B (left) and then A −→ S (right):

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ S | b
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ b | ASA | aB | a | SA | AS
B −→ b

Remove S0 −→ ASA, S −→ ASA, and A −→ ASA:
S0 −→ AA1 | aB | a | SA | AS
S −→ AA1 | aB | a | SA | AS
A −→ b | AA1 | aB | a | SA | AS
B −→ b

A1 −→ SA
Add U −→ a:

S0 −→ AA1 | UB | a | SA | AS
S −→ AA1 | UB | a | SA | AS
A −→ b | AA1 | UB | a | SA | AS
B −→ b

A1 −→ SA
U −→ a

(NTU EE) Context-Free Languages Spring 2024 17 / 46

Schematic of Pushdown Automata

Each step of the PDA looks like:
Read current symbol and advance head;
Read and pop top-of-stack symbol;
Push in a string of symbols on the stack;
Change state.

Each transition is of the form

(p, a,X)→ (q,Y1Y2...Yk)

(NTU EE) Context-Free Languages Spring 2024 18 / 46

Three Mechanisms of Acceptance

Accept if input is consumed and
1 Stack is empty (Acceptance by Empty Stack),
2 PDA is in a final state (Acceptance by Final State),
3 PDA is in a final state and stack is empty (Acceptance by Final State

and Empty Stack).

It turns out that the three notions of acceptance are equivalent.
(NTU EE) Context-Free Languages Spring 2024 19 / 46

Pushdown Automata

Consider L = {0n1n : n ≥ 0}.
We have the following table:

Language Automata
Regular Finite

Context-free Pushdown
A pushdown automaton is a finite automaton with a stack.

I A stack is a last-in-first-out storage.
I Stack symbols can be pushed and poped from the stack.

Computation depends on the content of the stack.
It is not hard to see L is recognized by a pushdown automaton.

(NTU EE) Context-Free Languages Spring 2024 20 / 46

Pushdown Automata

Consider L = {0n1n : n ≥ 0}.
We have the following table:

Language Automata
Regular Finite

Context-free Pushdown
A pushdown automaton is a finite automaton with a stack.

I A stack is a last-in-first-out storage.
I Stack symbols can be pushed and poped from the stack.

Computation depends on the content of the stack.
It is not hard to see L is recognized by a pushdown automaton.

(NTU EE) Context-Free Languages Spring 2024 20 / 46

Pushdown Automata – Formal Definition

Definition
A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0,F) where

Q is the set of states;
Σ is the input alphabet;
Γ is the stack alphabet;
δ : Q× Σε × Γε → P(Q× Γε) is the transition function;
q0 ∈ Q is the start state; and
F ⊆ Q is the accept states.

Recall Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}.
We consider nondeterministic pushdown automata in the
definition. It convers deterministic pushdown automata.
Deterministic pushdown automata are strictly less powerful.
For convenience, we often extend δ to Q× Σε × Γε → P(Q× Γ∗),
i.e., allowing a ∈ Γε in the stack to be replaced by x ∈ Γ∗.

(NTU EE) Context-Free Languages Spring 2024 21 / 46

Computation of Pushdown Automata

A pushdown automaton M = (Q,Σ,Γ, δ, q0, F) accepts input w if w can be
written as w = w1w2 · · ·wm with wi ∈ Σε and there are sequences of states
r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ (representing contents of the
stack) such that

(r0, s0)
w1,−→ (r1, s1) · · · (ri, at)

w1+1, a→b
→ (r1+1, bt) · · · wm,−→ (rm, sm)

where
I r0 = q0 and s0 = ε;
I For 0 ≤ i < m, we have (ri+1, b) ∈ δ(ri,wi+1, a), si = at, and si+1 = bt

for some a, b ∈ Γε and t ∈ Γ∗.
F On reading wi+1, M moves from ri with stack at to ri+1 with stack bt.
F Write c, a→ b(c ∈ Σε and a, b ∈ Γε) to denote that the machine is

reading c from the input and replacing the top of stack a with b.
I rm ∈ F.

The language recognized by M is denoted by L(M).
I That is, L(M) = {w : M accepts w}.

