Context-Free Languages and Pushdown Automata

• Here is an example of a context-free grammar *G*₁:

$$\begin{array}{cccc} A & \longrightarrow & 0A1 \\ A & \longrightarrow & B \\ B & \longrightarrow & \# \end{array}$$

- Each line is a substitution rule (or production).
- *A*, *B* are variables.
- 0, 1, # are terminals.
- The left-hand side of the first rule (*A*) is the start variable.

Grammars and Languages

$$\begin{array}{cccc} A & \longrightarrow & 0A1 \\ A & \longrightarrow & B \\ B & \longrightarrow & \# \end{array}$$

- A grammar describes a language.
- A grammar generates a string of its language as follows.
 - Write down the start variable.
 - Find a written variable and a rule whose left-hand side is that variable.
 - Solution Replace the written variable with the right-hand side of the rule.
 - Repeat steps 2 and 3 until no variable remains.
- For example, consider the following derivation of the string 00#11 generated by G_1 :

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$

• Any language that can be generated by some context-free grammar is called a context-free language.

(NTU EE)

Grammars and Languages

• With respect to the following <u>derivation</u> of the string 00#11 generated by *G*₁:

```
A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11
```

we also use a <u>parse tree</u> to denote a string generated by a grammar:


```
(NTU EE)
```

Definition

A <u>context-free grammar</u> is a 4-tuple (V, Σ, R, S) where

- *V* is a finite set of variables (also called non-terminals);
- Σ is a finite set of terminals where $V \cap \Sigma = \emptyset$;
- *R* is a finite set of <u>production rules</u>. Each rule consists of a variable and a string of variables and terminals; and
- $S \in V$ is the start variable.
- Let u, v, w are strings of variables and terminals, and $A \longrightarrow w$ a rule. We say uAv yields uwv (written $uAv \Rightarrow uwv$).
- $u \stackrel{\text{derives}}{\longrightarrow} v$ (written $u \stackrel{*}{\Longrightarrow} v$) if u = v or there is a sequence $u_1, u_2, \ldots, u_k \ (k \ge 0)$ that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$.
- The <u>language</u> of the grammar is $\{w \in \Sigma^* : S \stackrel{*}{\Longrightarrow} w\}$.

Example (Balanced Parentheses) Consider $G_3 = (\{S\}, \{(,,)\}, R, S)$ where *R* is

 $S \longrightarrow (S) \mid SS \mid \epsilon.$

• $A \longrightarrow w_1 \mid w_2 \mid \cdots \mid w_k$ stands for

$$\begin{array}{cccc} A & \longrightarrow & w_1 \\ A & \longrightarrow & w_2 \\ & & \vdots \\ A & \longrightarrow & w_k \end{array}$$

• Examples of the strings generated by *G*₃: *ϵ*, (), (())(),

'N	т	ΤT	F	E,
(± 4		U	ь.	ь,

Parse Trees vs. Derivation Sequences

Consider the following grammar: $E \rightarrow E + E \mid E \times E \mid (E) \mid a$

The following two derivation sequences have the same parse tree.

- $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + a \times a$
- $E \Rightarrow E + E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + a \times E \Rightarrow a + a \times a$

Context-Free Languages – Examples

- From a DFA *M*, we can construct a context-free grammar *G*_{*M*} such that the language of *G* is *L*(*M*).
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Define $G_M = (V, \Sigma, P, S)$ where
 - $V = \{R_i : q_i \in Q\}$ and $S = \{R_0\}$; and

(NTU EE)

- ► $P = \{R_i \longrightarrow aR_j : \delta(q_i, a) = q_j\} \cup \{R_i \longrightarrow \epsilon : q_i \in F\}.$
- Recall M_3 and construct $G_{M_3} = (\{R_1, R_2\}, \{0, 1\}, P, \{R_1\})$ with

$$\begin{array}{rrrr} R_1 & \longrightarrow & 0R_1 \mid 1R_2 \mid \epsilon \\ R_2 & \longrightarrow & 0R_1 \mid 1R_2. \end{array}$$

• The above is a <u>right-linear grammar</u> for which the right-hand-side contains at most one variable at the end of the rule.

Figure: /Via			_		
Context-Free Languages		Spring 202	4	8 / 4	6

オロト オポト オモト オモト ニモ

Subclasses of Context-Free Grammars

• Right-Linear Grammar

$$\begin{array}{rrrr} R_1 & \longrightarrow & 0R_1 \mid 1R_2 \mid e \\ R_2 & \longrightarrow & 0R_1 \mid 1R_2 \end{array}$$

• Left-Linear Grammar

$$\begin{array}{rrrr} R_1 & \longrightarrow & R_1 0 \mid R_2 1 \mid \epsilon \\ R_2 & \longrightarrow & R_1 0 \mid R_2 1 \end{array}$$

• Linear Grammar

$$R_1 \longrightarrow 0R_1 1 \mid \epsilon$$

Note: Left- and Right-Linear Grammars only generate regular languages, while Linear Grammar could generate non-regular languages such as $\{0^n1^n \mid n \ge 0\}$. • How about rules contain both RL and LL rules? (Can you use such to generate $\{0^n1^n \mid n \ge 0\}$?)

$$\begin{array}{rrrr} R_1 & \longrightarrow & R_2 1 \mid \epsilon \\ R_2 & \longrightarrow & 0R_1 \end{array}$$

(NTU EE)

Context-Free vs. Context-Sensitive Grammars

- $\ \, {\rm Ontext-Free \ Rules:} \ \ A \longrightarrow \beta, \quad \beta \in (V \cup \Sigma)^*$
- - **Similarity**: both replace A by β .
 - **Difference**: in (2), replacing *A* by *β* could only take place if *A* is surrounded by (in the context of) *α* and *γ*.
 - Context-sensitive grammars are more powerful than context-free grammars.

