Context-Free Languages and Pushdown Automata

(NTU EE) Context-Free Languages Spring 2024 1/46

Context-Free Grammars

@ Here is an example of a context-free grammar Gy:

A — 0A1
A — B
B — #

@ Each line is a substitution rule (or production).

@ A, B are variables.
@ 0,1, # are terminals.
@ The left-hand side of the first rule (A) is the start variable.

(NTU EE) Context-Free Languages Spring 2024 2 /46

Grammars and Languages

A — 0A1
A — B
B — #
@ A grammar describes a language.
@ A grammar generates a string of its language as follows.
@ Write down the start variable.
@ Find a written variable and a rule whose left-hand side is that
variable.
© Replace the written variable with the right-hand side of the rule.
© Repeat steps 2 and 3 until no variable remains.
@ For example, consider the following derivation of the string
00#11 generated by Gy:

A= 0A1 = 00A11 = 00B11 = 00411

@ Any language that can be generated by some context-free
grammar is called a context-free language.

(NTU EE) Context-Free Languages Spring 2024 3/46

Grammars and Languages

@ With respect to the following derivation of the string 00#11
generated by Gi:

A= 0Al1 = 00A11 = 00B11 = 00#11

we also use a parse tree to denote a string generated by a
grammar:

Fr——D—D>—0>0

(NTU EE) Context-Free Languages Spring 2024 4 /46

Context-Free Grammars — Formal Definition

Definition
A context-free grammar is a 4-tuple (V, 3, R, S) where

@ V is a finite set of variables (also called non-terminals);
@ Y is a finite set of terminals where VN Y = 0;

@ Ris a fintie set of production rules. Each rule consists of a variable
and a string of variables and terminals; and

@ S € V is the start variable.

o Let u,v, w are strings of variables and terminals, and A — w a
rule. We say uAv yields uwv (written uAv = uwo).

o u derives v (written u = v) if u = v or there is a sequence
Uy, Uy, ..., ug (k>0)thatu = uy = up = - = up = o.

o The language of the grammar is {w € ¥* : S == w}.

(NTU EE) Context-Free Languages Spring 2024 5/ 46

Context-Free Languages — Examples

Example (Balanced Parentheses)
Consider G3 = ({S},{(,)},R,S) where R is

S—(S)]SS|e

@ A— wi|wy| - | wystands for

A—>ZU1
A—>ZU2

A—>wk

e Examples of the strings generated by Gs: ¢, (), (())(), - .-

(NTU EE) Context-Free Languages Spring 2024 6 /46

Parse Trees vs. Derivation Sequences

Consider the following grammar: E -+ E+E | ExXE | (E) | a

The following two derivation sequences have the same parse tree.
e E=E+E=sa+E=a+EXE=a+Exa=a+axa
e E=E+E=E+EXE=a+ExXE=a+axE=a+axa

/
E

N\

/\

P
a+a><a

(NTU EE) Context-Free Languages Spring 2024 7/ 46

Context-Free Languages — Examples

@ From a DFA M, we can construct a context-free grammar Gy such

that the language of G is L(M).
o Let M = (Q, %, 0,40, F) be a DFA. Define Gy = (V, X, P, S) where
» V={Ri:qi€ Q}and S = {Ro}; and
> PZ{Ri — aRjzé(qi,a) :qj}U{Rj—>€qu' EF}.
@ Recall M3 and construct Gy, = ({R1,R2},{0,1}, P, {Ry}) with

Ry — OR1|1R2’6
R, — O0Rg | 1R,.
@ The above is a right-linear grammar for which the right-hand-side
contains at most one variable at the end of the rule.

Fieure: Ma

(NTU EE) Context-Free Languages Spring 2024 8 /46

Subclasses of Context-Free Grammars

e Right-Linear Grammar
Rl — ORl ’ 1R, | €
R, — O0OR; ’ 1R,
o Left-Linear Grammar
Ry — R40 ’ Ro1 | €
R, — R;0 ’ Ro1
e Linear Grammar
Ry — O0ORj1 | €

Note: Left- and Right-Linear Grammars only generate regular languages, while
Linear Grammar could generate non-regular languages such as {0"1" | n > 0}.

e How about rules contain both RL and LL rules? (Can you use such to
generate {0"1" | n > 0}?)