(NTU EE) Context-Free Languages Spring 2024 22 / 46

Pushdown Automata – Example

Let M1 = (Q,Σ,Γ, δ, q1,F) where
I Q = {q1, q2, q3, q4}, Σ = {0,1}, Γ = {0, $}, F = {q1, q4}; and
I δ is the following table:

input 0 1 ε
stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2,0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

L(M1) = {0n1n : n ≥ 0}
(NTU EE) Context-Free Languages Spring 2024 23 / 46

Pushdown Automata – Example

Let M1 = (Q,Σ,Γ, δ, q1,F) where
I Q = {q1, q2, q3, q4}, Σ = {0,1}, Γ = {0, $}, F = {q1, q4}; and
I δ is the following table:

input 0 1 ε
stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2,0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

L(M1) = {0n1n : n ≥ 0}
(NTU EE) Context-Free Languages Spring 2024 23 / 46

Pushdown Automata – Example

Consider the following pushdown automaton M2:

ε, ε→ ε ε, ε→ ε

b, ε→ ε c,a→ εa, ε→ a

b,a→ ε c, ε→ ε

ε, $→ ε

ε, $→ ε

q7

q4

q6q5

q3

q2

q1

ε, ε→ $ ε, ε→ ε

L(M2) = {aibjck : i, j, k ≥ 0 and, i = j or i = k}

(NTU EE) Context-Free Languages Spring 2024 24 / 46

Pushdown Automata – Example

Consider the following pushdown automaton M2:

ε, ε→ ε ε, ε→ ε

b, ε→ ε c,a→ εa, ε→ a

b,a→ ε c, ε→ ε

ε, $→ ε

ε, $→ ε

q7

q4

q6q5

q3

q2

q1

ε, ε→ $ ε, ε→ ε

L(M2) = {aibjck : i, j, k ≥ 0 and, i = j or i = k}

(NTU EE) Context-Free Languages Spring 2024 24 / 46

Context-Free Grammars⇒ Pushdown Automata

Idea: Use PDA to simulate derivations
Example: G : A→ 0A1 | B; B→ #

Derivation: A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11
Rule:

I Write the start symbol A onto the stack
I Rewrite variable on top of stack (in reverse) according to

production
I Pop top terminal if it matches input

(NTU EE) Context-Free Languages Spring 2024 25 / 46

Context-Free Grammars⇒ Pushdown Automata

Note
The above construction seems to suggest that the number of states
in a PDA is not very ”important”.
In fact, we can turn an arbitrary PDA into an equivalence one with
a single state, such PDA are sometimes called ”stateless” PDA.

I The ”state” information can be incorporated into a ”stack symbol”,
in a way how a programming language handles the ”call-return”
mechanism in a function call.

(NTU EE) Context-Free Languages Spring 2024 26 / 46

Context-Free Grammars⇒ Pushdown Automata

Lemma
If a language is context-free, some pushdown automaton recognizes it.

Proof.
Let G = (V,Σ,R,S) be a context-free grammar generating the
language. Define
P = ({qstart, qloop, qaccept, . . .},Σ,V ∪ Σ ∪ {$}, δ, qstart, {qaccept}) where

δ(qstart, ε, ε) = {(qloop,S$)}
δ(qloop, ε,A) = {(qloop,w) : A −→ w ∈ R}
δ(qloop, a, a) = {(qloop, ε)}
δ(qloop, ε, $) = {(qaccept, ε)}

Note that (r,u1u2 · · · ul) ∈ δ(q, a, s) is simulated by (q1,ul) ∈ δ(q, a, s),
δ(q1, ε, ε) = {(q2,ul−1)}, . . ., δ(ql−1, ε, ε) = {(r,u1)}.