Grammars	Rules	Languages	Automata	
Type 3 / Right-linear	$A \rightarrow aB, A \rightarrow \epsilon$	Regular	DFA/NFA	
Type 2 / CFG	$A \rightarrow \alpha$	CFL	PDA	
Type 1 / CSG	$\alpha A \gamma \to \alpha \beta \gamma, \beta > 0$	CSL	LBA	
Type 0 / Unrestricted	$\alpha A \gamma \rightarrow \beta$	r.e.	Turing Machine	
(NTU EE)	Context-Free Langu	lages	Spring 2024	

The Chomsky Hierarchy

Context-Free Languages – Examples

Example (Fragment of C Grammar)

Consider $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$ where

• $V = \{ \langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \}, \Sigma = \{a, +, \times, (,)\}; \text{ and}$ • *R* is

(NTU EE)

▶ くぼき くぼき …

Ambiguity

Example (Fragment of C Grammar) Consider G_5 :

 $\langle \text{EXPR} \rangle \longrightarrow \langle \text{EXPR} \rangle + \langle \text{EXPR} \rangle \mid \langle \text{EXPR} \rangle \times \langle \text{EXPR} \rangle \mid (\langle \text{EXPR} \rangle) \mid \text{a}$

• We have two parse trees for $a + a \times a$. EXPR) EXPR EXPR) (EXPR) (EXPR) EXPR) (EXPR) (EXPR) (EXPR) (EXPR) а а а а а

• If a grammar generates (w.r.t. parse trees) the same in different ways, the string is derived <u>ambiguously</u> in that grammar.

• If a grammar generates some string ambiguously, it is <u>ambiguous</u>.

Ambiguity

- A derivation is a leftmost derivation if the leftmost variable is the one replaced at every step.
- Two leftmost derivations of $a + a \times a$:

Theorem

A string is derived <u>ambiguously</u> in a grammar if it has two or more different leftmost derivations.

- If a language can only be generated by ambiguous grammars, we call it is inherently ambiguous.
 - { $a^i b^j c^k : i = j \text{ or } j = k$ } is inherently ambiguous.

Chomsky Normal Form (CNF)

Definition

A context-free grammar is in <u>Chomsky normal form</u> if every rule is of the form

 $\begin{array}{cccc} S & \longrightarrow & \epsilon \\ A & \longrightarrow & BC \\ A & \longrightarrow & a \end{array}$

where a is a terminal, *S* is the start variable, *A* is a variable, and *B*, *C* are non-start variables.

RHS is (1) *ϵ* (only from *S*), (2) exactly two non-start variables, (3) exactly one terminal.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

(NTU EE)

Chomsky Normal Form

Proof.

Given a context-free grammar for a context-free language, we will convert the grammar into Chomsky normal form.

- **(start variable**) Add a new start variable S_0 and a rule $S_0 \rightarrow S$.
- ② (ϵ -rules) For each ϵ -rule $A \longrightarrow \epsilon(A \neq S_0)$, remove it. Then for each occurrence of A on the right-hand side of a rule, add a new rule with that occurrence deleted.

 $R \longrightarrow uAvAw \text{ becomes } R \longrightarrow uAvAw \mid uvAw \mid uAvw \mid uvw.$

- (unit rules) For each unit rule $A \longrightarrow B$, remove it. Add the rule $A \longrightarrow u$ for each $B \longrightarrow u$.
- For each rule $A \longrightarrow u_1 u_2 \cdots u_k (k \ge 3)$ and u_i is a variable or terminal, replace it by $A \longrightarrow u_1 A_1, A_1 \longrightarrow u_2 A_2, \ldots, A_{k-2} \longrightarrow u_{k-1} u_k$.
- For each rule $A \longrightarrow u_1 u_2$ with u_1 a terminal, replace it by $A \longrightarrow U_1 u_2$, $U_1 \longrightarrow u_1$. Similarly when u_2 is a terminal.

Chomsky Normal Form – Example

• Consider *G*⁶ on the left. We add a new start variable on the right.

Chomsky Normal Form – Example

• Remove $A \longrightarrow B$ (left) and then $A \longrightarrow S$ (right):

$$S_{0} \longrightarrow ASA | aB | a | SA | AS \qquad S_{0} \longrightarrow ASA | aB | a | SA | AS
S \longrightarrow ASA | aB | a | SA | AS \qquad S \longrightarrow ASA | aB | a | SA | AS
A \longrightarrow S | b \qquad A \longrightarrow b | ASA | aB | a | SA | AS
B \longrightarrow b \qquad B \longrightarrow b$$
• Remove $S_{0} \longrightarrow ASA, S \longrightarrow ASA, \text{ and } A \longrightarrow ASA$:

$$S_{0} \longrightarrow AA_{1} | aB | a | SA | AS
S \longrightarrow AA_{1} | aB | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
S \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$

Schematic of Pushdown Automata

Each step of the PDA looks like:

- Read current symbol and advance head;
- Read and pop top-of-stack symbol;
- Push in a string of symbols on the stack;
- Change state.