Ry — Rzl‘ﬁ
R, — O0OR;

(NTU EE) Context-Free Languages Spring 2024 9 /46

Context-Free vs. Context-Sensitive Grammars

© Context-Free Rules: A — 3,
@ Context-Sensitive Rules: aAy — a3y,

pe(Vux)t

@ Similarity: both replace A by 3.

ge(Vux)*
a,v € (VUX)*,

e Difference: in (2), replacing A by 3 could only take place if A is
surrounded by (in the context of) o and .

o Context-sensitive grammars are more powerful than context-free

grammars.
The Chomsky Hierarchy
Grammars \ Rules | Languages | Automata
Type 3 / Right-linear A—aB,A—e Regular DFA /NFA
Type 2 / CFG A—a CFL PDA
Type 1 / CSG aAy — afy,|8] >0 CSL LBA
Type 0 / Unrestricted oAy — re. Turing Machine

(NTU EE)

Context-Free Languages

Spring 2024

10 / 46

Context-Free Languages — Examples

Example (Fragment of C Grammar)
Consider G4 = (V, 3, R, (EXPR)) where
e V = {(EXPR), (TERM), (FACTOR)}, ¥ = {a,+, X, (,)}; and
@ Ris
(EXPR) (EXPR)+(TERM) | (TERM)

—>
(TERM) —» (TERM)x(FACTOR) | (FACTOR)
(FACTOR) —> ({(EXPR))|a

(EXPR)

(FACTOR) [(FACTOR) | (FACTOR)

a + a X a

(NTU EE) Context-Free Languages Spring 2024 11/ 46

Ambiguity

Example (Fragment of C Grammar)

Consider Gs:

(EXPR) —» (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

@ We have two parse trees for a + a x a.

(EXPR) (EXPR)
(EXPR) (EXPR) (EXPR) (EXPR)
(EXPR) (EXPR) (EXPR) (EXPR)
LDy VAN

o If a grammar generates (w.r.t. parse trees) the same in different
ways, the string is derived ambiguously in that grammar.
e If a grammar generates some string ambiguously, it is ambiguous.

(NTU EE) Context-Free Languages Spring 2024 12 / 46

Ambiguity

@ A derivation is a leftmost derivation if the leftmost variable is the
one replaced at every step.

@ Two leftmost derivations of a + a X a:
(EXPR) = (EXPR)x(EXPR) = (EXPR)+(EXPR)x(EXPR) =
a+(EXPR)x (EXPR) = a+ax (EXPR) = ataxa
(EXPR) = (EXPR)+(EXPR) = a+(EXPR) =
a+(EXPR)x (EXPR) = a+ax (EXPR) = ataxa

Theorem

A string is derived ambiguously in a grammar if it has two or more different
leftmost derivations.

e If a language can only be generated by ambiguous grammars, we
call it is inherently ambiguous.

» {a'b/ck :i=jorj=k}isinherently ambiguous.

(NTU EE) Context-Free Languages Spring 2024 13 / 46

Chomsky Normal Form (CNF)

Definition
A context-free grammar is in Chomsky normal form if every rule is of
the form

S — €
A — BC
A — a

where a is a terminal, S is the start variable, A is a variable, and B, C
are non-start variables.

@ RHSis (1) € (only from S), (2) exactly two non-start variables, (3)
exactly one terminal.

Theorem

Any context-free language is generated by a context-free grammar in
Chomsky normal form.

(NTU EE) Context-Free Languages Spring 2024 14 / 46

Chomsky Normal Form

Proof.
Given a context-free grammar for a context-free language, we will
convert the grammar into Chomsky normal form.

O (start variable) Add a new start variable Sy and a rule Sp — S.

@ (e-rules) For each e-rule A — €(A # Sp), remove it. Then for each
occurrence of A on the right-hand side of a rule, add a new rule
with that occurrence deleted.

R — uAvAw becomes R — uAvAw | uvAw | uAvw | uvw.
© (unit rules) For each unit rule A — B, remove it. Add the rule
A — u for each B — u.
© For each rule A — uqjuy - - - ur(k > 3) and u; is a variable or
terminal, replace it by A — w1 A1, Ay — upA, ...,
Ag—p — Ug_11.
@ For each rule A — uqup with u; a terminal, replace it by
A — Ujup, Uy — uyq. Similarly when u; is a terminal.]

(NTU EE) Context-Free Languages Spring 2024 15/ 46

Chomsky Normal Form — Example

@ Consider G¢ on the left. We add a new start variable on the right.

S — S
- ‘;T‘;“aB S —» ASA|aB
A — B|S

B — b]e B — ble

@ Remove B — ¢ (left) and then A — ¢ (right):

S() — S S() — S
S — ASA|aB|a S —» ASA|aB|a|SA|AS|S
A — B|S|e A — B|S
B — Db B — Db
@ Remove S — S (left) and then Sp — S (right):
S — S So — ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS S —» ASA|aB|a|SA|AS
A — B|S A — BIS
B — Db B — Db

(NTU EE) Context-Free Languages Spring 2024 16 / 46

Chomsky Normal Form — Example

@ Remove A — B (left) and then A — S (right):

Sy — ASA|aB|a|SA|AS Sy —» ASA|aB|al|SA|AS
S — ASA|aB|al|SA|AS S —» ASA|aB|al|SA|AS
A — S|b A — Db|ASAlaB|a|SA|AS

B — b B — b
@ Remove S) — ASA,S — ASA,and A — ASA:

So — AAi|aB|a|SA|AS
S — AAi|aB|a|SA|AS
A — Db|AAi|aB|a|SA|AS
B — b

A — SA

e AddU — a:

So — AA|UB|al|SA|AS
S — AA|UB|al|SA|AS
A — Db|AA;|UB|a|SA|AS
B — b

A — SA

u — a

(NTU EE) Context-Free Languages Spring 2024

Schematic of Pushdown Automata

[blaja/bablaaabb| [blaablabaaabb]

Each step of the PDA looks like:
@ Read current symbol and advance head;
@ Read and pop top-of-stack symbol;
@ Push in a string of symbols on the stack;
o Change state.