(NTU EE) Context-Free Languages Spring 2024 27 / 46

Example

Example
Find a pushdown automaton recognizing the language of the
following context-free grammar:

S −→ aTb | b
T −→ Ta | ε

ε, ε→ S

ε, ε→ T

ε,T → a

qloop

qstart
ε, ε→ $

qaccept
ε, $→ ε

ε,S→ b
ε,T → ε
a,a→ ε
b,b→ ε

ε, ε→ T

ε, ε→ aε,S→ b

(NTU EE) Context-Free Languages Spring 2024 28 / 46

Simplified PDA

Has a single accepting state
Empties its stack before accepting
Each transition is either a push, or a pop, but not both

(NTU EE) Context-Free Languages Spring 2024 29 / 46

Pushdown Automata⇒ Context-Free Grammars

Key Idea: For every pair (q, r) of states in PDA, introduce variable
Aqr in CFG so that

I Aqr
∗

=⇒ w iff PDA goes from q to r reading w (with empty stack
both at q and at r)

(NTU EE) Context-Free Languages Spring 2024 30 / 46

Pushdown Automata⇒ Context-Free Grammars

Type 1: Aps → aAqrb
Type 2: Apf → ApsAsf

Type 3: Agg → ε

p

q r

s f

Read a push X Read b pop X

Aps a Aqr b

Apf Aps Asf

g

Agg ε

(NTU EE) Context-Free Languages Spring 2024 31 / 46

Pushdown Automata⇒ Context-Free Grammars

Lemma
If a pushdown automaton recognizes a language, the language is context-free.

Proof.
Without loss of generality, we consider a pushdown automaton that
has a single accept state qaccept and empties the stack before accepting.
Moreover, its transition either pushes or pops a stack symbol at any
time. Let P = (Q,Σ,Γ, δ, q0, {qaccept}). Define the context-free grammar
G = (V,Σ,R,S) where

V = {Apq : p, q ∈ Q}, S = Aq0,qaccept ; and
R has the following rules:

I For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σε, if (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t), then Apq −→ aArsb ∈ R.

I For each p, q, r ∈ Q, Apq −→ AprArq ∈ R.
I For each p ∈ Q, App −→ ε ∈ R.

(NTU EE) Context-Free Languages Spring 2024 32 / 46

Example

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

We write Ai,j for Aqiqj .
Consider the following context-free grammar:

A14 → A23 since (q2, $) ∈ δ(q1, ε, ε) and (q4, ε) ∈ δ(q3, ε, $)
A23 → 0A231 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q3,1,0)
A23 → 0A221 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q2,1,0)
A22 → ε

(NTU EE) Context-Free Languages Spring 2024 33 / 46

Pushdown Automata⇒ Context-Free Grammars

Lemma
If Apq generates x in G, then x can bring P from p with empty stack to q with
empty stack.

Proof.
Prove by induction on the length k of derivation.

k = 1. The only possible derivation of length 1 is App ⇒ ε.

Consider Apq
∗

=⇒ x of length k + 1. Two cases for the first step:
I Apq ⇒ aArsb. Then x = ayb with Ars

∗
=⇒ y. By IH, y brings P from r

to s with empty stack. Moreover, (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t) since Apq −→ aArsb ∈ R. Let P start from p with
empty stack, P first moves to r and pushes t to the stack after
reading a. It then moves to s with t in the stack. Finally, P moves to
q with empty stack after reading b and popping t.

I Apq ⇒ AprArq. Then x = yz with Apr
∗

=⇒ y and Arq
∗

=⇒ z. By IH, P
moves from p to r, and then r to q.

(NTU EE) Context-Free Languages Spring 2024 34 / 46

Pushdown Automata⇒ Context-Free Grammars

Lemma
If x can bring P from p with empty stack to q with empty stack, Apq generates
x in G.

Proof.
Prove by induction on the length k of computation.

k = 0. The only possible 0-step computation is to stay at the same state while
reading ε. Hence x = ε. Clearly, App

∗
=⇒ ε in G.

Two possible cases for computation of length k + 1.
I The stack is empty only at the beginning and end of the computation. If P

reads a, pushes t, and moves to r from p at step 1, (r, t) ∈ δ(q, a, ε). Similarly,
if P reads b, pops t, and moves to q from s at step k + 1, (q, ε) ∈ δ(s, b, t).
Hence Apq −→ aArsb ∈ G. Let x = ayb. By IH, Ars

∗
=⇒ y. We have Apq

∗
=⇒ x.

