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Sets

A set is a group of (possibly infinite) objects; its objects are called
elements or members.
The set without any element is called the empty set (written ∅).
Let A,B be sets.

I A ∪ B denotes the union of A and B.
I A ∩ B denotes the intersection of A and B.
I A denotes the complement of A (with respect to some universe U),

i.e., A = {x : x ∈ U, x 6∈ A}.A ⊆ B denotes that A is a subset of B.

II A ( B denotes that A is a proper subset of B.

The power set of a set A (written 2A) is the set consisting of all
subsets of A. E.g. 2{0,1} = {∅, {0}, {1}, {0, 1}}.
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Sequences and Tuples

A sequence is a (possibly infinite) list of ordered objects (e.g.,
010101). In this course, we only deal with strings of finite length,
unless stated otherwise.
A finite sequence of k elements is also called k-tuple (e.g. (a, b, c, d)
is a 4-tuple); a 2-tuple is also called a pair.
The Cartesian product of sets A and B (written A×B) is defined by

A× B = {(a, b) : a ∈ A and b ∈ B}.

E.g. {0, 1} × {a, b} = {(0, a), (0, b), (1, a), (1, b)}
We can take Cartesian products of k sets A1,A2, . . . ,Ak

A1 × A2 × · · · × Ak = {(a1, a2, . . . , ak) : ai ∈ Ai for every 1 ≤ i ≤ k}.

Define

Ak =

k︷ ︸︸ ︷
A× A× · · · × A .
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Functions and Relations

A function f : D→ R maps an element in the domain D to an
element in the range R. Write f (a) = b if f maps a ∈ D to b ∈ R.
When f : A1 ×A2 × · · · ×Ak → B, we say f is a k-ary function and k
is the arity of f (k = 1: unary function; k = 2, binary function).
A predicate or property is a function whose range is {0, 1}. E.g. in
C language, ”x == y” is a predicate, which returns 1 if x and y are
equal; 0 otherwise.

A property with domain

k︷ ︸︸ ︷
A× A× · · · × A is a k-ary relation on A.

I When k = 2, it is a binary relation.
A binary relation R is an equivalence relation if

I R is reflexive (for every x, xRx);
I R is symmetric (for every x and y, xRy implies yRx; and
I R is transitive (for every x, y, and z, xRy and yRz implies xRz.

R is antisymmetric if ∀ x and y, xRy and yRx imply x = y.
(Question: ”Antisymmetric” = ”not symmetric”?)
Do you recall what a partial order relation is?
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More about Sets

A set A is countably infinite if there is a bijection f : N→ A.

Theorem 1
Let B be {0, 1}. Then A = B× B× · · · × B× · · · is uncountable.

Proof.
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Induction Proof

Induction Principle:
P(0) ∧ (∀k,P(k)⇒ P(k + 1))⇒ (∀n ∈ N,P(n)).

I Why do we call it a ”principle”? Why not call it a ”Theorem”?
(Check out the axiom of induction in Peano Arithmetic.)

Well-founded Relation:
A binary R is called well-founded on a class X if every non-empty
subset S ⊆ X has a minimal element with respect to R. (E.g., N is
well-founded; Z is not well-founded.)

Induction Principle⇔ (N, <) is well-founded.

To prove property P(n) holds for all n ∈ N,
(Induction Basis): Prove P(0);
(Induction Step): Prove that if P(k) holds, then P(k + 1) also holds.
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Strings and Languages

An alphabet is a nonempty finite set. E.g. Σ = {0, 1}.
Members of an alphabet are called symbols. E.g. 0, 1 in Σ.
A string over an alphabet is a finite sequence of symbols from the
alphabet. E.g. 000111.
If w is a string over an alphabet Σ, the length of w (written as |w|)
is the number of symbols in w. E.g. |000111| = 6.
The string of length zero is the empty string (written as ε).
Let x = x1x2 · · · xn and y = y1y2 · · · ym be strings of length n and m
respectively. The concatenation of x and y (written as x · y or xy) is
the string x1x2 · · · xny1y2 · · · ym of length n + m.

For any string x, xk =

k︷ ︸︸ ︷
xx · · · x.

A language is a set of strings. E.g. {01, 0011, 000111, ...}.
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Schematic of Finite Automata

control

0 01 1 0110

Figure: Schematic of Finite Automata

A finite automaton has a finite set of control states.
A finite automaton reads input symbols from left to right.
A finite automaton accepts or rejects an input after reading the
input.
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Finite Automaton M1

1

q1 q2 q3

0

0,1

1

0

Figure: A Finite Automaton M1

The above figure shows the state diagram of a finite automaton M1.
M1 has

3 states: q1, q2, q3;
a start state: q1;
a accept state: q2;

6 transitions: q1
0−→ q1, q1

1−→ q2, q2
1−→ q2, q2

0−→ q3, q3
0−→ q2,

and q3
1−→ q2.

(NTU EE) Regular Languages Spring 2024 9 / 100



Accepted and Rejected String

1

q1 q2 q3

0

0,1

1

0

Consider an input string 1100.
M1 processes the string from the start state q1.
It takes the transition labeled by the current symbol and moves to
the next state.
At the end of the string, there are two cases:

I If M1 is at an accept state, M1 outputs accept;
I Otherwise, M1 outputs reject.

Strings accepted by M1: 1,01,11,1100,1101, . . ..
Strings rejected by M1: 0,00,10,010,1010, . . ..
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Finite Automaton – Formal Definition

A finite automaton is a 5-tuple (Q,Σ, δ, q0,F) where
I Q is a finite set of states;
I Σ is a finite set called alphabet;
I δ : Q× Σ→ Q is the transition function;
I q0 ∈ Q is the start state; and
I F ⊆ Q is the set of accept states.

Accept states are also called final states.
The set of all strings that M accepts is called the language of
machine M (written L(M)).

I Recall a language is a set of strings.
We also say M recognizes (or accepts) L(M).

For convenience, we also define the extended transition function
δ∗ : Q× Σ∗ → Q as follows:

δ∗(p, ε) = p,
δ∗(p,ua) = δ(δ∗(p,u), a), where a ∈ Σ,u ∈ Σ∗

Intuitively, δ∗(p,w) is the state reached from state p following the path
from p reading w.
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M1 – Formal Definition

A finite automaton M1 = (Q,Σ, δ, q1,F) consists of
I Q = {q1, q2, q3};
I Σ = {0,1};
I δ : Q× Σ→ Q is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

I q1 is the start state; and
I F = {q2}.