Each transition is of the form

(p,a, X) — (q, Y1Y2...Yk)

(NTU EE) Context-Free Languages Spring 2024 18 / 46

Three Mechanisms of Acceptance

Accept if input is consumed and
@ Stack is empty (Acceptance by Empty Stack),
@ PDA is in a final state (Acceptance by Final State),
@ PDA is in a final state and stack is empty (Acceptance by Final State

and Empty Stack).
[6aababaaabb] [ba a bablaaabb]
f

P |

Y

Y

z

; 1

Empty stack Final State

It turns out that the three notions of acceptance are equivalent.

(NTU EE) Context-Free Languages Spring 2024 19 / 46

Pushdown Automata

e Consider L = {0"1" : n > 0}.
@ We have the following table:

Language ‘ Automata
Regular Finite
Context-free

(NTU EE) Context-Free Languages Spring 2024

Pushdown Automata

e Consider L = {0"1" : n > 0}.
@ We have the following table:

Language ‘ Automata
Regular Finite
Context-free | Pushdown

@ A pushdown automaton is a finite automaton with a stack.

» A stack is a last-in-first-out storage.
» Stack symbols can be pushed and poped from the stack.

e Computation depends on the content of the stack.

@ It is not hard to see L is recognized by a pushdown automaton.

(NTU EE) Context-Free Languages Spring 2024 20 / 46

Pushdown Automata — Formal Definition

Definition
A pushdown automaton is a 6-tuple (Q, X, T, 4, o, F) where
Q is the set of states;

¥ is the input alphabet;
I' is the stack alphabet;

°
°
0 0:Qx X xI'c —» P(Q x T') is the transition function;
°

go € Q is the start state; and

@ F C Qis the accept states.

@ Recall ¥, =¥ U {e}and I'c =T U {e}.

@ We consider nondeterministic pushdown automata in the
definition. It convers deterministic pushdown automata.

@ Deterministic pushdown automata are strictly less powerful.

e For convenience, we often extend ¢ to Q x ¥ x I'c — P(Q x I'),
i.e., allowing a € I' in the stack to be replaced by x € I'*.

(NTU EE) Context-Free Languages Spring 2024 21/ 46

Computation of Pushdown Automata

@ A pushdown automaton M = (Q, X, T, 6, qo, F) accepts input w if w can be
written as w = wyws - - - Wy, With w; € X and there are sequences of states
10,71, ..., "m € Q and strings so, 51, . ..,5um € I'" (representing contents of the
stack) such that

wy,— w141, a—b Wmy—
(ro,s0) = (r1,81) -+ (riyat) "= (r1pe1,bt) - = (T, Sm)
where
» rp=goand sy = ¢
» For 0 <i < m, wehave (ri41,b) € 6(ri,w;y1,a), s; = at,and s;y1 = bt
for somea,b € I'c and t € T'*.

* On reading wi;1, M moves from r; with stack af to r;;1 with stack bt.
* Write c,a — b(c € ¥ and a,b € T') to denote that the machine is
reading ¢ from the input and replacing the top of stack a with b.

> 1y €F.
@ The language recognized by M is denoted by L(M).
» Thatis, L(M) = {w : M accepts w}.

(NTU EE) Context-Free Languages Spring 22/ 46

Pushdown Automata — Example

o Let My = (Q,%,T,0,q1,F) where

> Q = {%742#3;%} Y= {Oa 1}/ I'= {Oa$}/ F= {Q17Q4}} and
» ¢ is the following table:

input 0 1 €

stack [0 [§] ¢ 0 [$]efo] § | e
q1 {(32,9)}
92 {(q2,0)} | {(q3,€)}
95 (g3, €)} {(q4,€)}
q4

(NTU EE) Context-Free Languages Spring 2024

Pushdown Automata — Example

o Let My = (Q,%,T,0,q1,F) where

> Q = {%742#3;%} Y= {Oa 1}/ I'= {Oa$}/ F= {Q17Q4}} and
» ¢ is the following table:

input 0 1 €

stack [0 [§] ¢ 0 [$]efo] § | e
q1 {(32,9)}
92 {(q2,0)} | {(q3,€)}
95 (g3, €)} {(q4,€)}
q4

e L(M;)={0"1":n>0}
Context-Free Languages Spring 2024

Pushdown Automata — Example

@ Consider the following pushdown automaton Mj:

b,a —e c,e €

e,$—e (@)
ee—$
€% —¢

€, €€ m €€ €
q5

6

a, e —>a b,e—e€ c,a—e€

(NTU EE) Context-Free Languages

Pushdown Automata — Example

@ Consider the following pushdown automaton Mj:

b,a —e c,e €

e,$—e (@)
ee—$
€% —¢

€€ — € €€ — €
s 6

a, e —>a b,e—e€ c,a—e€

o L(My) = {ab/cF:i,j,k>0and,i=jori=k}

(NTU EE) Context-Free Languages Spring 2024

Context-Free Grammars = Pushdown Automata

@ Idea: Use PDA to simulate derivations

o Example: G: A — 0A1|B; B— #

@ Derivation: A = 0A1 = 00A11 = 00B11 = 00#11
@ Rule:

» Write the start symbol A onto the stack

» Rewrite variable on top of stack (in reverse) according to
production

» Pop top terminal if it matches input

[olol#[2[2] [ofoleJs s] [ofolee[e] [olele[x[s] olole=[s] [olele[z]e] [elof+[s]s] [olofe aTs] [efe[e]a]t] [ofefe[<[:]

aad

A pavavy avavy A A A AN AN Pt
] 10|] -]]]]
0 A A B #
A A 1 1 1 1 1

A 1 1 1 1 1 1 1 1

$ $ $ $ $ $ $ $ $ $

(NTU EE) Context-Free Languages Spring 2024 25/ 46

Context-Free Grammars = Pushdown Automata

a,d/e g, Afovg ... m
for every terminal a for every production
A—op.. . op
N\ //
PO Nt oY
| Go { q1) i g2)
~ £,/54 N~ e, 8 /¢ e

Note

@ The above construction seems to suggest that the number of states
in a PDA is not very “important”.

@ In fact, we can turn an arbitrary PDA into an equivalence one with
a single state, such PDA are sometimes called ”stateless” PDA.

» The ”state” information can be incorporated into a “stack symbol”,
in a way how a programming language handles the ”call-return”
mechanism in a function call.

(NTU EE) Context-Free Languages

Context-Free Grammars = Pushdown Automata

Lemma

If a language is context-free, some pushdown automaton recognizes it.

Proof.

Let G = (V,%,R, S) be a context-free grammar generating the
language. Define

P= ({Elstartv Hloop > Yaccept; - - '}7 Y, VuXu {$}7 9, {start, {Qaccept}) where

@ 6(gstart; €, €) = {(q100p7 S$)}

° 5(5]loopvf7A) = {(Ehoop7w) :A— weR}

C 6(q100pva7a) = {(%oop7€)}

@ (Gioop: €5 8) = {(Gaccept; €) }
Note that (7, uquy - - - u;) € 6(q,a,s) is simulated by (g1, 1;) € §(q,4,s),
6(q1,e,€) = {(92,w-1)}, - -, 6(qi—1,€,€) = {(r, u1) }- [

(NTU EE) Context-Free Languages Spring 2024 27 / 46

Example

Find a pushdown automaton recognizing the language of the
following context-free grammar:

e,S—Db
e, T — ¢
a,a—e€
b,b =€
Context-Free Languages

(NTU EE) Spring 2024 28 / 46

Simplified PDA

@ Has a single accepting state
e Empties its stack before accepting
@ Each transition is either a push, or a pop, but not both

single accepting state

Empties its stack before accepting
£,a/« for every stack symbol a

. a,b/c _ — a,bfe — egefC -
N LY] VAT ! £
@—— @——{dy)——®

. /e . a,g/b — ebfe
(q0) ! D) == (70 U T T= N
@—® (o) ——(

(NTU EE) Context-Free Languages ng 2024 29 / 46

Pushdown Automata = Context-Free Grammars

@ Key Idea: For every pair (g, r) of states in PDA, introduce variable
Agr in CFG so that

» Ay, = wiff PDA goes from g to r reading w (with empty stack
both at g and at r)

PDA CFG
N
q) r =
I‘._“l/' .'1,‘”‘, —+ £
~ FON T
\2) A1) Apr — ApgAgr
. d,g/x .
(P ——9) Ay —+aA,b
A N2
~ a=corb=c¢
(T —= 5
~ b,x/e ~ allowed

(NTU EE) Context-Free Languages Spring 2024

Pushdown Automata = Context-Free Grammars

e Type 1: Aps — aAgyb
e Type 2: Apf — ApsAsf
@ Type3: Age — €

Apf > Aps Asf

r

<—Read a push X Read b pop X

(NTU EE) Context-Free Languages Spring 2024

Pushdown Automata = Context-Free Grammars

Lemma
If a pushdown automaton recognizes a language, the language is context-free.

Proof.

Without loss of generality, we consider a pushdown automaton that
has a single accept state gaccept and empties the stack before accepting.
Moreover, its transition either pushes or pops a stack symbol at any
time. Let P = (Q, %, T, 6, 0, {Gaccept })- Define the context-free grammar
G = (V,%,R,S) where
° V = {qu : p’ q € Q}l S = Aqo;qaccept/‘ and
@ R has the following rules:
Foreachp,q,r,s € Q,t €', and a,b € X, if (1,t) € d(p,a, €) and
(g,€) € 6(s,b,t), then Ay, — aA,b € R.
Foreachp,q,r € Q, Apy — ApAy €R.
Foreachp € Q, Ay, — e€R.