I The stack is empty elsewhere. Let r be a state where the stack becomes
empty. Say y and z are the inputs read during the computation from p to r
and r to q respectively. Hence x = yz. By IH, Apr

∗
=⇒ y and Arq

∗
=⇒ z. Since

Apq −→ AprArq ∈ G. We have Apq
∗

=⇒ x.
(NTU EE) Context-Free Languages Spring 2024 35 / 46

Context-Free Grammars and Pushdown Automata

Theorem
A language is context-free if and only if some pushdown automaton
recognizes it.

Corollary
Every regular language is context-free.

When we say PDA, we mean ”nondeterministic PDA”
Deterministic PDA (DPDA) are less powerful, they only accept
deterministic context-free languages (DCFL).
DPDA cannot accept {wwR | w ∈ {0, 1}∗} or {anbncn | n ≥ 0}.
The equivalence problem is undecidable for PDA, yet it is
decidable for DPDA.
Regular (DCFL (CFL
DCFLs are not closed under union, intersection, concatenation,
but are closed under complement.

(NTU EE) Context-Free Languages Spring 2024 36 / 46

Pumping Lemma for CFLs

Theorem
If A is a context-free language, then there is a number p (the puming length)
such that for every s ∈ A with |s| ≥ p, there is a partition s = uvxyz that

1 for each i ≥ 0, uvixyiz ∈ A;
2 |vy| > 0; and
3 |vxy| ≤ p.

Proof.
Let G = (V,Σ,R,T) be a context-free grammar for A. Define b to be the
maximum number of symbols in the right-hand side of a rule. Observe
that a parse tree of height h has at most bh leaves and hence can
generate strings of length at most bh.
Choose p = b|V|+1. Let s ∈ A with |s| ≥ p and τ the smallest parse tree
for s. Then the height of τ ≥ |V|+ 1. There are |V|+ 1 variables along
the longest branch. A variable R must appear twice.

(NTU EE) Context-Free Languages Spring 2024 37 / 46

Pumping Lemma for CFLs

(Fig. from M. Sipser’s class notes)

Proof. (cont’d).

From Figure (a), we see uvixyiz ∈ A for i ≥ 0.
Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than τ . A
contradiction. Hence |vy| > 0.
Finally, recall R is in the longest branch of length |V|+ 1. Hence the
subtree R generating vxy has height ≤ |V|+ 1. |vxy| ≤ b|V|+1 = p.

(NTU EE) Context-Free Languages Spring 2024 38 / 46

Pumping Lemma – Examples

Example
Show B = {anbncn : n ≥ 0} is not a context-free language.

Proof.

Let p be the pumping length. s =

uvxyz︷ ︸︸ ︷
apbpcp ∈ B. Consider a partition

s = uvxyz with |vy| > 0. There are two cases:
v or y contain more than one type of symbol, e.g.,

u︷︸︸︷
aaaa

v︷︸︸︷
aab

xyz︷ ︸︸ ︷
bbbbbcccccc. Then uv2xy2z 6∈ B.

v and y contain only one type of symbol, e.g.,
u︷︸︸︷

aaa
v︷︸︸︷

aa

x︷︸︸︷
ab

y︷︸︸︷
bb

z︷ ︸︸ ︷
bbbcccccc. Then one of a, b, or c does not appear

in v nor y (pigeon hole principle). Hence uv2xy2z 6∈ B for
|vy| > 0.

(NTU EE) Context-Free Languages Spring 2024 39 / 46

Pumping Lemma – Examples

Example

Show C = {aibjck : 0 ≤ i ≤ j ≤ k} is not a context-free language.

Proof.
Let p be the pumping length and s = apbpcp ∈ C. Consider any
partition s = uvxyz with |vy| > 0. There are two cases:

v or y contain more than one type of symbol. Then uv2xy2z 6∈ C.
v and y contain only one type of symbol. Then one of a, b, or c
does not appear in v nor y. We have three subcases:

I a does not appear in v nor y. uxz 6∈ C for it has more a then b or c.
I b does not appear in v nor y. Since |vy| > 0, a or c must appear in v

or y. If a appears, uv2xy2z 6∈ C for it has more a than b. If c appears,
uxy 6∈ C for it has more b than c.

I c does not appear in v nor y. uv2xy2z 6∈ C for it has less c than a or
b.