Each transition is of the form

$$(p,a,X) \rightarrow (q,Y_1Y_2...Y_k)$$

Three Mechanisms of Acceptance

Accept if input is consumed and

- Stack is empty (Acceptance by Empty Stack),
- PDA is in a final state (Acceptance by Final State),
- PDA is in a final state and stack is empty (*Acceptance by Final State and Empty Stack*).

It turns out that the three notions of acceptance are equivalent.

- /N	1 1 1	
- 11 \		- E.E.J
(*)		,

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
 - A stack is a last-in-first-out storage.
 - Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see *L* is recognized by a pushdown automaton.

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
 - A stack is a last-in-first-out storage.
 - Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see *L* is recognized by a pushdown automaton.

Pushdown Automata – Formal Definition

Definition

A <u>pushdown automaton</u> is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is the set of states;
- Σ is the <u>input alphabet</u>;
- Γ is the stack alphabet;
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the <u>transition function</u>;
- $q_0 \in Q$ is the <u>start</u> state; and
- $F \subseteq Q$ is the <u>accept</u> states.
- Recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$.
- We consider nondeterministic pushdown automata in the definition. It convers deterministic pushdown automata.
- Deterministic pushdown automata are strictly less powerful.
- For convenience, we often extend δ to Q × Σ_ε × Γ_ε → P(Q × Γ^{*}),
 i.e., allowing a ∈ Γ_ε in the stack to be replaced by x ∈ Γ^{*}.

(NTU EE)

Computation of Pushdown Automata

• A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w if w can be written as $w = w_1 w_2 \cdots w_m$ with $w_i \in \Sigma_{\epsilon}$ and there are sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ (representing contents of the stack) such that

$$(r_0, s_0) \xrightarrow{w_{1,-}} (r_1, s_1) \cdots (r_i, at) \xrightarrow{w_{1+1, a \to b}} (r_{1+1}, bt) \cdots \xrightarrow{w_{m,-}} (r_m, s_m)$$

where

- $r_0 = q_0$ and $s_0 = \epsilon$;
- ► For $0 \le i < m$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, $s_i = at$, and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$.
 - * On reading w_{i+1} , M moves from r_i with stack at to r_{i+1} with stack bt.
 - ★ Write $c, a \rightarrow b(c \in \Sigma_{\epsilon} \text{ and } a, b \in \Gamma_{\epsilon})$ to denote that the machine is reading *c* from the input and replacing the top of stack *a* with *b*.
- ▶ $r_m \in F$.
- The language recognized by M is denoted by L(M).
 - That is, $L(M) = \{w : M \text{ accepts } w\}.$

Pushdown Automata – Example

• Let
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
 where

• $Q = \{q_1, q_2, q_3, q_4\}, \Sigma = \{0, 1\}, \Gamma = \{0, \$\}, F = \{q_1, q_4\}; \text{ and }$

• δ is the following table:

	input			0	1			ϵ		
	stack	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ
	q_1									$\{(q_2,\$)\}$
	q_2			$\{(q_2, 0)\}$	$\{(q_3,\epsilon)\}$					
	q_3				$\{(q_3,\epsilon)\}$				$\{(q_4,\epsilon)\}$	
	q_4									
$\begin{array}{c} \hline q_1 \\ \hline q_1 \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ 1, 0 \rightarrow \epsilon \end{array} \begin{array}{c} q_2 \\ \hline \\ 0, \epsilon \rightarrow 0 \\ \hline \\ \hline \\ 1, 0 \rightarrow \epsilon \end{array}$										
					$\epsilon, \$ \rightarrow \epsilon$		$\int_{-\infty}^{0} d\theta = \int_{-\infty}^{0} d$	έ		
• $L(M_1$	$) = \{0^{n}\}$: n	> 0			•			E ► E √Q

(NTU EE)

Spring 2024 23 / 46

Pushdown Automata – Example

• Let
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
 where

• $Q = \{q_1, q_2, q_3, q_4\}, \Sigma = \{0, 1\}, \Gamma = \{0, \$\}, F = \{q_1, q_4\}; \text{ and}$

• δ is the following table:

	input			0	1			ϵ			
	stack	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ	
	q_1									$\{(q_2,\$)$	}
	q_2			$\{(q_2, 0)\}$	$\{(q_3,\epsilon)\}$						
	q_3				$\{(q_3,\epsilon)\}$				$\{(q_4,\epsilon)\}$		
	q_4										
$\begin{array}{c} \hline q_1 \\ \hline q_1 \\ \hline \\ \hline \\ \hline \\ \\ 1, 0 \rightarrow \epsilon \end{array} \xrightarrow{q_2} 0, \epsilon \rightarrow 0$											
					$\epsilon, \$ \to \epsilon$	q_3	$\int \int dx = \int dx $	¢			
• <i>L</i> (<i>M</i>	$(1) = \{0^n\}$	¹ 1 ⁿ	: n	$\geq 0\}$			•		<	(≣) E	৩৫
()				<u> </u>	T T				0	. 0004	aa / /