(NTU EE) Context-Free Languages Spring 2024 32/ 46

© We write A;j for Agy,.

@ Consider the following context-free grammar:
Ay — A since (42, %) € 6(q1,¢€,¢) and (qa,€) € 6(g3, ¢, $)
Axz — 0Ax1 since (42,0) € 0(q2,0,¢€) and (g3, ¢€) € 6(g3, 1, 0)

Azz — 0Axpl since (42,0) € 6(g2,0,¢) and (g3,¢€) € 6(42,1,0)
A22 — €

(NTU EE) Context-Free Languages Spring 2024 33/ 46

Pushdown Automata = Context-Free Grammars

Lemma

If Ay, generates x in G, then x can bring P from p with empty stack to q with
empty stack.

Proof.
Prove by induction on the length k of derivation.

@ k = 1. The only possible derivation of length 1is A, = e.

o Consider Ay, == x of length k + 1. Two cases for the first step:

Apg = aAysb. Then x = ayb with A, == y. By IH, y brings P from r
to s with empty stack. Moreover, (7,) € §(p,a, €) and

(g,€) € 6(s, b, t) since Ay; — aA,b € R. Let P start from p with
empty stack, P first moves to r and pushes t to the stack after
reading a. It then moves to s with ¢ in the stack. Finally, P moves to
g with empty stack after reading b and popping ¢.

Apg = AprAy. Then x = yz with A, = yand Ay = z. By IH, P
moves from p to 7, and then r to 4. O

(NTU EE) Context-Free Languages Spring 2024 34 /46

Pushdown Automata = Context-Free Grammars

Lemma

If x can bring P from p with empty stack to q with empty stack, A, generates
xinG.

Proof.

Prove by induction on the length k of computation.

@ k = 0. The only possible 0-step computation is to stay at the same state while
reading e. Hence x = ¢. Clearly, Ay, == ¢ in G.

@ Two possible cases for computation of length k + 1.

The stack is empty only at the beginning and end of the computation. If P
reads a, pushes t, and moves to r from p at step 1, (r,t) € 6(q, 4, €). Similarly,
if P reads b, pops t, and moves to g from s at step k + 1, (g, ¢) € d(s, b, t).
Hence Ay, — aAsb € G. Let x = ayb. By IH, A,s = y. We have A,y = x.
The stack is empty elsewhere. Let r be a state where the stack becomes
empty. Say y and z are the inputs read during the computation from p to r
and r to q respectively. Hence x = yz. By IH, A,, = y and A,; = z. Since
Apg — ApAyy € G. We have Ay = x. O
Context-Free Languages Spring 2024 35/ 46

Context-Free Grammars and Pushdown Automata

Theorem

A language is context-free if and only if some pushdown automaton
recognizes it.

Corollary

Every regqular language is context-free.

@ When we say PDA, we mean “nondeterministic PDA”

@ Deterministic PDA (DPDA) are less powerful, they only accept
deterministic context-free languages (DCFL).

@ DPDA cannot accept {ww® | w € {0,1}*} or {a"b"c" | n > 0}.

@ The equivalence problem is undecidable for PDA, yet it is
decidable for DPDA.

@ Regular C DCFL C CFL

@ DCFLs are not closed under union, intersection, concatenation,
but are closed under complement.

Context-Free Languages Spring 2024 36 / 46

Pumping Lemma for CFLs

Theorem

If A is a context-free language, then there is a number p (the puming length)
such that for every s € A with |s| > p, there is a partition s = uvxyz that

Q foreachi> 0, uv'xy'z € A;

Q |vy| > 0;and
Q [uxy| <p.
Proof.

Let G = (V,X,R, T) be a context-free grammar for A. Define b to be the
maximum number of symbols in the right-hand side of a rule. Observe
that a parse tree of height / has at most b" leaves and hence can
generate strings of length at most V.

Choose p = blVI*1. Let s € A with |s| > p and 7 the smallest parse tree
for s. Then the height of 7 > |V| 4+ 1. There are |V| + 1 variables along
the longest branch. A variable R must appear twice.

(NTU EE) Context-Free Languages Spring 2024 37/ 46

Pumping Lemma for CFLs

E R E
R
u v R\ 2 R
R x
1 X Yy
u z

R Generates uvyxyyz Generates uxz
/ \ =uv<xy‘z =ur®xy°z
u v x y z Longs — “cutting and pasting” argument

tall parse tree

(Fig. from M. Sipser’s class notes)

Proof. (cont’d).

From Figure (a), we see uv'xy'z € A fori > 0.

Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than 7. A
contradiction. Hence |vy| > 0.

Finally, recall R is in the longest branch of length |V| + 1. Hence the
subtree R generating vxy has height < |V| + 1. |oxy| < bIVI+1 = p. O

(NTU EE) Context-Free Languages Spring 2024 38/ 46

Pumping Lemma - Examples

Example

Show B = {a"b"c" : n > 0} is not a context-free language.