Moreover, we have

L(M1) = {w : w contains at least one 1 and
an even number of 0’s follow the last 1}
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Finite Automaton M2

0

q1 q2

0

1
1

Figure: Finite Automaton M2

The above figure shows M2 = ({q1, q2}, {0,1}, δ, q1, {q2}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M2)?
I L(M2) = {w : w ends in a 1}.
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Finite Automaton M2

0

q1 q2

0

1
1

Figure: Finite Automaton M2

The above figure shows M2 = ({q1, q2}, {0,1}, δ, q1, {q2}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M2)?
I L(M2) = {w : w ends in a 1}.
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Finite Automaton M3

0

q1 q2

0

1
1

Figure: Finite Automaton M3

The above figure shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M3)?
I L(M3) = {w : w is the empty string ε or ends in a 0}.
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Finite Automaton M3

0

q1 q2

0

1
1

Figure: Finite Automaton M3

The above figure shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M3)?
I L(M3) = {w : w is the empty string ε or ends in a 0}.
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Computation – Formal Definition

Let M = (Q,Σ, δ, q0,F) be a finite automaton and w = w1w2 · · ·wn
a string where wi ∈ Σ for every i = 1, . . . ,n.
We say M accepts w if there is a sequence of states r0, r1, . . . , rn
such that

r0
w1→ r1

w2→ r2 · · · rn−1
wn→ rn,

I r0 = q0;
I δ(ri,wi+1) = ri+1 for i = 0, . . . ,n− 1; and
I rn ∈ F,

In the above, δ∗(r0,w1 · · ·wn) = δ(δ∗(r0,w1 · · ·wn−1),wn) =
δ(rn−1,wn) = rn.
M recognizes language A if A = {w : M accepts w}, or
equivalently, A = {w : δ∗(q0,w) ∈ F}.

Definition 2
A language is called a regular language if some finite automaton
recognizes it.
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Regular Operations

Definition 3
Let A and B be languages. We define the following operations:

Union: A ∪ B = {x : x ∈ A or x ∈ B}.
Concatenation: A · B = {xy : x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 · · · xk : k ≥ 0 and every xi ∈ A}.

Note that ε ∈ A∗ for every language A. (ε ∈ ∅∗.)
Another way of defining A∗:

I A0 = {ε};
I Ak+1 = A · Ak, k ≥ 0.
I A∗ =

⋃
k≥0 Ak

What is ∅∗?
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Product Construction

Given two automata A1 = (Q1,Σ, δ1, q1,F1) and A2 = (Q2,Σ, δ2, q2,F2),
the product A of A1 and A2 (written as A1×A2), is (Q,Σ, δ, q,F), where

Q = Q1 ×Q2; q = (q1, q2),
δ((p1, p2), a) = (p′1, p

′
2) if δ1(p1, a) = p′1 and δ2(p2, a) = p′2

F is defined depending on the goal of the construction.
Intuitively, A can be thought of as running A1 and A2 in parallel.
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Closure Property – Union

Theorem 4
The class of regular languages is closed under the union operation. That is,
A1 ∪ A2 is regular if A1 and A2 are.

Proof.
Let Mi = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
M = (Q,Σ, δ, q0,F) where

Q = Q1 ×Q2 = {(r1, r2) : r1 ∈ Q1, r2 ∈ Q2};
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a));
q0 = (q1, q2);
F = (F1 ×Q2) ∪ (Q1 × F2) = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2}.

Why is L(M) = A1 ∪ A2?
Can you use product construction to show that regular languages
are closed under intersection?
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Nondeterminism

When a machine is at a given state and reads an input symbol,
there is precisely one choice of its next state.
This is call deterministic computation.
In nondeterministic machines, multiple choices may exist for the
next state.
A deterministic finite automaton is abbreviated as DFA; a
nondeterministic finite automaton is abbreviated as NFA.
A DFA is also an NFA.
Since NFA allow more general computation, they can be much
smaller than DFA.
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NFA N4

a,b

q1

q2 q3

a

a

b

ε

Figure: NFA N4

On input string baa, N4 has several possible computations:
I q1

b−→ q2
a−→ q2

a−→ q2;
I q1

b−→ q2
a−→ q2

a−→ q3; or
I q1

b−→ q2
a−→ q3

a−→ q1.
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Nondeterministic Finite Automaton – Formal
Definition

P(Q) (also written as 2Q) = {R : R ⊆ Q} denotes the power set of
Q.
For any alphabet Σ, define Σε to be Σ ∪ {ε}.
A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F)
where

I Q is a finite set of states;
I Σ is a finite alphabet;
I δ : Q× Σε → P(Q) is the transition function;
I q0 ∈ Q is the start state; and
I F ⊆ Q is the accept states.

In some textbooks, δ is defined as a relation δ ⊆ Q× Σ×Q. E.g.,
δ(q, a) = {q1, q2} can the thought of as (q, a, q1), (q, a, q2) ∈ δ.
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ε-closure of NFA

Given a set R, we define the ε-closure(R) (E(R)) as follows:

Intuitively, ε-closure(p) is the set of states reachable from p by an
ε-path.
How to compute ε-closure(p)?

The extended transition function δ∗ : Q× Σ∗ → 2Q is as follows:
δ∗(p, ε) = ε-closure({p})
δ∗(p,ua) = ε-closure(

⋃
s∈δ∗(p,u) δ(s, a))
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NFA N4 – Formal Definition

a,b

q1

q2 q3

a

a

b

ε

N4 = (Q,Σ, δ, q1, {q1}) is a nondeterministic finite automaton
where

I Q = {q1, q2, q3};
I Its transition function δ is

ε a b
q1 {q3} ∅ {q2}
q2 ∅ {q2, q3} {q3}
q3 ∅ {q1} ∅
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Nondeterministic Computation – Formal Definition

Let N = (Q,Σ, δ, q0,F) be an NFA and w a string over Σ. We say N
accepts w if w can be rewritten as w = y1y2 · · · ym with yi ∈ Σε and
there is a sequence of states r0, r1, . . . , rm such that

r0
y1→ r1

y2→ r2 · · · rm−1
ym→ rm,

I r0 = q0;
I ri+1 ∈ δ(ri, yi+1) for i = 0, . . . ,m− 1; and
I rm ∈ F.