(NTU EE

Context-Free Languages

Spring 2024 23 / 46

• Consider the following pushdown automaton *M*₂:

• $L(M_2) = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and, } i = j \text{ or } i = k \}$

(NTU EE)

• Consider the following pushdown automaton *M*₂:

• $L(M_2) = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and}, i = j \text{ or } i = k \}$

(NTU EE)

Context-Free Grammars \Rightarrow Pushdown Automata

- Idea: Use PDA to simulate derivations
- Example: $G : A \to 0A1 \mid B; B \to \#$
- Derivation: $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$
- Rule:
 - Write the start symbol A onto the stack
 - Rewrite variable on top of stack (in reverse) according to production
 - Pop top terminal if it matches input

Context-Free Grammars \Rightarrow Pushdown Automata

Note

- The above construction seems to suggest that the number of states in a PDA is not very "important".
- In fact, we can turn an arbitrary PDA into an equivalence one with a single state, such PDA are sometimes called "stateless" PDA.
 - The "state" information can be incorporated into a "stack symbol", in a way how a programming language handles the "call-return" mechanism in a function call.

Lemma

If a language is context-free, some pushdown automaton recognizes it.

Proof.

Let $G = (V, \Sigma, R, S)$ be a context-free grammar generating the language. Define

- $P = (\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}, \ldots\}, \Sigma, V \cup \Sigma \cup \{\$\}, \delta, q_{\text{start}}, \{q_{\text{accept}}\}) \text{ where }$
 - $\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}$
 - $\delta(q_{\text{loop}}, \epsilon, A) = \{(q_{\text{loop}}, w) : A \longrightarrow w \in R\}$
 - $\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \epsilon)\}$
 - $\delta(q_{\text{loop}}, \epsilon, \$) = \{(q_{\text{accept}}, \epsilon)\}$

Note that $(r, u_1u_2 \cdots u_l) \in \delta(q, a, s)$ is simulated by $(q_1, u_l) \in \delta(q, a, s)$, $\delta(q_1, \epsilon, \epsilon) = \{(q_2, u_{l-1})\}, \ldots, \delta(q_{l-1}, \epsilon, \epsilon) = \{(r, u_1)\}.$

Example

Example

Find a pushdown automaton recognizing the language of the following context-free grammar:

$$\begin{array}{ccc} S & \longrightarrow & \mathrm{a}T\mathrm{b} \mid \mathrm{b} \ T & \longrightarrow & T\mathrm{a} \mid \epsilon \end{array}$$

(NTU EE)

Context-Free Languages

Simplified PDA

- Has a single accepting state
- Empties its stack before accepting
- Each transition is either a push, or a pop, but not both

(NTU EE)

Context-Free Languages

Spring 2024 29 / 46

Pushdown Automata \Rightarrow Context-Free Grammars

- Key Idea: For every pair (q, r) of states in PDA, introduce variable A_{qr} in CFG so that
 - $A_{qr} \stackrel{*}{\Longrightarrow} w$ iff PDA goes from *q* to *r* reading *w* (with empty stack both at *q* and at *r*)

/N	τT.		
	U.	н.	F.

Pushdown Automata ⇒ Context-Free Grammars

- Type 1: $A_{ps} \rightarrow aA_{qr}b$
- Type 2: $A_{pf} \rightarrow A_{ps}A_{sf}$
- Type 3: $A_{gg} \rightarrow \epsilon$

(NTU EE)

Lemma

If a pushdown automaton recognizes a language, the language is context-free.

Proof.

Without loss of generality, we consider a pushdown automaton that has a single accept state q_{accept} and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol at any time. Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$. Define the context-free grammar $G = (V, \Sigma, R, S)$ where

•
$$V = \{A_{pq} : p, q \in Q\}, S = A_{q_0, q_{\text{accept}}}; \text{ and }$$

• *R* has the following rules:

- For each $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ and
- $(q,\epsilon) \in \delta(s,b,t)$, then $A_{pq} \longrightarrow aA_{rs}b \in \mathbb{R}$.
- For each $p, q, r \in Q$, $A_{pq} \longrightarrow A_{pr}A_{rq} \in R$.
- For each $p \in Q$, $A_{pp} \longrightarrow \epsilon \in R$.

- We write $A_{i,j}$ for $A_{q_iq_i}$.
- Consider the following context-free grammar:

$$\begin{array}{rcl} A_{14} & \rightarrow & A_{23} & \text{since } (q_2, \$) \in \delta(q_1, \epsilon, \epsilon) \text{ and } (q_4, \epsilon) \in \delta(q_3, \epsilon, \$) \\ A_{23} & \rightarrow & 0A_{23}1 & \text{since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_3, 1, 0) \\ A_{23} & \rightarrow & 0A_{22}1 & \text{since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_2, 1, 0) \\ A_{22} & \rightarrow & \epsilon \end{array}$$

▶ < 프 ▶ < 프 ▶</p>

Lemma

If A_{pq} generates x in G, then x can bring P from p with empty stack to q with empty stack.