(NTU EE) Context-Free Languages Spring 2024 40 / 46

Pumping Lemma – Examples

Example
Show D = {ww : w ∈ {0,1}∗} is not a context-free language.

Proof.
Let p be the pumping length and s = 0p1p0p1p. Consider a partition
s = uvxyz with |vy| > 0 and |vxy| ≤ p.

If 0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·10p1p, uv2xy2z moves 1 into the second half
and thus uv2xy2z 6∈ D. Similarly, uv2xy2z moves 0 into the first half if

0p1p0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·1.

It remains to consider 0p1 · · ·1
vxy︷ ︸︸ ︷

1 · · ·10 · · ·00 · · ·01p. But then
uxz = 0p1i0j1p with i < p or j < p for |vy| > 0. uxz 6∈ D.

(NTU EE) Context-Free Languages Spring 2024 41 / 46

Non-Decision Properties

Many questions that can be decided for regular sets cannot be
decided for CFLs.

Example: Are two CFLs the same?

Example: Are two CFLs disjoint?

Need theory of Turing machines and decidability to prove no
algorithm exists.

H. Yen (NTUEE) 2 / 18

Testing Membership (Cocke-Younger-Kasami Algo.)

Test ”w = a1...an ∈ L(G)?”, assuming G in CNF.
Algorithm (CYK) is a good example of dynamic programming
and runs in time O(n3), where n = |w|.

I We construct an n-by-n lower triangular array of sets of variables.
I Xij = {A | A ∗

=⇒ wi,j}, where wi,j = ai · · · aj. Finally, ask if S ∈ X1n.
Basis: Xii = {A | A→ ai is a production}
To compute Xij inductively, try all possible ways of splitting ai...aj
into substrings.

(NTU EE) Context-Free Languages Spring 2024 42 / 48

CYK Algorithm V (2)

Basis: Xii = {A | A→ ai is a production }.
Induction: Xij = {A | there is a production A→ BC and an
integer k, i < k < j ,B ∈ Xik ,C ∈ Xk+1,j}.

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

—————————

H. Yen (NTUEE) 6 / 18

Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

———————-

H. Yen (NTUEE) 7 / 18

Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

H. Yen (NTUEE) 8 / 18

Example (cont’d)

Example

Grammar: S → AB, A→ BC | a, B → AC | b, C → a | b
String w = ababa

H. Yen (NTUEE) 9 / 18

Testing Emptiness

Given a CFG G = (V,Σ,P,S) in CNF, construct a set
T = {A | A ∗

=⇒ w,w ∈ Σ∗} iteratively in the following way:
1 Let T = {A | A→ a ∈ P, a ∈ Σε}.
2 For all rules B→ CD ∈ P, if C,D ∈ T, then T = T ∪ {B}.
3 Repeat Step (2) until no more variable is added to T.

Claim: S ∈ T iff L(G) 6= ∅.

(NTU EE) Context-Free Languages Spring 2024 49 / 51

Testing Infiniteness

The idea is essentially the same as for regular languages.
Use the pumping lemma constant n. If there is a string in the
language of length between n and 2n− 1, then the language is
infinite; otherwise not.

|w| ≦ n

|w| ≦ 2n

|w| > 2n

s

s’
s’=uv0w

s’’
t

(NTU EE) Context-Free Languages Spring 2024 50 / 51

Closure Properties of CFLs

CFLs are closed under union, concatenation, and Kleene closure.

Also, under reversal, homomorphisms and inverse homomorphisms.

But not under intersection or difference.

H. Yen (NTUEE) 11 / 18

Closure of CFLs Under Reversal

If L is a CFL with grammar G, form a grammar for LR by reversing
the right side of every production.

Example: Let G have S → 0S1 | 01.

The reversal of L(G) has grammar S → 1S0 | 10.

H. Yen (NTUEE) 12 / 18

Closure of CFLs Under Homomorphism

Let L be a CFL with grammar G .

Let h be a homomorphism on the terminal symbols of G .

Construct a grammar for h(L) by replacing each terminal symbol a by
h(a).

Example

G has productions S → 0S1 | 01. h is defined by h(0) = ab, h(1) = ε.
h(L(G)) has the grammar with productions S → abS | ab.