Proof.

uoxyz

. A . o .
Let p be the pumping length. s = a’bPc? € B. Consider a partition
s = uvxyz with |vy| > 0. There are two cases:

@ v or y contain more than one type of symbol, e.g.,

Xyz
u @ Y

e~ A —
aaad aab bbbbbcccece. Then uv?xy?z ¢ B.

@ v and y contain only one type of symbol, e.g.,
u v x Y %
A AN N
aaa “aa ab bb bbbcceece. Then one of a, b, or ¢ does not appear
in v nor y (pigeon hole principle). Hence uv?xy?z ¢ B for
loy| > 0. O

(NTU EE) Context-Free Languages Spring 2024 39/ 46

Pumping Lemma - Examples

Example

Show C = {a'bick: 0 <i <j <k} is not a context-free language.

Proof.
Let p be the pumping length and s = a’b”c? € C. Consider any
partition s = uvxyz with |oy| > 0. There are two cases:

@ v or y contain more than one type of symbol. Then uv?xy*z ¢ C.

@ v and y contain only one type of symbol. Then one of a, b, or ¢
does not appear in v nor y. We have three subcases:

a does not appear in v nor y. uxz ¢ C for it has more a then b or c.
b does not appear in v nor y. Since |vy| > 0, a or ¢ must appear in v
or y. If a appears, uv?xy?z ¢ C for it has more a than b. If c appears,
uxy ¢ C for it has more b than c.

c does not appear in v nor y. uv?xy?z ¢ C for it has less c than a or
b. 0

(NTU EE) Context-Free Languages Spring 2024 40/ 46

Pumping Lemma - Examples

Example

Show D = {ww : w € {0,1}*} is not a context-free language.

Proof.

Let p be the pumping length and s = 071707 17. Consider a partition
s = uvxyz with |oy| > 0 and |oxy| < p.
oxy
——
If0---00---01---11---10P17, uv*xy?>z moves 1 into the second half

and thus uv?xy?z ¢ D. Similarly, uv®xy?z moves 0 into the first half if
Xy

——
V?1PQ oo @ @ecco@ilocod ALocodl,

oxy
. . ,_/%
It remains to consider 0P1---11---10---00---017. But then
uxz = 0P1'0/1P withi < p or j < p for |vy| > 0. uxz ¢ D. O

(NTU EE) Context-Free Languages Spring 2024 41/ 46

Non-Decision Properties

@ Many questions that can be decided for regular sets cannot be
decided for CFLs.

Example: Are two CFLs the same?

@ Example: Are two CFLs disjoint?

Need theory of Turing machines and decidability to prove no
algorithm exists.

H. Yen (NTUEE) 2 /18

Testing Membership (Cocke-Younger-Kasami Algo.)

o Test "w = ay...a, € L(G)?”, assuming G in CNFE.
o Algorithm (CYK) is a good example of dynamic programming
and runs in time O(n3), where n = |w|.
» We construct an n-by-n lower triangular array of sets of variables.
» Xi={A|A = w;j}, where w; j = a; - - - a;. Finally, ask if S € X,,.
@ Basis: X;; = {A | A — a;is a production}
e To compute X;; inductively, try all possible ways of splitting a;...4;
into substrings.

Example
Grammar: S+ AB, A—+BC|a, B+ AC|b. C—alb a b a b a

String w = ababa
®c ®s S AB
@ —r —
i B,S B,S
o) @ Bﬁ B> AC

(NTU EE) Context-Free Languages Spring 2024 42 /48

CYK Algorithm V (2)

e Basis: X;j ={A| A— a; is a production }.
o Induction: Xjj = {A| thereis a production A — BC and an
integer k,i < k <j,B € Xi, C € Xig1,}

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X11={ACH X0={B,C} X33={A,C} X4u={B,C} Xs55={AC}

X12={B,S}

X11={ACr X5={B,C} X3;:={A,C} X4u={B,C} Xs:5={AC}

H. Yen (NTUEE) 6 /18

Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X3={} - -
13\ Yields nothing
Xp={B,S} Xu={A} X33={B,S} Xss={A}

X11={ACH X0={B,C} X33={A,C} X4u={B,C} Xs5={AC}

X13={IA} X24={B,S} X;5={A}
X12={B,S} Xy3= X34={B,S} X4s={A}

X11={AC} X5={B,C} X3;:={A,C} X4u={B,C} Xs;5={AC}

H. Yen (NTUEE)

7/18

Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

Sy X;s={A}
X1,={B,S} X;3={A} X34={B,

X11={AC} X5p={B,C} X;:={A,C} X4u={B,C} Xs;5={AC}

H. Yen (NTUEE) 8/18

Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X15={lf\}

X14={B,S}

X13={A} X4={B,S} X35=
X1,={B,S} Xy3={A} X34={B,S} X4s={A

X11={A,C} X5={B,C} X3;:3={A,C} X4u={B,C} Xs55={AC}

H. Yen (NTUEE) 9/18

Testing Emptiness

Given a CFG G = (V, %, P, S) in CNF, construct a set
T={A| A== w,w € %*} iteratively in the following way:
Q LetT={A|A—aecPaci}
@ ForallrulesB— CD € P,ifC,D € T,then T = T U {B}.