Proof.

Prove by induction on the length *k* of derivation.

- k = 1. The only possible derivation of length 1 is $A_{pp} \Rightarrow \epsilon$.
- Consider $A_{pq} \Longrightarrow x$ of length k + 1. Two cases for the first step:
 - $A_{pq} \Rightarrow aA_{rs}b$. Then x = ayb with $A_{rs} \stackrel{*}{\Longrightarrow} y$. By IH, y brings P from r to s with empty stack. Moreover, $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ since $A_{pq} \longrightarrow aA_{rs}b \in R$. Let P start from p with empty stack, P first moves to r and pushes t to the stack after reading a. It then moves to s with t in the stack. Finally, P moves to q with empty stack after reading b and popping t.
 - $A_{pq} \Rightarrow A_{pr}A_{rq}$. Then x = yz with $A_{pr} \stackrel{*}{\Longrightarrow} y$ and $A_{rq} \stackrel{*}{\Longrightarrow} z$. By IH, *P* moves from *p* to *r*, and then *r* to *q*.

Pushdown Automata \Rightarrow Context-Free Grammars

Lemma

If x can bring P from p with empty stack to q with empty stack, A_{pq} generates x in G.

Proof.

Prove by induction on the length k of computation.

- k = 0. The only possible 0-step computation is to stay at the same state while reading ϵ . Hence $x = \epsilon$. Clearly, $A_{pp} \stackrel{*}{\Longrightarrow} \epsilon$ in *G*.
- Two possible cases for computation of length k + 1.
 - The stack is empty only at the beginning and end of the computation. If *P* reads *a*, pushes *t*, and moves to *r* from *p* at step 1, $(r, t) \in \delta(q, a, \epsilon)$. Similarly, if *P* reads *b*, pops *t*, and moves to *q* from *s* at step k + 1, $(q, \epsilon) \in \delta(s, b, t)$. Hence $A_{pq} \longrightarrow aA_{rs}b \in G$. Let x = ayb. By IH, $A_{rs} \stackrel{*}{\Longrightarrow} y$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$. The stack is empty elsewhere. Let *r* be a state where the stack becomes empty. Say *y* and *z* are the inputs read during the computation from *p* to *r* and *r* to *q* respectively. Hence x = yz. By IH, $A_{pr} \stackrel{*}{\Longrightarrow} y$ and $A_{rq} \stackrel{*}{\Longrightarrow} z$. Since $A_{pq} \longrightarrow A_{pr}A_{rq} \in G$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$.

Context-Free Grammars and Pushdown Automata

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Corollary

Every regular language is context-free.

- When we say PDA, we mean "nondeterministic PDA"
- Deterministic PDA (DPDA) are less powerful, they only accept deterministic context-free languages (DCFL).
- DPDA cannot accept $\{ww^R \mid w \in \{0,1\}^*\}$ or $\overline{\{a^nb^nc^n \mid n \ge 0\}}$.
- The equivalence problem is undecidable for PDA, yet it is decidable for DPDA.
- Regular \subsetneq DCFL \subsetneq CFL
- DCFLs are not closed under union, intersection, concatenation, but are closed under complement.

(NTU EE)

Context-Free Languages

Pumping Lemma for CFLs

Theorem

If A is a context-free language, then there is a number p (*the puming length*) *such that for every* $s \in A$ *with* $|s| \ge p$ *, there is a partition* s = uvxyz *that*

- for each $i \ge 0$, $uv^i xy^i z \in A$;
- **2** |vy| > 0; and
- $|vxy| \le p.$

Proof.

Let $G = (V, \Sigma, R, T)$ be a context-free grammar for A. Define b to be the maximum number of symbols in the right-hand side of a rule. Observe that a parse tree of height h has at most b^h leaves and hence can generate strings of length at most b^h . Choose $p = b^{|V|+1}$. Let $s \in A$ with $|s| \ge p$ and τ the smallest parse tree for s. Then the height of $\tau \ge |V| + 1$. There are |V| + 1 variables along

the longest branch. A variable R must appear twice.

(NTU EE)

Pumping Lemma for CFLs

(Fig. from M. Sipser's class notes)

Proof. (cont'd).

From Figure (a), we see $uv^i xy^i z \in A$ for $i \ge 0$. Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than τ . A contradiction. Hence |vy| > 0. Finally, recall *R* is in the longest branch of length |V| + 1. Hence the subtree *R* generating vxy has height $\le |V| + 1$. $|vxy| \le b^{|V|+1} = p$.

(NTU EE)

Pumping Lemma – Examples

Example

Show $B = \{a^n b^n c^n : n \ge 0\}$ is not a context-free language.

Proof.

Let *p* be the pumping length. $s = a^p b^p c^p \in B$. Consider a partition s = uvxyz with |vy| > 0. There are two cases:

uvxyz

• *v* or *y* contain more than one type of symbol, e.g.,

aaaa aab bbbbbcccccc. Then $uv^2xy^2z \notin B$.

• *v* and *y* contain only one type of symbol, e.g.,

aaa aa ab bb bbbcccccc. Then one of a, b, or c does not appear in v nor y (pigeon hole principle). Hence $uv^2xy^2z \notin B$ for |vy| > 0.