Note that finitely many empty strings can be inserted in w.
Also note that one sequence satisfying the conditions suffices to
show the acceptance of an input string.
M recognizes language A if A = {w : M accepts w}, or
equivalently, A = {w : δ∗(q0,w) ∩ F 6= ∅}.
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Equivalence of NFA’s and DFA’s via Subset
Construction

Theorem 5
Every nondeterministic finite automaton has an equivalent deterministic
finite automaton. That is, for every NFA N, there is a DFA M such that
L(M) = L(N).

Proof.
Let N = (Q,Σ, δ, q0,F) be an NFA. For R ⊆ Q, define
E(R) = {q : q can be reached from R along 0 or more ε transitions }.
Construct a DFA M = (Q′,Σ, δ′, q′0,F

′) where
Q′ = P(Q);
δ′(R, a) = {q ∈ Q : q ∈ E(δ(r, a)) for some r ∈ R};
q′0 = E({q0});
F′ = {R ∈ Q′ : R ∩ F 6= ∅}.
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Correctness Proof of Subset Construction

In NFA N, we write r0
w

=⇒ rm if r0
y1→ r1

y2→ r2 · · · rm−1
ym→ rm, and

y1y2 · · · ym = w, where yi ∈ Σε. I.e., there is a path from r0 to rm reading
w. In what follows, we prove the following lemma by induction on the
length of w that

Lemma 6
DFA M︷ ︸︸ ︷

(δ′)∗(E({q0}),w) =

NFA N︷ ︸︸ ︷
{r ∈ Q | q0

w
=⇒ r}.

Induction Basis: Consider the case |w| = 0, i.e., w = ε. Clearly,

(δ′)∗(E({q0}), ε) = R ⇔ R = E({q0}) = {r ∈ Q | q0
ε

=⇒ r}
[Def. of =⇒ and E({q0})]

Induction Hypothesis: Assume that the assertion holds for
0 ≤ |w| ≤ k.
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Correctness Proof of Subset Construction (Cont’d)

Induction Step: Consider the case when |w| = k + 1, i.e., w = xa,
where x ∈ Σ∗, |x| = k, and a ∈ Σ.

q0
xa

=⇒ r
⇔ (∃s, t ∈ Q)q0

x
=⇒ s ∧ s a→ t ∧ t ε

=⇒ r [Def. of =⇒]
⇔ (∃s, t ∈ Q)q0

x
=⇒ s ∧ s a→ t ∧ r ∈ E({t}) [Def. of E]

⇔ (∃s, t ∈ Q)s ∈ (δ′)∗(E({q0}), x) ∧ t ∈ δ(s, a) ∧ r ∈ E({t})
[Ind. Hyp.; Defs. of δ and =⇒]

⇔ (∃s ∈ Q)s ∈ (δ′)∗(E({q0}), x) ∧ r ∈ E(δ(s, a)) [Def. of E]
⇔ r ∈

⋃
s∈S E(δ(s, a)) for S = (δ′)∗(E({q0}), x) [Def. of

⋃
]

⇔ r ∈ δ′(S, a) for S = (δ′)∗(E({q0}), x) [Def. of δ′]
⇔ r ∈ δ′((δ′)∗(E({q0}), x), a))
⇔ r ∈ (δ′)∗(E({q0}), xa) [Def. of (δ′)∗]

Hence, (δ′)∗(E(q0),w) = {r ∈ Q | q0
w

=⇒ r}.
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Correctness Proof of Subset Construction (Cont’d)

Now we are ready to show L(M) = L(N).

w ∈ L(M) ⇔ (δ′)∗(E({q0}),w) ∈ F′

⇔ (∃r ∈ F) r ∈ (δ′)∗(E({q0}),w) [Def. of F′]
⇔ (∃r ∈ F) q0

w
=⇒ r [Lemma 6]

⇔ w ∈ L(N) [Def. of L(N)]
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Equivalence of NFA’s and DFA’s

• ε-closure E(R):

• Transition δ′(R, a) = {q | q ∈ E(δ(r, a)), for some r ∈ R}
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A DFA Equivalent to N4

a,b

q1

q2 q3

a

a

b

ε

b

∅ {q1, q2}

{q1, q2, q3}

a

b

a

a,b
a

{q2}

{q2, q3}

{q1}

{q1, q3}{q3}

ba

b
b

a

b

a,b

a

Figure: A DFA Equivalent to N4
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Closure Properties – Revisited

Closed under Union, Concatenation and Star. (Proof Idea):

Union
Concatenation

Star

(Figures from M. Sipser’s lecture notes )
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Closure Properties – Revisited

Theorem 7
The class of regular languages is closed under the union operation.

Proof.
Let Ni = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
N = (Q,Σ, δ, q0,F) where

Q = {q0} ∪Q1 ∪Q2;
F = F1 ∪ F2; and

δ(q, a) =


δ1(q, a) q ∈ Q1
δ2(q, a) q ∈ Q2
{q1, q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = L(N1) ∪ L(N2)?
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Closure Properties – Revisited

Theorem 8
The class of regular languages is closed under the concatenation operation.

Proof.
Let Ni = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
N = (Q,Σ, δ, q1,F2) where

Q = Q1 ∪Q2; and

δ(q, a) =


δ1(q, a) q ∈ Q1 and q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 and a = ε
δ2(q, a) q ∈ Q2

Why is L(N) = L(N1) · L(N2)?
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Closure Properties – Revisited

Theorem 9
The class of regular languages is closed under the star operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1,F1) recognize A1. Construct N = (Q,Σ, δ, q0,F)
where

Q = {q0} ∪Q1;
F = {q0} ∪ F1; and

δ(q, a) =


δ1(q, a) q ∈ Q1 and q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = [L(N1)]∗?
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Closure Properties – Revisited

Theorem 10
The class of regular languages is closed under complementation.

Proof.
Let M = (Q,Σ, δ, q0,F) be a DFA recognizing A. Consider
M = (Q,Σ, δ, q0,Q \ F). We have w ∈ L(M) if and only if w 6∈ L(M).
That is, L(M) = A as required.

Theorem 11
The class of regular languages is closed under intersection.

Proof.