@ Repeat Step (2) until no more variable is added to T.
Claim: S € T iff L(G) # 0.

(NTU EE)

Context-Free Languages

Spring 2024 49 / 51
pring

Testing Infiniteness

@ The idea is essentially the same as for regular languages.

@ Use the pumping lemma constant . If there is a string in the
language of length between n and 2n — 1, then the language is
infinite; otherwise not.

(NTU EE) Context-Free Languages Spring 2024 50 / 51

Closure Properties of CFLs

@ CFLs are closed under union, concatenation, and Kleene closure.
@ Also, under reversal, homomorphisms and inverse homomorphisms.

@ But not under intersection or difference.

H. Yen (NTUEE) 11 /18

Closure of CFLs Under Reversal

o If L is a CFL with grammar G, form a grammar for LR by reversing
the right side of every production.

e Example: Let G have S — 0S1 | 01.

@ The reversal of L(G) has grammar S — 150 | 10.

H. Yen (NTUEE) 12 /18

Closure of CFLs Under Homomorphism

o Let L be a CFL with grammar G.
@ Let h be a homomorphism on the terminal symbols of G.

e Construct a grammar for h(L) by replacing each terminal symbol a by
h(a).

Example

G has productions S — 051 | 01. h is defined by h(0) = ab, h(1) =e.
h(L(G)) has the grammar with productions S — ab$ | ab.

H. Yen (NTUEE) 13 /18

Closure of CFLs Under Inverse Homomorphism

@ Here, grammars don't help us.

But a PDA construction serves nicely.

Intuition: Let L = L(P) for some PDA P.

Construct PDA P’ to accept h—1(L).

@ P’ simulates P, but keeps, as one component of a two-component
state a buffer that holds the result of applying h to one input symbol.

H. Yen (NTUEE) 14 /18

Closure of CFLs Under Inverse Homomorphism

Consider a homomorphism h(0) = aba, h(1) = bc. Suppose PDA P
accepts ababc. The following is the way how P’ accepts h~!(ababc) = 01.

e Each state of P’ is of the form [g, z], where g is a state of P and
z € {a,b,c}*.

e P’ starts in state [qo, €], upon reading input 0, P’ moves to [qo, aba];
then simulate P’s computation on aba as follows

] 0,e— e,a—f

> [q076 /HE [qﬂaaba] — [‘11717”] = [%ﬂ] : [‘1376]
—3

» in the above, [qo, aba] o (91, ba] simulates (g1, — 3) € 6(qo,a)
(i.e., specified in the transition function of P).

@ in state [g3, €], upon reading input 1, P’ moves to [g3, bc]; then
simulate P’s computation on bc as follows

> (g3, €] heye g3, bc] 5 [qa,c] > [g5, €], where g5 is an accept state.
e Hence, P’ accepts 01.
@ P’ updates the stack in the same way as P does.

(NTU EE) Context-Free Languages Spring 2024 51/ 51

Construction of P’

e States are pairs [q, b], where:

@ g is a state of P.
@ b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible

Input: 0011
values for b. \h(O)
Read first remaining
@ Stack symbols of P’ are those of P. symbol in buffer as
if it were input to P.
@ Start state of P’ is €].
[q07] Stack
@ Input symbols of P’ are the symbols to of P

which h applies.

e Final states of P’ are the states [g, €] such
that g is a final state of P.

H. Yen (NTUEE) 15 / 18

Transitions of P’

0 9 (([g,€], a, X) = {([g, h(a)], X)} for any input symbol a of P’ and
any stack symbol X.
» When the buffer is empty, P’ can reload it.

@ ¢'([g, bw], €, X) contains ([p, w],) if 6(q, b, X) contains (p, a),

where b is either an input symbol of P or €.
» Simulate P from the buffer.

H. Yen (NTUEE) 16 / 18

Intersection with a Regular Language

@ Intersection of two CFL’s need not be

context free.
bl M, Accept
_ _ _ Input if both
@ But the intersection of a CFL with a PDA accept
regular language is always a CFL.
S
. . . t Looks like the
@ Proof involves running a DFA in parallel a state of one PDA
with a PDA, and noting that the c
k

combination is a PDA. (PDAs accept by
final state.)

H. Yen (NTUEE) 17 / 18

Formal Construction

Let the DFA A have transition function 4.
Let the PDA P have transition function dp.

States of combined PDA are [q, p|, where ¢ is a state of A and p a
state of P.

0([qg, p], a, X) contains ([da(q, a), r], @) if dp(p, a, X) contains (r,).
Note a could be ¢, in which case da(q,a) = g.

Accepting states of combined PDA are those [g, p] such that g is an
accepting state of A and p is an accepting state of P.