Pumping Lemma – Examples

Example

Show $C = \{a^i b^j c^k : 0 \le i \le j \le k\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = a^p b^p c^p \in C$. Consider any partition s = uvxyz with |vy| > 0. There are two cases:

- *v* or *y* contain more than one type of symbol. Then $uv^2xy^2z \notin C$.
- *v* and *y* contain only one type of symbol. Then one of a, b, or c does not appear in *v* nor *y*. We have three subcases:
 - a does not appear in *v* nor *y*. $uxz \notin C$ for it has more a then b or c.
 - b does not appear in v nor y. Since |vy| > 0, a or c must appear in v or y. If a appears, $uv^2xy^2z \notin C$ for it has more a than b. If c appears, $uxy \notin C$ for it has more b than c.
 - c does not appear in v nor y. $uv^2xy^2z \notin C$ for it has less c than a or b.

Example

Show $D = \{ww : w \in \{0, 1\}^*\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = 0^p 1^p 0^p 1^p$. Consider a partition s = uvxyz with |vy| > 0 and $|vxy| \le p$. If $0 \cdots 0 \overline{0 \cdots 01 \cdots 1} 1 \cdots 10^p 1^p$, uv^2xy^2z moves 1 into the second half and thus $uv^2xy^2z \notin D$. Similarly, uv^2xy^2z moves 0 into the first half if $0^p 1^p 0 \cdots 0 \overline{0 \cdots 01 \cdots 1} 1 \cdots 1$. It remains to consider $0^p 1 \cdots 1 \overline{1 \cdots 10 \cdots 0} 0 \cdots 01^p$. But then $uxz = 0^p 1^i 0^j 1^p$ with i < p or j < p for |vy| > 0. $uxz \notin D$.

Non-Decision Properties

- Many questions that can be decided for regular sets cannot be decided for CFLs.
- Example: Are two CFLs the same?
- Example: Are two CFLs disjoint?
- Need theory of Turing machines and decidability to prove no algorithm exists.

A B F A B F

Testing Membership (Cocke-Younger-Kasami Algo.)

- Test " $w = a_1...a_n \in L(G)$?", assuming G in CNF.
- Algorithm (CYK) is a good example of dynamic programming and runs in time $O(n^3)$, where n = |w|.
 - We construct an *n*-by-*n* lower triangular array of sets of variables.

•
$$X_{ij} = \{A \mid A \Longrightarrow w_{i,j}\}$$
, where $w_{i,j} = a_i \cdots a_j$. Finally, ask if $S \in X_{1n}$.

- Basis: $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production}\}$
- To compute *X_{ij}* inductively, try all possible ways of splitting *a_i…a_j* into substrings.

CYK Algorithm V (2)

- Basis: $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production }\}.$
- Induction: $X_{ij} = \{A \mid \text{ there is a production } A \to BC \text{ and an integer } k, i < k < j, B \in X_{ik}, C \in X_{k+1,j}\}.$

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$ String w = ababa

 $\label{eq:constraint} X_{11} {=} \{A,C\} \quad X_{22} {=} \{B,C\} \quad X_{33} {=} \{A,C\} \quad X_{44} {=} \{B,C\} \quad X_{55} {=} \{A,C\}$

$$X_{12} = \{B, S\}$$

 $X_{11} = \{A, C\}$ $X_{22} = \{B, C\}$ $X_{33} = \{A, C\}$ $X_{44} = \{B, C\}$ $X_{55} = \{A, C\}$

Example (cont'd)

Example

Grammar:
$$S \rightarrow AB$$
, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$
String $w = ababa$

$$X_{13} = \{\} \qquad \text{Yields nothing} \\ X_{12} = \{B,S\} \qquad X_{23} = \{A\} \qquad X_{34} = \{B,S\} \qquad X_{45} = \{A\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{13} = \{A\} \qquad X_{24} = \{B,S\} \qquad X_{35} = \{A\} \\ X_{12} = \{B,S\} \qquad X_{23} = \{A\} \qquad X_{34} = \{B,S\} \qquad X_{45} = \{A\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{11} = \{A,C\} \qquad X_{22} = \{B,C\} \qquad X_{33} = \{A,C\} \qquad X_{44} = \{B,C\} \qquad X_{55} = \{A,C\} \\ X_{55} = \{A,C\} \qquad X_{55} = \{A,C\} \qquad X_{55} = \{A,C\} \\ X_{55} = \{A,C\} \qquad X_{55} = \{A,C\} \qquad X_{55} = \{A,C\} \\ X_{55} = \{A,C\} \qquad X_{55} = \{A,C\} \qquad$$

H. Yen (NTUEE)

Example (cont'd)

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$ String w = ababa

イロト イポト イヨト イヨト 二日

Example (cont'd)

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$ String w = ababa

9 / 18

Given a CFG $G = (V, \Sigma, P, S)$ in CNF, construct a set

 $T = \{A \mid A \Longrightarrow w, w \in \Sigma^*\}$ iteratively in the following way:

• Let
$$T = \{A \mid A \to a \in P, a \in \Sigma_{\epsilon}\}.$$

So For all rules $B \to CD \in P$, if $C, D \in T$, then $T = T \cup \{B\}$.