Recall that R ∩ S= R ∪ S.
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Regular Expressions (Syntax)

Definition 12
R is a regular expression if R is

a for some a ∈ Σ;
ε;
∅;
(R1 + R2) where R1 and R2 are regular expressions;
(R1 · R2) where R1 and R2 are regular expressions; or
(R∗1) where R1 is a regular expression.

We write R+ for R · R∗. Hence R∗ = R+ + ε.

Moreover, write Rk for

k︷ ︸︸ ︷
R · R · · · · · R.

I Define R0 = ε. We have R∗ = R0 + R1 + · · ·+ Rn + · · · .
L(R) denotes the language described by the regular expression R.
Note that ∅ 6= {ε}. + is also written as ”∪” is many textbooks
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Regular Expressions (Semantics)

Definition 13
The language associated with a regular expression R, written as L(R),
is defined recursively as

L(a) = {a}, a ∈ Σ;
L(ε) = {ε};
L(∅) = ∅;
L(R1 + R2) = L(R1) ∪ L(R2)

L(R1 · R2) = L(R1) · L(R2)

L(R∗1) = (L(R1))∗
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Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.
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Regular Expressions and Finite Automata

Lemma 14
If a language is described by a regular expression, it is regular.

Proof.
We prove by induction on the regular expression R.

R = a for some a ∈ Σ. Consider the NFA
Na = ({q1, q2},Σ, δ, q1, {q2}) where

δ(r, y) =

{
{q2} r = q1 and y = a
∅ otherwise

R = ε. Consider the NFA Nε = ({q1},Σ, δ, q1, {q1}) where
δ(r, y) = ∅ for any r and y.
R = ∅. Consider the NFA N∅ = ({q1},Σ, δ, q1, ∅) where δ(r, y) = ∅
for any r and y.
R = R1 + R2, R = R1 · R2, or R = R∗1. By inductive hypothesis and
the closure properties of finite automata.
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Regular Expressions and Finite Automata

a
a

b
b

ab
εa b

ab + a
ε

a bε

a

ε

(ab + a)∗ ε

a bε

a

ε

ε

ε

ε

(NTU EE) Regular Languages Spring 2024 40 / 100



Regular Expressions and Finite Automata

Lemma 15
If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.
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Generalized Nondeterministic Finite Automata

Definition 16
A generalized nondeterministic finite automaton is a 5-tuple
(Q,Σ, qstart, qaccept) where

Q is the finite set of states; Σ is the input alphabet;
δ : (Q− {qaccept})× (Q− {qstart})→ R is the transition function,
whereR denotes the set of regular expressions;
qstart is the start state; and qaccept is the accept state.

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 · · ·wk where wi ∈ Σ∗ and there is
a sequence of states r0, r1, . . . , rk such that r0 = qstart; rk = qaccept; and for every

i, wi ∈ L(Ri) where Ri = δ(qi−1, qi). (Fig. from M. Sipser)
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Finite Automata to Regular Expressions - State
Elimination

Proof of Lemma.
Let M be the DFA for the regular language. Construct an equivalent
GNFA G by adding qstart, qaccept and necessary ε-transitions.
CONVERT (G):

1 Let k be the number of states of G.
2 If k = 2, then return the regular expression R labeling the

transition from qstart to qaccept.
3 If k > 2, select qrip ∈ Q \ {qstart, qaccept}. Construct

G′ = (Q′,Σ, δ′, qstart, qaccept) where
I Q′ = Q \ {qrip};
I for any qi ∈ Q′ \ {qaccept} and qj ∈ Q′ \ {qstart}, define
δ′(qi, qj) = (R1)(R2)∗(R3) ∪ R4 where R1 = δ(qi, qrip),
R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4 return CONVERT (G′).
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Finite Automata to Regular Expressions - State
Elimination

Lemma 17
For any GNFA G, CONVERT (G) is equivalent to G.

Proof.
We prove by induction on the number k of states of G.

k = 2. Trivial.
Assume the lemma holds for k− 1 states. We first show G′ is
equivalent to G. Suppose G accepts an input w. Let
qstart, q1, q2, . . . , qaccept be an accepting computation of G. We have

qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1−→ qrip · · · qrip

wj−1−→ qrip
wj−→ qj · · · qaccept.

Hence qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1···wj−→ qj · · · qaccept is a

computation of G′. Conversely, any string accepted by G′ is also
accepted by G since the transition between qi and qj in G′ describes
the strings taking qi to qj in G. Hence G′ is equivalent to G. By
inductive hypothesis, CONVERT (G′) is equivalent to G′.(NTU EE) Regular Languages Spring 2024 44 / 100



Finite Automata to Regular Expressions - State
Elimination

a,b

q1

q2

b

a

(a) DFA M

ε

q1

q2

b

a

a,b

qstart

qaccept

ε

(b) GNFA G

b(a ∪ b)∗

q1 aqstart

qaccept

ε

(c) GNFA

a∗b(a ∪ b)∗

qstart

qaccept

(d) GNFA

Figure: Finite Automaton to Regular Expression
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Regular Expressions and Finite Automata

In general ...

Theorem 18
A language is regular if and only if some regular expression describes it.
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Pumping Lemma

A tool for proving non-regularity.

Lemma 19
If A is a regular language, then there is a number p such that for any s ∈ A of
length at least p, there is a partition s = xyz with

1 for each i ≥ 0, xyiz ∈ A;
2 |y| > 0; and
3 |xy| ≤ p.

Proof Idea:

(Fig. from M. Sipser)

(NTU EE) Regular Languages Spring 2024 47 / 100



Pumping Lemma (Proof)

Proof.
Let M = (Q,Σ, δ, q1,F) be a DFA recognizing A and p = |Q|.
Consider any string s = σ1σ2 · · ·σm−1 of length m− 1 ≥ p. Let q1, . . . , qm
be the sequence of states such that qi+1 = δ(qi, σi) for 1 ≤ i ≤ m− 1.
Since m ≥ p + 1 = |Q|+ 1, there are 1 ≤ s < t ≤ p + 1 such that qs = qt
(why?). Let x = σ1 · · ·σs−1, y = σs · · ·σt−1, and z = σt · · ·σm−1.
Note that q1

x−→ qs, qs
y−→ qt, and qt

z−→ qm ∈ F. Thus M accepts xyiz
for i ≥ 0. Since t 6= s, |y| > 0. Finally, |xy| ≤ p for t ≤ p + 1.
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How to Use Pumping Lemma?