H. Yen (NTUEE) 13 / 18

Closure of CFLs Under Inverse Homomorphism

Here, grammars don’t help us.

But a PDA construction serves nicely.

Intuition: Let L = L(P) for some PDA P.

Construct PDA P ′ to accept h−1(L).

P ′ simulates P, but keeps, as one component of a two-component
state a buffer that holds the result of applying h to one input symbol.

H. Yen (NTUEE) 14 / 18

Closure of CFLs Under Inverse Homomorphism

Consider a homomorphism h(0) = aba, h(1) = bc. Suppose PDA P
accepts ababc. The following is the way how P′ accepts h−1(ababc) = 01.

Each state of P′ is of the form [q, z], where q is a state of P and
z ∈ {a, b, c}∗.
P′ starts in state [q0, ε], upon reading input 0, P′ moves to [q0, aba];
then simulate P’s computation on aba as follows

I [q0, ε]
0,ε→ε→ [q0, aba]

ε,α→β→ [q1, ba]
ε→ [q2, a]

ε,−→ [q3, ε]

I in the above, [q0, aba]
ε,α→β→ [q1, ba] simulates (q1, α→ β) ∈ δ(q0, a)

(i.e., specified in the transition function of P).
in state [q3, ε], upon reading input 1, P′ moves to [q3, bc]; then
simulate P’s computation on bc as follows

I [q3, ε]
1,ε→ε→ [q3, bc] ε,−→ [q4, c]

ε,−→ [q5, ε], where q5 is an accept state.

Hence, P′ accepts 01.
P′ updates the stack in the same way as P does.

(NTU EE) Context-Free Languages Spring 2024 51 / 51

Construction of P ′

States are pairs [q, b], where:
1 q is a state of P.
2 b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible
values for b.

Stack symbols of P ′ are those of P.

Start state of P ′ is [q0, ε].

Input symbols of P ′ are the symbols to
which h applies.

Final states of P ′ are the states [q, ε] such
that q is a final state of P.

H. Yen (NTUEE) 15 / 18

Transitions of P ′

1 δ′(([q, ε], a,X) = {([q, h(a)],X)} for any input symbol a of P ′ and
any stack symbol X .

I When the buffer is empty, P ′ can reload it.

2 δ′([q, bw], ε,X) contains ([p,w], α) if δ(q, b,X) contains (p, α),
where b is either an input symbol of P or ε.

I Simulate P from the buffer.

H. Yen (NTUEE) 16 / 18

Intersection with a Regular Language

Intersection of two CFL’s need not be
context free.

But the intersection of a CFL with a
regular language is always a CFL.

Proof involves running a DFA in parallel
with a PDA, and noting that the
combination is a PDA. (PDAs accept by
final state.)

H. Yen (NTUEE) 17 / 18

Formal Construction

Let the DFA A have transition function δA.

Let the PDA P have transition function δP .

States of combined PDA are [q, p], where q is a state of A and p a
state of P.

δ([q, p], a,X) contains ([δA(q, a), r], α) if δP(p, a,X) contains (r , α).
Note a could be ε, in which case δA(q, a) = q.

Accepting states of combined PDA are those [q, p] such that q is an
accepting state of A and p is an accepting state of P.

Easy induction: ([q0, p0],w ,Z0)
∗
` ([q, p], ε, α) if and only if

δA(q0,w) = q and in P : (p0,w ,Z0)
∗
` (p, ε, α).

H. Yen (NTUEE) 18 / 18

{xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} Not a DPDA Language

Theorem
CFL L = {xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} cannot be acceptable by a DPDA.

Proof.
Assume, otherwise, that DPDA M accepts L. We construct a new DPDA M0 which
consists of ”two modified copies” M1 and M2 of M in the following way:

the initial state of M0 is the initial state of M1, and the final states of M0 are the
final states of M2,

remove all x transitions from M2,

replace all the y transitions of M2 with z transitions,

for each y transition emanating from an accept state of M1, remove that
transition and add a z transition to its ”copy” in M2,

remove all x transitions emanating from accept states of M1,

update on the stack remains unchanged.