Easy induction: ([qo, po], w, Z0) F ([g, p], €, @) if and only if

*

da(go,w) =g and in P: (po, w, Zp) F (p, €,).

H. Yen (NTUEE) 18 / 18

{x"y" | n >0} U {x”yZ” | n > 0} Not a DPDA Language

Theorem
CFLL = {x"y" | n > 0} U {x"y*" | n > 0} cannot be acceptable by a DPDA.

Proof.

Assume, otherwise, that DPDA M accepts L. We construct a new DPDA M, which
consists of “two modified copies” M; and M, of M in the following way:

@ the initial state of Mj is the initial state of M, and the final states of My are the
final states of My,

@ remove all x transitions from M,
@ replace all the y transitions of M, with z transitions,

@ for each y transition emanating from an accept state of M;, remove that
transition and add a z transition to its “copy” in M,

@ remove all x transitions emanating from accept states of My,

@ update on the stack remains unchanged.

(NTU EE) Context-Free Languages Spring 2024 43 /48

{x"y" | n >0} U {x"y*" | n > 0} Not a DPDA Language

Proof.
@ Claim: L(Myp) C x*y*z*
The prefix before entering M, must be accepted by M;. Hence, the
prefix must be of the form x™y" or x"y*".

e If My accepts x™y"'z' (i > 1), then M must accept x"y"+, only
possible if i = n.
e Hence, My accepts {x"y"z" | n > 1} — a contradiction.

‘,.Z/

]

-

! /y\ @ . xz!

(NTU EE) Context-Free Languages Spring 2024 44 /48

Deterministic Context-Free Languages

@ Deterministic PDA: in state q reading a with x at top of stack, at
most one transition can apply.

. ce—>€
» if g “5° p exists, it is the only transition in g;
a,x— . . . a,e—z a,x—z
» ¢ "5 p cannot co-exist with either 4“5 p’ or g 5 .

Theorem
Reg C DCFL C CFL

Theorem

@ DCFLs are closed under complement, union/intersection with regular
languages.

@ DCFLs are not closed under union, intersection, concatenation.

(NTU EE) Context-Free Languages Spring 2024 45/ 48

Closure Properties of DCFL

Proof.

@ (Complementation - YES) [Proof Idea] swap accept/non-accept
states but need to make sure that DPDA reads the entire string.
L = {a"b"c" | n > 0} is not CF, yet its complement L is CF (Why?).
So {a"b*c" | n > 0} is NOT a DCFL.
@ (Union/Concatenation with Regular - YES):
Proof IdeaDPDA x DFA — DPDA.
@ (Union-NO) L =
Q {abick|i#jyu{abict|i#k}u{abict|j+#k}u
@ {anything with ba, cb, ca}
Each of the above four sub-languages is DCFL. However, (1) is not
DCFL; otherwise, L is DCFL.

o (Intersection - NO): LUM = LN M.

0J

(NTU EE) Context-Free Languages Spring 2024 46 / 48

Closure Properties of DCFL

Proof.

@ (Concatenation - NO):

Let Ly = {a'bic* | i # j} and L, = {a'bic* | j # k}; both are DCFLs.

L3 = 0L, UL, is a DCFL.

Claim: A = 0*L3 is not a DCFL.
Suppose A is a DCFL. Then A N 0a*b*c* is a DCFL.
ANO0a*b*c* = 0L; UOL; (a DCFL) implies L1 U L, is a DCFL. However,
LiULy =L NLy = {a"b"c" | n > 0} — {anything with ba, cb, ca}
As {a"b"c" | n > 0} is not a DCFL, Ly U L is not a DCFL — a
contradiction.

Note:
e If L is a DCFL and R is regular, LR is always a DCFL but RL may
not be a DCFL
@ DCFLs are interesting as they are closed under complementation,
but not closed under union, intersection, concatenation.

(NTU EE) Context-Free Languages Spring 2024 47 / 48

Using Idea behind PDA = CFG to Show Closure with

Regular Sets

Theorem
CFLs are closed under intersection with regqular languages.

Proof.
Let G = (V,%,R,S) bea CFG in CNFand N = (Q, X, §, 90, {¢r}) be an
NFA with a unique accept state. We construct G’ = (V/,X,R’,S') as
follows. A variable in V' is of the form (g;, A, q;), where
7,9 € QAEV

o 5= (QO,S,l]f),

@ (4i,S,q;) — €if S = ein R, and g; € (g, €),

° (qi,A,qJ-) —aif A — ain R, and q; € 3(qi,a),

® (9i,A,q;) — (9i: B, qx) (qk, C, q;) if A — BCin R, Vg € Q.
Claim: (g;, 4, ;) = winG iff g; > giin N and A —= winG. O

(NTU EE) Context-Free Languages Spring 2024 48 / 48

	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma
	CYK.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2-.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2-new.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	DCFL.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	CYK-00.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	CYK-00.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	emp-temp.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

	chapter2.pdf
	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