Recall that Pumping Lemma can be expressed as the following logical
formula:

A is regular ⇒ ∃p ∈ N, ∀s,(s∈A)∧(|s|≥p)∃x,y,z, s=xyz((1) ∧ (2) ∧ (3))

which is equivalent to

¬(∃p ∈ N, ∀s,(s∈L)∧(|s|≥p)∃x,y,z, s=xyz((1)∧ (2)∧ (3))) ⇒ A is NOT regular

Note that the left-hand side is

∀p ∈ N,∃s,(s∈A)∧(|s|≥p),∀x,y,z, s=xyz(¬(1) ∨ ¬(2) ∨ ¬(3))
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How to Use Pumping Lemma?

In view of ”

∀p ∈ N, ∃s,(s∈A)∧(|s|≥p), ∀x,y,z, s=xyz(¬(1) ∨ ¬(2) ∨ ¬(3)), ”⇒ NOT regular

proving A is not regular resembles a two-player game between YOU
and your adversary (ADV), such that your goal is to prove
non-regularity, while ADV wants to spoil it.

1 ADV picks an arbitrary p ∈ N
2 YOU pick an s, s ∈ A, |s| ≥ p
3 ADV picks arbitrary x, y, z with s = xyz
4 YOU show ¬(1) ∨ ¬(2) ∨ ¬(3)

I ¬(2) and ¬(3) are trivial to check
I YOU establish (2) ∧ (3)⇒ ¬(1), i.e.,

(|y| > 0) ∧ (|xy| ≤ p) ⇒ ∃i ≥ 0, xyiz 6∈ A.
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Applications of Pumping Lemma

Example 20
B = {0n1n : n ≥ 0} is not a regular language.

Proof.
Suppose B is regular. Let p be the pumping length given by the
pumping lemma. Choose s = 0p1p. Then s ∈ B and |s| ≥ p, there is a

partition s = xyz such that xyiz ∈ B for i ≥ 0.
y ∈ 0+ or y ∈ 1+. xz 6∈ B. A contradiction.
y ∈ 0+1+. xyyz 6∈ B. A contradiction.

Corollary 21
C = {w : w has an equal number of 0’s and 1’s} is not a regular language.

Proof.
Suppose C is regular. Then B = C ∩ 0∗1∗ is regular.
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Applications of Pumping Lemma

Example 22

Is B′ = {0n1n : 0 ≤ n ≤ 10100} regular?
(What if ADV picks p = 2× 10101?)

Example 23
F = {ww : w ∈ {0,1}∗} is not a regular language.

Proof.
Suppose F is a regular language and p the pumping length. Choose
s = 0p10p1. By the pumping lemma, there is a partition s = xyz such
that |xy| ≤ p and xyiz ∈ F for i ≥ 0. Since |xy| ≤ p, y ∈ 0+. But then
xz 6∈ F. A contradiction.
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Applications of Pumping Lemma

Example 24

D = {1n2
: n ≥ 0} is not a regular language.

Proof.
Suppose D is a regular language and p the pumping length. Choose
s = 1p2

. By the pumping lemma, there is a partition s = xyz such that
|y| > 0, |xy| ≤ p, and xyiz ∈ D for i ≥ 0.
Consider the strings xyz and xy2z. We have |xyz| = p2 and
|xy2z| = p2 + |y| ≤ p2 + p < p2 + 2p + 1 = (p + 1)2. Since |y| > 0, we have
p2 = |xyz| < |xy2z| < (p + 1)2. Thus xy2z 6∈ D. A contradiction.

Theorem 25
For {1f (n) : n ≥ 0} to be regular, f (n) must be a linear function of the form
f (n) = an + b.
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Applications of Pumping Lemma

Example 26

E = {0i1j : i > j} is not a regular language.

Proof.
Suppose E is a regular language and p the pumping length. Choose
s = 0p+11p. By the pumping lemma, there is a partition s = xyz such
that |y| > 0, |xy| ≤ p, and xyiz ∈ E for i ≥ 0. Since |xy| ≤ p, y ∈ 0+. But
then xz 6∈ E for |y| > 0. A contradiction.
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Pumping Lemma is not a Sufficient Condition

Example 27
We know L = {bmcm|m > 0} is not regular. Let us consider
L′ = a+L ∪ (b + c)∗. L′ is not regular. If L′ would be regular, then we
can prove that L is regular (using the closure properties we will see
next). However, the Pumping lemma does apply for L′ with n = 1.

Consider string abncn and partition
u︷︸︸︷
ε

v︷︸︸︷
a

w︷︸︸︷
bncn. Then uviw,∀i ≥ 0

remains in L′.

This shows the Pumping lemma is not a sufficient condition for a
language to be regular. That is, satisfying PL does not always yield a
regular language.

Be cautious that you CANNOT use partition
u︷︸︸︷
a

v︷︸︸︷
b

w︷ ︸︸ ︷
bn−1cn to

establish a contradiction, because it is the role of ADV (not YOU) to
pick a partition.
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Use of closure properties to show non-regularity

We can easily prove L1 = {0n1n|n > 0} is not a regular language.

L2 = the set of strings with an equal number of 0’s and 1’s isn’t
either, but that fact is trickier to prove.

Regular languages are closed under ∩.

If L2 were regular, then L2 ∩ L(0∗1∗) = L1 would be, but it isn’t.
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Closure properties

Let L and M be regular. Then L = L(R) = L(D) and M = L(S) = L(F)
for regular expressions R and S, and DFA D and F.
We have seen that RL are closed under the following operations:

Union : L ∪M = L(R + S)

Complement : L̄ = L(D̄)

Intersection : L ∩M = L̄ ∪ M̄
Difference : L−M = L ∩ M̄
Concatenation : LM = L(RS)

Closure : L∗ = L(R∗)
Prefix : Prefix(L) = {x | ∃y ∈ Σ∗, xy ∈ L} (Hint: in D, make final all
states in a path from the start state to final state)
quotient, morphism, inverse morphism, substitution, ...
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Quotient

Definition 28
L1,L2 ⊆ Σ∗, L1/L2 = {x ∈ Σ∗ | ∃y ∈ L2, xy ∈ L1}.
x∈L1/L2︷ ︸︸ ︷
q0

x→ q

y∈L2︷ ︸︸ ︷
y→ }, where xy ∈ L1. E.g. {00, 111}/{ε, 1} = {00, 111, 11}

Note: Pref (L) = L/Σ∗.

