Supplementary Materials

(NTU EE) Regular Languages Spring 2024 1/35

Finite Automata

Figure: A Finite Automaton accepting string abdf.

(NTU EE) Regular Languages Spring 2024 2/35

Finite Transducers

start

Figure: A Finite Transducer generating string xywt on input abdf.

(NTU EE) Regular Languages Spring 2024 3/35

Weighted Finite Automata

Figure: A Weighted Finite Automaton with weight ny ® n; ® n, ® 14 @ ng @ ny
on input abdf.

(NTU EE) Regular Languages Spring 2024 4/35

Weighted Finite Transducer

alx :ny~ bly : ny d]w i :
start @.‘
clz:n3 e|s ns

Figure: A Weighted Finite Transducer with output xywt and weight
np @ 1y ® Ny @ 1y ® N @ ny on input abdf.

(NTU EE) Regular Languages Spring 2024 5/35

Shortest Path

o Compute10 +6 =16and 5+ 8 =13
e Output min{16,13}.

(NTU EE) Regular Languages Spring 2024 6/35

Maximum Reliability

@ Compute 0.5 x 0.6 =0.3and 0.8 x 0.7 = 0.56
@ Output max{0.3,0.56}.

(NTU EE) Regular Languages Spring 2024 7/35

Language Acceptor

e Compute {x} - {y} and {x} - {z} = xz
@ Output |J{xy, xz}.

(NTU EE) Regular Languages Spring 2024 8/35

Generic Problem Solving

The above three problems were different on the surface, but at the
core, they are actually very much the same problem. Consider:

e min{(10 +6), (5 + 8)}
e max{(0.5x 0.6),(0.8 x 0.7)}
o Ul{x} - {y} {x} - {z}}

Hence, it is interesting to see how to unify the above in a single
framework — Semiring,.

The above three are semirings with operators (min, +), (max, x) and

U,-)-

(NTU EE) Regular Languages Spring 2024 9/35

Types of "Extended” Finite Automata

Type Input | Output | Weight Mapping
Finite Automata (FA) v ¥* — {accept, reject
Finite Transducer (FT) v v »F — 2l
Weighted FA (WFA) v v =S
Weighted FT (WFT) v v v Y =27 xS

(NTU EE) Regular Languages Spring 2024 10 / 35

Abstract Algebra — Field

A Field is a 5-tuple (S, ®, ®,0,1), where S is a set and @ and ® are two
operators, such that

Addition @ Multiplication ®
@ Associativity: @ Associativity:
(adb)@c=ad (bdc) (axb)c=a® (bxc)
o Commutativity: a®b=b@a o Commutativity: a@b=b®a
o Identity 0: 0pa=a®0=a o Identity : 1®a=a®1=a
o Inverse —a: e Inversea !:
—a®a=a®-a=0 il®a=a@al=1

Distributivity of Multiplication over Addition
0aR(bdc)=@xb)®(@a®c)
@ adb)®@c=@xc)®(bc)

(NTU EE) Regular Languages Spring 2024 11 /35

Abstract Algebra — Ring

A Ring is a 5-tuple (S, ®, ®,0, 1), where S is a set and @ and ® are two
operators, such that

Addition &
@ Associativity:
(adb)®dc=ad (bdc)
o Commutativity: a®b=b@a
o Identity 0: 0pa=a®0=a
o Inverse —a:
—ada=ad—-a=0

Multiplication ®
@ Associativity:
@eb)ec=a® (bxc)
o Identity : 1®a=a®1=a

Distributivity of Multiplication over Addition
ea(bedc)=@ab) @ (@®c)
@ udb)®c=@®c)d (bxc)

Example: Square Matrices

(NTU EE) Regular Languages Spring 2024 12 /35

Abstract Algebra — Semiring

A Semiring is a 5-tuple (S, ®, ®,0,1), where S is a set and @ and ® are
two operators, such that

Addition &
@ Associativity:
(adb)dc=ad (bdc)
o Commutativity: a®b=0bda
o Identity 0: 0pa=a®0=a

Multiplication ®
@ Associativity:
(aeb)ec=ax (b®c)
o Identity : 1®a=a®1=a

Distributivity of Multiplication over Addition
ea(bdc)=@ab) @ (@®c)
@ ndb)®c=@®c)d (bxc)

Example: Probability

(NTU EE) Regular Languages Spring 2024 13 /35

Examples of Semirings

@ Probability: (]0,1],+, x,0,1)
@ Boolean: ({0,1},V,A,0,1)
@ Tropical: (R, min,+, 0, 0)

@ Log: (R,®r06, +,0,0), where
X @®rocy = —log(e™ +e7Y)

(NTU EE) Regular Languages Spring 2024 14 / 35

An Algebraic View of DFA

Figure: A Finite Automaton M;

Consider the following matrix representation:

1 0
@ Initial stateI = | 0 |;final state F = 1 |;
0 0

1 00 010
Mo=| 001];My=]101020
010 010

(NTU EE) Regular Languages Spring 2024

Algebraic View of DFA

The computation g1 RN q2 5 q3 RN q> is represented by
1\" /010 100 010
0 010 0 01 010 |=
0 010 010 010
0 100 010
1 001]-{010]=
0 010 010
0 010 0\’
0 010 |=(1
1 010 0
T T 0
As -F = 1 | =1, the input "101” is accepted.
0

(NTU EE)

Regular Languages Spring 2024 16 / 35

Algebraic View of NFA

Figure: NFA Ny

o O O
o O O
S O =

000 010
Mi=[(011|;M=(001] M=
100 00 0

(NTU EE) Regular Languages Spring 2024 17 / 35

Matrix Multiplication

Question:

How to define matrix multiplication
a1 Aaip 413 big bip big
a1 a2 a3 |- | ba1 bap bpsz | for the above examples”
a1 432 433 b31 bzx b33

i

@ In(ay1-b11+a12-by1+a13-bsq), for instance, the operations ”.
and ”+” stand for integer multiplication and addition, resp.

@ Suppose ”“1” and ”0” stand for Boolean "True” and “False”, resp.,
i

the operations ”.” and ”+” stand for Boolean operations A and V,
resp.

@ Hence, conventional FA are with respect to (V, A)-Semiring.

(NTU EE) Regular Languages S| z 18 / 35

Probabilistic FA: (4, x)-Semiring

2 J q = -
03 AN
/\“‘ 0z _A0) = 1 O 1 O 2
3 3 3 3
{< My=[0 10 |;M=[0 10
) 00 1 00 1
) U
0,11
On input 011, we calculate
T 2 1 1 2 1 2
1 5 30 3 03 3 03
0 -f o1 0})-{01O0]-{010O0]|=
0 0 01 0 01 0 01
2NT /1 g 2 2\ T
9 3 3 27
: 010]|=|3 , where 1¢ corresponds to
4 0 01 16
9 27
111
° qsﬁas lgqs—iqaiprob 7
02
° qsﬁasiqaﬁqajprob =1

(NTU EE) Regular Languages Spring 2024

Probabilistic Finite Automaton — Formal Definition

A probabilistic finite automaton (PFA) A is a 5-tuple (Q, 2, 4, qo, F)
where

@ (is a finite set of states;
@ X is a finite alphabet;
@ 0:Q x X xQ— [0,1] is the transition function, such that
Vg,€ Q,Va € %, Zq’eQ d(q,a,q9") =1, where 6(g,a,q’) is a rational
number;
@ go € Qs the start state; and
@ F C Qs the accept states.
The language Ly (A) = {u € 3* | Po(u){x}, where Py (u) is the
probability of acceptance on u, x € [0,1], and ¢ € {<, <, =,>,>}.
e In general, L (A) may not be regular. For instance, L_ 1 (Ap) and
L, 1 (Ap) are not regular.

@ Lox(A)isregular, if x € {0,1}.
Regular Languages Spring 2024 20/ 35

Why Tree Automata?

e Foundations of XML type languages (DTD, XML Schema, Relax
NG...)

@ Provide a general framework for XML type languages

@ A tool to define regular tree languages with an operational
semantics

@ Provide algorithms for efficient validation

@ Basic tool for static analysis (proofs, decision procedures in logic)

° ..

E.g. Binary trees with an even number of a’s

(NTU EE) Regular Languages Spring 2024 21/35

Binary Trees & Ranked Trees

@ Binary trees with an even / \
number of a’s a _even 2 _odd
o HOW to write transitions? b even a odd b even b even

» (even, odd) % even

» (even, even) — odd
> .

VAN VERN
@ Ranked Tree: /a\ Y ‘c N # #
» Alphabet: 4 # 2 a Ty
(a®,p®) 40} AVVA
» a®): symbol a with arity(a) = # a\
k # #

(NTU EE) Regular Languages Spring 2024 22/35

Bottom-up (Ranked) Tree Automata

A ranked bottom-up tree automaton A consists of:
o Alphabet(A): finite alphabet of symbols
@ States(A): finite set of states
@ Rules(A): finite set of transition rules
@ Final(A): finite set of final states (C States(A))

where Rules(A) are of the form (g1, ..., qx) ag) q;

©
if k = 0, we write e = g

(NTU EE) Regular Languages Spring 2024

Bottom-up Tree Automata: An Example

’ ql/ \ o
A qo Vi Vi Adl
090 1q 191 090 000 1qi 1 1q
Principle R“'iS(A) .
€ —r qo E— q
e Alphabet(A) = {A,V,0,1} (g1,91) S 1 (go,q1) > G
* States(A) = {qo,q1} (0,91) = G0 (q1,90) ~ 01
AN W,
® 1 accepting state at the root: (g1,90) =+ g0 (91,91) = ¢
- W,
Final(A) = {q1} (d0,90) © G0 (do, 90) = o

(NTU EE) Regular Languages

Top-down (Ranked) Tree Automata

A ranked top-down tree automaton A consists of:
o Alphabet(A): finite alphabet of symbols
@ States(A): finite set of states
@ Rules(A): finite set of transition rules
@ Final(A): finite set of final states (C States(A))

a®

where Rules(A) are of the form g — (41, ..., qx);