Separate Step (2) until no more variable is added to *T*. Claim: $S \in T$ iff $L(G) \neq \emptyset$.

Testing Infiniteness

- The idea is essentially the same as for regular languages.
- Use the pumping lemma constant *n*. If there is a string in the language of length between *n* and 2n - 1, then the language is infinite; otherwise not.

(NTU EE)

Closure Properties of CFLs

- CFLs are closed under union, concatenation, and Kleene closure.
- Also, under reversal, homomorphisms and inverse homomorphisms.
- But not under intersection or difference.

Closure of CFLs Under Reversal

- If L is a CFL with grammar G, form a grammar for L^R by reversing the right side of every production.
- Example: Let G have $S \rightarrow 0S1 \mid 01$.
- The reversal of L(G) has grammar $S \rightarrow 1S0 \mid 10$.

Closure of CFLs Under Homomorphism

- Let L be a CFL with grammar G.
- Let h be a homomorphism on the terminal symbols of G.
- Construct a grammar for h(L) by replacing each terminal symbol a by h(a).

Example

G has productions $S \to 0S1 \mid 01$. *h* is defined by $h(0) = ab, h(1) = \epsilon$. h(L(G)) has the grammar with productions $S \to abS \mid ab$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Closure of CFLs Under Inverse Homomorphism

- Here, grammars don't help us.
- But a PDA construction serves nicely.
- Intuition: Let L = L(P) for some PDA P.
- Construct PDA P' to accept $h^{-1}(L)$.
- P' simulates P, but keeps, as one component of a two-component state a buffer that holds the result of applying h to one input symbol.

Closure of CFLs Under Inverse Homomorphism

Consider a homomorphism h(0) = aba, h(1) = bc. Suppose PDA *P* accepts *ababc*. The following is the way how *P*' accepts $h^{-1}(ababc) = 01$.

- Each state of *P*' is of the form [q, z], where *q* is a state of *P* and $z \in \{a, b, c\}^*$.
- *P*' starts in state [*q*₀, *ϵ*], upon reading input 0, *P*' moves to [*q*₀, *aba*]; then simulate *P*'s computation on *aba* as follows
 - $\blacktriangleright \quad [q_0,\epsilon] \stackrel{0,\epsilon \to \epsilon}{\to} [q_0,aba] \stackrel{\epsilon,\alpha \to \beta}{\to} [q_1,ba] \stackrel{\epsilon}{\to} [q_2,a] \stackrel{\epsilon,-}{\to} [q_3,\epsilon]$
 - in the above, [q₀, aba] → [q₁, ba] simulates (q₁, α → β) ∈ δ(q₀, a) (i.e., specified in the transition function of *P*).
- in state [q₃, ε], upon reading input 1, P' moves to [q₃, bc]; then simulate P's computation on bc as follows

▶ $[q_3, \epsilon] \xrightarrow{1, \epsilon \to \epsilon} [q_3, bc] \xrightarrow{\epsilon, -} [q_4, c] \xrightarrow{\epsilon, -} [q_5, \epsilon]$, where q_5 is an accept state.

- Hence, *P*′ accepts 01.
- *P*′ updates the stack in the same way as *P* does.

Construction of P'

- States are pairs [q, b], where:
 - q is a state of P.
 - 2 *b* is a suffix of h(a) for some symbol *a*.

Thus, only a finite number of possible values for *b*.

- Stack symbols of P' are those of P.
- Start state of P' is $[q_0, \epsilon]$.
- Input symbols of *P*' are the symbols to which *h* applies.
- Final states of P' are the states [q, ε] such that q is a final state of P.

· · · · · · · · ·

Transitions of P'

- δ'(([q, ε], a, X) = {([q, h(a)], X)} for any input symbol a of P' and any stack symbol X.
 - ▶ When the buffer is empty, P' can reload it.
- **2** $\delta'([q, bw], \epsilon, X)$ contains $([p, w], \alpha)$ if $\delta(q, b, X)$ contains (p, α) , where *b* is either an input symbol of *P* or ϵ .
 - Simulate P from the buffer.

- 4 同 6 4 日 6 4 日 6

Intersection with a Regular Language

- Intersection of two CFL's need not be context free.
- But the intersection of a CFL with a regular language is always a CFL.
- Proof involves running a DFA in parallel with a PDA, and noting that the combination is a PDA. (PDAs accept by final state.)

Formal Construction

- Let the DFA A have transition function δ_A .
- Let the PDA P have transition function δ_P .
- States of combined PDA are [q, p], where q is a state of A and p a state of P.
- δ([q, p], a, X) contains ([δ_A(q, a), r], α) if δ_P(p, a, X) contains (r, α). Note a could be ε, in which case δ_A(q, a) = q.
- Accepting states of combined PDA are those [q, p] such that q is an accepting state of A and p is an accepting state of P.
- Easy induction: $([q_0, p_0], w, Z_0) \stackrel{*}{\vdash} ([q, p], \epsilon, \alpha)$ if and only if $\delta_A(q_0, w) = q$ and in $P : (p_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, \alpha)$.