Theorem 29
L,R ⊆ Σ∗. If R is regular, then R/L is also regular.

Proof Idea: Given an FA, change F to F′ = {q ∈ Q | ∃y ∈ L, δ∗(q, y) ∈ F},

i.e., mark q as ”Accept” if

x∈R/L︷ ︸︸ ︷
q0

x→ q

y∈L︷ ︸︸ ︷
y→ }. Note that L can be an arbitrary language.

Example 30

L = {an2 | n ≥ 0}. L/L = {an2−m2 | m,n ≥ 0} = a(aa)∗ + (a4)∗. Notice
that L is not regular, but L/L is regular.
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Morphisms (also called Homomorphisms)

A morphism h is a mapping: h : Σ→ ∆∗

h can be extended to h : Σ∗ → ∆∗ with h(xy) = h(x)h(y), h(ε) = ε

Given a language L ⊆ Σ∗, h(L) =
⋃

x∈L{h(x)} ⊆ ∆∗

Example 31

h(0) = ab, h(1) = ba, h(2) = ε.
h(00212) = ababba; h(0022212222) = ababba; (h is many-to-one)
h({0n21n|n ≥ 0}) = {(ab)n(ba)n|n ≥ 0}

Theorem 32
Regular Languages are closed under morphism.

Note that h(K ∪ L) = h(K) ∪ (L); h(K · L) = h(K) · h(L); h(K∗) = h(K)∗.
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Inverse Morphisms
Given h : Σ∗ → ∆∗, and K ⊆ ∆∗, the inverse morphism
h−1(K) = {x ∈ Σ∗ | h(x) ∈ K}.

It is easy to see L ⊆ h−1(h(L)). How about R vs. h(h−1(R))?
Note that in Example 31, {0n21n|n ≥ 0} ( h−1({(ab)n(ba)n|n ≥ 0})

Theorem 33
Regular languages are closed under inverse morphism.

Consider h(0) = ab; h(1) = ba, and FA M accepting
R ⊆ {a, b}∗. Find FA M′ accepting
h−1(R) ⊆ {0, 1}∗.
M and M′ have identical states

p ab→ q in M iff p 0→ q in M′; p ba→ q in M iff p 1→ q
in M′
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Shuffle

Definition 34
x‖ε = ε‖x = {x}
ax‖by = a(x‖by) ∪ b(ax‖y)
K‖L =

⋃
x∈K,y∈L x‖y

abb‖aca = {aabbca, aabcba, aabcab, aacabb, aacbab,
aacbba, abbaca, ababca, abacba, abacab, acabba, acabab, acaabb}.

Theorem 35
If K,L are regular, so is K‖L.

Given L(M1) = K,L(M2) = L, can you construct an FA M s.t.
L(M) = K‖L?
The next page contains an alternative proof using closure
properties of regular languages.
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Shuffle (cont’d)

Proof.
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1
2L

Definition 36
1
2 L = {x ∈ Σ∗|∃y ∈ Σ∗, xy ∈ L; |y| = |x|}.

Theorem 37
If L is regular, so is 1

2 L.

Proof.
guess middle state, simulate halves in parallel
Q′ = {q′0} ∪Q×Q×Q (Note: middle, 1st, 2nd)
δ′(q′0, ε) = {[q, q0, q]|q ∈ Q} – ε-move
δ′([q, p, r], a) = {[q, δ(p, a), δ(r, b)]| some b ∈ Σ}
F′ = {[q, q, p]|q ∈ Q, p ∈ F}

Note: x ∈ 1
2 L if ∃q ∈ Q, v ∈ Σ∗, q0

x︷ ︸︸ ︷→ ...→ q; q
v︷ ︸︸ ︷→ ...→ p; |x| = |v| and

p ∈ F.
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1
2L

Can you show 1
3 L = {x ∈ Σ∗|∃yz ∈ Σ∗, xyz ∈ L; |x| = |y| = |z|} to be regular as

well?

How about 2
3 L∗−∗ = {xz|∃x, y, z ∈ Σ∗, xyz ∈ L; |x| = |y| = |z|}?

(Not regular)
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Exponential Blow-Up in Subset Construction

There is an NFA N with n + 1 states that has no equivalent DFA with
fewer than 2n states.

L(N) = {x
length n︷ ︸︸ ︷

1c2c3 · · · cn : x ∈ {0, 1}∗, ci ∈ {0, 1}}.
Suppose an equivalent DFA D = (QD,Σ, δD, q′0,FD) with
fewer than 2n states exists. read.
There are 2n bitsequences a1a2 · · · an ∈ {0, 1}n.
∃q ∈ QD, a1a2 · · · an, b1b2 · · · bn ∈ {0, 1}n, a1a2 · · · an 6= b1b2 · · · bn
δ∗D(q′0, a1a2 · · · an) = q = δ∗D(q′0, b1b2 · · · bn)
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Exponential Blow-Up (Cont’d)

Let i be the first position from the right such that ai 6= bi. I.e.,
a1 · · · ai−11ai+1 · · · an
b1 · · · bi−10bi+1 · · · bn
and ai+1...an = bi+1...bn

Now

δ∗D(q′0, a1 · · · ai−11ai+1 · · · an0i−1) = δ∗D(q′0, b1 · · · bi−10bi+1 · · · bn0i−1)

as for some r ∈ QD

q′0
a1···ai−11ai+1···an→ q 0i−1

→ r

and
q′0

b1···bi−10bi+1···bn→ q 0i−1
→ r.

Furthermore
δ∗D(q′0, a1 · · · ai−11ai+1 · · · an0i−1) ∈ FD

δ∗D(q′0, b1 · · · bi−10bi+1 · · · bn0i−1) 6∈ FD

– A contradiction!
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Decision Properties

A decision property for a class of languages is an algorithm that
takes a formal description of a language (e.g., a DFA) and tells
whether or not some property holds.

Example: Is language L empty?
I Suppose the representation is a DFA (or a RE that you will convert

to a DFA).
I Can you tell if L(A) = ∅ for DFA A?

The complexity depends on how languages are represented. E.g.,
DFA vs. NFA vs. RE for regular languages.
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Why Decision Properties

When we talked about protocols represented as DFAs, we noted
that important properties of a good protocol were related to the
language of the DFA.