(NTU EE) Context-Free Languages Spring 2024 43 / 48

{xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} Not a DPDA Language

Proof.
Claim: L(M0) ⊆ x∗y∗z∗

I The prefix before entering M2 must be accepted by M1. Hence, the
prefix must be of the form xnyn or xny2n.

If M0 accepts xnynzi (i ≥ 1), then M must accept xnyn+i, only
possible if i = n.
Hence, M0 accepts {xnynzn | n ≥ 1} – a contradiction.

(NTU EE) Context-Free Languages Spring 2024 44 / 48

Deterministic Context-Free Languages

Deterministic PDA: in state q reading a with x at top of stack, at
most one transition can apply.

I if q ε,ε→ε→ p exists, it is the only transition in q;
I q

a,x→y→ p cannot co-exist with either q a,ε→z→ p′ or q a,x→z→ p′′.

Theorem
Reg (DCFL (CFL

Theorem
DCFLs are closed under complement, union/intersection with regular
languages.
DCFLs are not closed under union, intersection, concatenation.

(NTU EE) Context-Free Languages Spring 2024 45 / 48

Closure Properties of DCFL

Proof.
(Complementation - YES) [Proof Idea] swap accept/non-accept
states but need to make sure that DPDA reads the entire string.

I L = {anbncn | n ≥ 0} is not CF, yet its complement L is CF (Why?).
So {anbncn | n ≥ 0} is NOT a DCFL.

(Union/Concatenation with Regular - YES):
Proof IdeaDPDA × DFA→ DPDA.
(Union - NO) L =

1 {aibjck | i 6= j} ∪ {aibjck | i 6= k} ∪ {aibjck | j 6= k} ∪
2 {anything with ba, cb, ca}

Each of the above four sub-languages is DCFL. However, (1) is not
DCFL; otherwise, L is DCFL.

(Intersection - NO): L ∪M = L ∩M.

(NTU EE) Context-Free Languages Spring 2024 46 / 48

Closure Properties of DCFL

Proof.
(Concatenation - NO):

I Let L1 = {aibjck | i 6= j} and L2 = {aibjck | j 6= k}; both are DCFLs.
I L3 = 0L1 ∪ L2 is a DCFL.
I Claim: A = 0∗L3 is not a DCFL.

F Suppose A is a DCFL. Then A ∩ 0a∗b∗c∗ is a DCFL.
F A∩ 0a∗b∗c∗ = 0L1 ∪ 0L2 (a DCFL) implies L1 ∪ L2 is a DCFL. However,

L1 ∪ L2 = L1 ∩ L2 = {anbncn | n ≥ 0} − {anything with ba, cb, ca}
F As {anbncn | n ≥ 0} is not a DCFL, L1 ∪ L2 is not a DCFL – a

contradiction.

Note:
If L is a DCFL and R is regular, LR is always a DCFL but RL may
not be a DCFL
DCFLs are interesting as they are closed under complementation,
but not closed under union, intersection, concatenation.

(NTU EE) Context-Free Languages Spring 2024 47 / 48

Using Idea behind PDA⇒ CFG to Show Closure with
Regular Sets

Theorem
CFLs are closed under intersection with regular languages.

Proof.
Let G = (V,Σ,R,S) be a CFG in CNF and N = (Q,Σ, δ, q0, {qf}) be an
NFA with a unique accept state. We construct G′ = (V′,Σ,R′,S′) as
follows. A variable in V′ is of the form (qi,A, qj), where
qi, qj ∈ Q,A ∈ V

S′ = (q0,S, qf),
(qi,S, qj)→ ε if S→ ε in R, and qj ∈ δ(qi, ε),
(qi,A, qj)→ a if A→ a in R, and qj ∈ δ(qi, a),
(qi,A, qj)→ (qi,B, qk)(qk,C, qj) if A→ BC in R, ∀qk ∈ Q.

Claim: (qi,A, qj)
∗

=⇒ w in G′ iff qi
w→ qj in N and A ∗

=⇒ w in G.

(NTU EE) Context-Free Languages Spring 2024 48 / 48

	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma
	CYK.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2-.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2-new.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	DCFL.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	CYK-00.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	CYK-00.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	emp-temp.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