©
if k = 0, we write ¢ > g

Top-down tree automata also recognize all regular tree languages

(NTU EE) Regular Languages Spring 2024

Top-down Tree Automata: An Example

A

\

q Vv __—

A i
Ado Vaq Va1 A1
09 19 191 09 090 191 190 190
acc acc acc acc acc acc acc acc
Principle
® starting from the root, guess Transitions
correct values g (q1,91) @ Rt (g0, q1)
A N4
e check at leaves qo = (qo,q1) g1 — (g1, qo)
A v
e 3 states: qo, g1, acc 9o j (q1:90) @ 7 (q1: 1)
® initial state at the root: gy do ? (0. 90) a0 ? (d0- 90)
g1 — acc go — acc

e accepting if all leaves labeled
acc

(NTU EE) Regular Languages Spring 2024 26 /35

Expressive Power of Tree Automata

Theorem 1
The following properties are equivalent for a tree language L:

(a) L is recognized by a bottom-up non-deterministic tree automaton
(b) L is recognized by a bottom-up deterministic tree automaton

(c) L is recognized by a top-down non-deterministic tree automaton

(d) L is generated by a regular tree grammar

(NTU EE) Regular Languages Spring 2024 27 /35

Deterministic Top-down Tree Automata

Deterministic top-down tree automata do not recognize all regular tree
languages

e Example:

Initial(A) = qo
a

g0 — (q,9)

"y

q-e

also accepts...

(NTU EE) Regular Languages Spring 2024 28 /35

Unranked Trees

String Ranked Tree Unranked Tree

as Tree a a
| : T [
b RN |
| c b a :
T sy b//”_\ SN
; ANEVAN /N &
b b ab ¢ e b < boe

d(0o,q): specified by a regular expression (i.e., regular language).

(NTU EE) Regular Languages Spring 2024

Quantum Entanglement

@ An n-qubit system can exist in any superposition of the 2" basis
states.

a0[000...000) + @1]000...001) + - - - + ap_q|111...111)

@ Sometimes such a state can be decomposed into the states of
individual bits

1 1

ﬂ(\00> +101)) = 0) @ ﬁ((\@ +11)))

@ But,
1
V2

is not decomposible, which is called an entangled state.

(100) +[11))

(NTU EE) Regular Languages Spring 2024 30/ 35

Unitary Evolution

@ A quantum system that is not measured (i.e. does not interact
with its environment) evolves in a unitary fashion.

@ That s, it’s evolution in a time step is given by a unitary linear
operation.

@ Such an operator is described by a matrix U such that
uur=1

where U™ is the conjugate transpose of U.
3 3+i\ [3 2+4i
2—i 2 S\ 3-i 2

(NTU EE) Regular Languages Spring 2024 31/35

Quantum Automata

@ Quantum finite automata are obtained by letting the matrices M,
have complex entries. We also require each of the matrices to be

unitary. E.g.
-1 0
v 1)

o If all matrices only have 0 or 1 entries and the matrices are unitary,
then the automaton is deterministic and reversible.

(NTU EE) Regular Languages Spring 2024 32 /35

Quantum Automata

Consider the automaton in a one letter alphabet as:

L 1

— V2 1/V2
. M, =)
n 12 -1/V2 1/V2

e The initial state |p) = 1-]0) +0-[1) = (1,0)T

o M,, = (_01 (1) > . Hence, upon reading aa, M’s state is

=% 0)(o)-(5%)-00+-1m

@ There are two distinct paths labelled aa from q; back to itself, and
each has non-zero probability, the net probability of ending up in
q11s 0.

@ The automaton accepts a string of odd length with probability 0.5
and a string of even length with probability 1 if its length is not a
multiple of 4 and probability 0 otherwise.

(NTU EE) Regular Languages Spring 2024 33 /35

Measure-once Quantum Automata

@ The accept state of the automaton is given by an N x N projection
matrix P, so that, given a N-dimensional quantum state [¢)) , the
probability of |¢/) being in the accept state is (1)|P|¢)) = ||P|)||>.

In the previous example, P = < 00 >

01
@ The probability of the state machine accepting a given finite input
string o = (09,01, -+ , 0%) is given by

Pr(c) = ||PUy, - - - Uy, Uy |1b) ||*. In the previous example, Pr(aa)=

(5)(25)(5)-

@ A regular language is accepted with probability p by a quantum
finite automaton, if, for all sentences o in the language, (and a
given, fixed initial state [¢)), one has p < Pr(o).

(NTU EE) Regular Languages Spring 2024 34 /35

Language Accepted

@ Measure Many 1-way QFA: Measurement is performed after each
input symbol is read.

@ Measure-many model is more powerful than the measure-once
model, where the power of a model refers to the acceptance
capability of the corresponding automata.

o MM-1QFA can accept more languages than MO- 1QFA.

@ Both of them accept proper subsets of regular languages.

(NTU EE) Regular Languages Spring 2024 35/35

	Supplementary Materials