Example: Does the protocol terminate? = Is the language finite?

Example: Can the protocol fail? = Is the language nonempty?
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The Membership Question

Definition 38
Is string w in regular language L?

Assume L is represented by a DFA A.
Simulate the action of A on the sequence of input symbols
forming w. (Question: What is the running time?)
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The Emptiness Problem

Definition 39
Given a regular language, does the language contain any string at all.

Assume representation is DFA.
Construct the transition graph.
Compute the set of states reachable from the start state.
If any final state is reachable, then yes, else no.
Question: What is the running time?
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The Infiniteness Problem

Definition 40
Is a given regular language infinite?

Start with a DFA for the language.
Key idea: if the DFA has n states, and the language contains any string of length
n or more, then the language is infinite.
Second key idea: if there is a string of length > n (= number of states) in L, then
there is a string of length between n and 2n− 1. 

|w| ≦ n

|w| ≦ 2n

|w| > 2n 

s

s’
s’=uv0w 

s’’
t

Test for membership all strings of length between n and 2n− 1. If any are
accepted, then infinite, else finite.
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The Product Automaton M×N

Idea: Running two automata M and N in parallel.

 

0 0

1 1

1 2

a a

b b

Running the two FAs in 
parallel 
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The Equivalence Problem

Definition 41
Given regular languages L and M, is L = M?

Algorithm involves constructing the product DFA from DFA’s for
L and M.
Let these DFA’s have sets of states Q and R, respectively.
Product DFA has set of states Q× R. I.e., pairs [q, r] with q in Q, r
in R.

Make the final states of the product
DFA be those states [q, r] such that
exactly one of q and r is a final state of
its own DFA. Thus, the product accepts
w iff w is in exactly one of L and M.
The product DFA’s language is empty
iff L = M.
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The Containment Problem

Definition 42
Given regular languages L and M, is L ⊆M?

Algorithm also uses the product automaton.
How do you define the final states [q, r] of the product so its
language is empty iff L ⊆M?

- Answer: q is final; r is not.

(NTU EE) Regular Languages Spring 2024 74 / 100



The Minimum-State DFA for a Regular Language

In principle, since we can test for equivalence of DFA’s we can,
given a DFA A find the DFA with the fewest states accepting L(A).

Test all smaller DFA’s for equivalence with A.

But that’s a terrible algorithm.

– Efficient State Minimization

Construct a table with all pairs of states.
If you find a string that distinguishes two states (takes exactly one
to an accepting state), mark that pair.
Algorithm is a recursion on the length of the shortest
distinguishing string.
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Equivalence Relation

Definition 43
A binary relation R on a set S is a subset of S× S. An equivalence
relation on a set satisfies

1 Reflexivity: For all x in S, xRx
2 Symmetry: For x, y ∈ S xRy⇔ yRx
3 Transitivity: For x, y, z ∈ S xRy ∧ yRz⇒ xRz

Every equivalence relation on S partitions S into equivalence
classes.
The number of equivalence classes is called the index of the
relation.
An equivalence class containing x is written as [x].
E.g., Mod 3 is an equivalence relation which partitions N into
equivalence classes {0, 3, 6, ...}, {1, 4, 7, ...}, and {2, 5, 8, ...}. The
index is 3.
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Refinement

Definition 44
An equivalence relation R1 is a refinement of R2 if R1 ⊆ R2, i.e.
(x, y) ∈ R1 ⇒ (x, y) ∈ R2
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Minimizing DFAs

The Idea: Identify ”indistinguishable states”; Merge those states.
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Distinguishable Strings

Given a language L, strings x, y are distinguishable by L if there is
string z such that xz ∈ L and yz 6∈ L (or the other way round).
Equivalently, strings x, y are indistinguishable if for every string z,
xz ∈ L⇔yz ∈ L. (Later such x, y are written as x ≡L y.)
If x and y are distinguishable by L, any DFA accepting L must
reach different states upon reading x and y.

Given a DFA M and a state q, let LM(q) = {w | q w→ qf , qf ∈ F}, i.e.,
the set of strings leading M to acceptance from q.

I It is possible to have p, q ∈ Q, LM(p) = LM(q). Such states will be
merged in state minimization procedure.
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Minimal DFA and Distinguishability

Distinguishable strings must be associated with different states.
Indistinguishable strings may end up in the same state.
Indistinguishability induces an equivalence relation over Σ∗, which is of finite
index for regular languages (Myhill-Nerode Theorem).

DFA minimial⇔ Every pair of states is distinguishable
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Distinguishable States

Two states q and r are distinguishable if ∃z1, ..., zk

I.e., LM(q) 6= LM(r).

Indistinguishability (over Q) is also an equivalence relation, which
partitions the set of states into equivalence classes.
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Finding (In)distinguishable States
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An Example

(Phase 1) q11 is distinguishable from all other states
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An Example (Cont’d)

(Phase 2) Looking at (r, r′) = (qε, q0), Neither (q0, q00)input 0 nor
(q1, q01)input 1 are distinguishable
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An Example (Cont’d)

(Phase 2) Looking at (r, r′) = (qε, q1), (q1, q11)input 1 is distinguishable
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Example

(Phase 3) Merge states into groups (also called equivalence classes)
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Why It Works?

Why have we found all distinguishable pairs?
Because we work backwards!

It suffices to iterate Phase 2 at most |Q|2 times. Why? What is the
shortest string that distinguishes two states?
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Unique Minimum DFA

Theorem 45
Every regular language has a single minimal automaton (up to isomorphism).

However, minimal NFAs are not unique as the following examples
show.

Theorem 46
Given an NFA M and a number k, deciding if there is another NFA M′

equivalent to M with at most k states is PSPACE-complete (polynomial-space
complete).
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Another way of Characterizing Regular Languages –
Residuals of Languages

The residual of a language L ⊆ Σ∗ with respect to a word w is the
language

Lw = {u ∈ Σ∗ | wu ∈ L}

A language L′ ⊆ Σ∗ is a residual of L if L′ = Lw for some w ∈ Σ∗.
We define ”indistinguishability” over strings

x ≡L y⇔ (∀z ∈ Σ∗, xz ∈ L⇔ yz ∈ L).