${x^ny^n \mid n \ge 0} \cup {x^ny^{2n} \mid n \ge 0}$ Not a DPDA Language

Theorem

 $CFL L = \{x^ny^n \mid n \ge 0\} \cup \{x^ny^{2n} \mid n \ge 0\}$ cannot be acceptable by a DPDA.

Proof.

Assume, otherwise, that DPDA M accepts L. We construct a new DPDA M_0 which consists of "two modified copies" M_1 and M_2 of M in the following way:

- the initial state of *M*₀ is the initial state of *M*₁, and the final states of *M*₀ are the final states of *M*₂,
- remove all *x* transitions from M₂,
- replace all the *y* transitions of M_2 with *z* transitions,
- for each *y* transition emanating from an accept state of *M*₁, remove that transition and add a *z* transition to its "copy" in *M*₂,
- remove all *x* transitions emanating from accept states of *M*₁,
- update on the stack remains unchanged.

${x^ny^n \mid n \ge 0} \cup {x^ny^{2n} \mid n \ge 0}$ Not a DPDA Language

Proof.

- Claim: $L(M_0) \subseteq x^*y^*z^*$
 - The prefix before entering M_2 must be accepted by M_1 . Hence, the prefix must be of the form $x^n y^n$ or $x^n y^{2n}$.
- If M_0 accepts $x^n y^n z^i$ $(i \ge 1)$, then M must accept $x^n y^{n+i}$, only possible if i = n.
- Hence, M_0 accepts $\{x^n y^n z^n \mid n \ge 1\}$ a contradiction.

Deterministic Context-Free Languages

- Deterministic PDA: in state *q* reading *a* with *x* at top of stack, at most one transition can apply.
 - if $q \stackrel{\epsilon, \epsilon \to \epsilon}{\to} p$ exists, it is the only transition in *q*;
 - $q \xrightarrow{a,x \to y} p$ cannot co-exist with either $q \xrightarrow{a,\epsilon \to z} p'$ or $q \xrightarrow{a,x \to z} p''$.

Theorem $Reg \subsetneq DCFL \subsetneq CFL$

Theorem

- DCFLs are closed under complement, union/intersection with regular languages.
- DCFLs are not closed under union, intersection, concatenation.

イロト イ理ト イヨト イヨト

Closure Properties of DCFL

Proof.

• (Complementation - YES) [Proof Idea] swap accept/non-accept states but need to make sure that DPDA reads the entire string.

L = { $a^n b^n c^n | n \ge 0$ } is not CF, yet its complement \overline{L} is CF (Why?). So { $a^n b^n c^n | n \ge 0$ } is NOT a DCFL.

- (Union/Concatenation with Regular YES): Proof IdeaDPDA \times DFA \rightarrow DPDA.
- (Union NO) \overline{L} =
 - $\ \, \bullet \ \, \{a^ib^jc^k \mid i \neq j\} \cup \{a^ib^jc^k \mid i \neq k\} \cup \{a^ib^jc^k \mid j \neq k\} \cup \\$
 - (anything with ba, cb, ca)

Each of the above four sub-languages is DCFL. However, (1) is not DCFL; otherwise, \overline{L} is DCFL.

• (Intersection - NO): $L \cup M = \overline{\overline{L} \cap \overline{M}}$.

< ロ > < 同 > < 回 > .

Closure Properties of DCFL

Proof.

• (Concatenation - NO):

Let $L_1 = \{a^i b^j c^k \mid i \neq j\}$ and $L_2 = \{a^i b^j c^k \mid j \neq k\}$; both are DCFLs.

$$L_3 = 0L_1 \cup L_2$$
 is a DCFL.

Claim: $A = 0^*L_3$ is not a DCFL.

- Suppose *A* is a DCFL. Then $A \cap 0a^*b^*c^*$ is a DCFL.
- $A \cap 0a^*b^*c^* = 0L_1 \cup 0L_2$ (a DCFL) implies $L_1 \cup L_2$ is a DCFL. However,

$$L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2} = \overline{\{a^n b^n c^n \mid n \ge 0\}} - \{\text{anything with } ba, cb, ca\}$$

As $\overline{\{a^n b^n c^n \mid n \ge 0\}}$ is not a DCFL, $L_1 \cup L_2$ is not a DCFL – a contradiction.

Note:

- If *L* is a DCFL and *R* is regular, *LR* is always a DCFL but *RL* may not be a DCFL
- DCFLs are interesting as they are closed under complementation, but not closed under union, intersection, concatenation.

(NTU EE)

Using Idea behind PDA \Rightarrow CFG to Show Closure with Regular Sets

Theorem

CFLs are closed under intersection with regular languages.

Proof.

Let $G = (V, \Sigma, R, S)$ be a CFG in CNF and $N = (Q, \Sigma, \delta, q_0, \{q_f\})$ be an NFA with a unique accept state. We construct $G' = (V', \Sigma, R', S')$ as follows. A variable in V' is of the form (q_i, A, q_j) , where $q_i, q_j \in Q, A \in V$

Claim: $(q_i, A, q_j) \stackrel{*}{\Longrightarrow} w$ in G' iff $q_i \stackrel{w}{\to} q_j$ in N and $A \stackrel{*}{\Longrightarrow} w$ in G.