≡L is an equivalence relation. Note that x ≡L y⇔ Lx = Ly.
Note that ∀a ∈ Σ, (Lx = Ly) ⇒ (Lxa = Lya)

I The implication is that if we treat each residual Lw of L as a ”state”
and define δ(Lw, a) = Lwa, δ is ”consistent” in that Lx = Ly (same
state) implies δ(Lx, a) = Lxa = Lya = δ(Ly, a) (also same state).
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Myhill-Nerode Theorem

Theorem 47 (Myhill-Nerode Theorem)
A language is regular iff it has finitely many residuals.

Proof.
(⇒) Let A = (Q,Σ, δ, q0,F) be a DFA. The language recognized by A
with q the initial state, denoted by LA(q), is a residual of L(A).
Moreover, if δ(q0, x) = δ(q0, y) = q, for some q, then Lx = Ly.
(⇐) Let L ⊆ Σ∗ be a regular language, the canonical DFA of L
ML = (QL,Σ, δL, q0L,FL) is

QL is the set of residuals of L, i.e., QL = {Lw | w ∈ Σ∗}
δL(R, a) = Lwa, where R = Lw, for some w, where R ∈ QL and a ∈ Σ

q0L = Lε = L
FL = {R ∈ QL | ε ∈ R}

It is easy to show that L(ML) = L.
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An Example of ML

L = a∗b∗ ⊆ {a, b}∗

QL = {Q1,Q2,Q3}, where
Q1 = a∗b∗(= Lε),Q2 = b∗(= Lab),Q3 = ∅(= Laba)
(How about Laaa,Laabbb?)
q0L = Q1

FL = {Q1,Q2}
δL(Q1, a) = Q1, δL(Q1, b) = Q2, δL(Q2, a) = Q3, δL(Q2, b) = Q2,
δL(Q3, a | b) = Q3.

I E.g., δL(Q2, a) = δL(Lab, a) = Laba = ∅ = Q3
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Uniqueness of the Canonical DFA

Theorem 48
If L is regular, then ML is the unique minimal DFA up to isomorphism
recognizing L.

Let A = (Q,Σ, δ, q0,F) be a DFA accepting L. Define a relation RA
as follows:

I For x, y ∈ Σ∗, xRAy⇔ δ(q0, x) = δ(q0, y).

FACT: RA refines ≡L.
Can you show xRAy =⇒ x ≡L y?
If so, |Q| ≥ the index of L under ≡L. Hence, ML is a minimal DFA.
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Deterministic Finite Automata and the Induced
Relations - An Example

Example: L(A) is ”Odd number of a’s”:

Four equivalence classes under RA, [ε] = {ε, b, bb, aaaa, ...};
[a] = {a, ab, abb, ...}; [aa] = {aa, aab, aabb....}; [aaa] = {aaa, aaab, aaabb, ...}.
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Canonicity of ML

Let A be a DFA for L with no unreachable states. Let A≡L be ML. In the
following example, La = Laaa and Lε = Laa, i.e., a ≡L aaa and ε ≡L aa.)

(NTU EE) Regular Languages Spring 2024 94 / 100



In Summary

Let A = (Q,Σ, δ, q0,F) be a DFA. Consider two computations

q0
x→ p z→ r1 q0

y→ q z→ r2

The min. proc. is to identify all indistinguishable pairs (p, q) such
that LA(p) = LA(q). That is, ∀z, either r1, r2 ∈ F or r1, r2 6∈ F.

I Define RA over Σ∗ as xRAy iff δ∗(q0, x) = δ∗(q0, y), i.e., p = q in Fig.
Another viewpoint is to identify x, y with identical residual, i.e.,
Lx = Ly. In this case, x and y are indistinguishable strings.

I The notion of residuals induces an equivalence relation ≡L over Σ∗

s.t. x ≡L y iff Lx = Ly

I Myhill-Nerode Thm: ≡L is of finite index iff L is regular.

RA refines ≡L ⇒ ≡L induces a minimal equivalent DFA.
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Applications of the Myhill-Nerode Theorem

The MN theorem can be used to show that a particular language is
regular without actually constructing the automaton or to show
conclusively that a language is not regular.
Example. Is the following language regular

1 L1 = {xy : |x| = |y|, x, y ∈ Σ∗}?
2 Example. What about the language

L2 = {xy : |x| = |y|, x, y ∈ Σ∗ and y ends with a 1 }?
3 Example. What about the language

L3 = {xy : |x| = |y|, x, y ∈ Σ∗ and y contains a 1}?
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Applications of the Myhill-Nerode Theorem (cont’d)

1 For the language L1 there are two equivalence classes of ≡L1 . The
first C1 contains all strings of even length and the second C2 all
strings of odd length.

2 For L2 we have the additional constraint that y ends with a 1.
Class C2 remains the same as that for L1. Class C1 is refined into
classes C′1 which contains all strings of even length that end in a 1
and C′′1 which contains all strings of even length which end in a 0.
Thus L1 and L2 are both regular.

3 For L3 we have to distinguish for example, between the even
length strings in the sequence 01, 0001, 000001,..., as 00
distinguishes the first string from all the others after it in the
sequence (0100 6∈ L3, but 000100, 00000100... ∈ L3), 0000
distinguishes the second from all the others ...
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The ≡L for L = {anbn n ≥ 0}

Describe the equivalence classes of ≡L for L = {anbn n ≥ 0}

The automaton is NOT of finite state.
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More on FA Minimization

For any regular language, there is a unique minimal DFA.
By finding the minimal DFA, we can also prove equivalence (or
not) of different FA
In general the idea behind minimization is:

I Throw away unreachable states (easy)
I Merge equivalent states

There are two well-known algorithms for minimization:
I Hopcroft’s algorithm: find and eliminate equivalent states by

partitioning the set of states – O(n log n) time
I Brzozowski’s algorithm: ”double reversal” – exponential

worst-time complexity
There are many versions of the ”partitioning” algorithm. In
practice, there is no clear winner, different algorithms run faster
on different inputs.
Double reversal algorithm also works for NFAs (resulting in the
minimal equivalent DFA)
NFA minimization is intractable (i.e., hard).
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Brzozowski’s algorithm

Theorem 49
Applying ”reachable(subset(reverse[reachable(subset(reverse(M))]))” results
in the minimal DFA that implements M. (Brzozowski, 1962)

(Fig. from https://dsacl3-2019.github.io/slides/regular-fsa.pdf)
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