Linear Algebra Fall 2024, Homework # 1 Reference Solutions

Due: Oct. 4, 2024

1. (10 pts) Consider the following system of linear equations, where c is a real number:

$$\begin{aligned} x_1 + x_2 &+ cx_3 + x_4 &= c \\ - x_2 &+ x_3 &+ 2x_4 &= 0 \\ x_1 + 2x_2 + x_3 &- x_4 &= -c \end{aligned}$$

Apply elementary row operations to the augmented matrix of the above to yield its REF (Row Echelon Form). Note that the REF contains c as a parameter. For what c, does the linear system have a solution? Show your derivation in detail.

Sol. Apply the following elementary row operations to the augmented matrix

$$A = \begin{bmatrix} 1 & 1 & c & 1 & c \\ 0 & -1 & 1 & 2 & 0 \\ 1 & 2 & 1 & -1 & -c \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & c & 1 & c \\ 0 & -1 & 1 & 2 & 0 \\ 0 & 1 & 1 - c & -2 & -2c \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & c & 1 & c \\ 0 & -1 & 1 & 2 & 0 \\ 0 & 0 & 2 - c & 0 & -2c \end{bmatrix}$$

When $c = 2$, the REF of A becomes $\begin{bmatrix} 1 & 1 & 2 & 1 & 2 \\ 0 & -1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & -4 \end{bmatrix}$, which is inconsistent.
So if $c \neq 2$, the linear system is consistent and therefore has a solution.

2. (15 pts) Find all possible values of rank(A) as a varies

$$A = \begin{bmatrix} 1 & 2 & a \\ -2 & 4a & 2 \\ a & -2 & 1 \end{bmatrix}$$

(Hint:) Use elementary row operations $(R_2 + 2R_1; R_3 - aR_1, \text{ where } R_i \text{ represents row } i)$ we obtain:

$$B = \begin{bmatrix} 1 & 2 & a \\ 0 & 4a+4 & 2+2a \\ 0 & -2-2a & 1-a^2 \end{bmatrix}$$

Then show your argument for each of the following cases:

- (Case 1): a = -1, What is the rank? Why?
- (Case 2): $a \neq -1$
 - (Case 2-1) a = 2, What is the rank? Why?
 - (Case 2-2) $a \neq 2$, What is the rank? Why?

Note that in some of the above cases, you might have to apply elementary row operations again. Show your work in sufficient detail.

Sol.

• (Case 1):
$$a = -1, B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 is RREF(A). Since it has one non-zero row, $rank(A) = 1.$

• (Case 2): $a \neq -1$ Apply elementary row operations to B:

$$B = \begin{bmatrix} 1 & 2 & a \\ 0 & 4a+4 & 2+2a \\ 0 & -2-2a & 1-a^2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 2a+2 & 1+a \\ 0 & -2-2a & 1-a^2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 2a+2 & 1+a \\ 0 & 0 & 2+a-a^2 \end{bmatrix} = C$$

 $- (\text{Case 2-1}) \ a = 2, \ C = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 6 & 3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} = \text{RREF}(A). \text{ Since it has } two \text{ non-zero rows, } rank(A) = 2.$

- (Case 2-2) $a \neq 2$ and $a \neq -1$. So $2 + a a^2 = -(a 2)(a + 1) \neq 0$. Divide the 3rd row by $2 + a a^2$ and we get $\begin{bmatrix} 1 & 2 & a \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ = RREF(A). So rank(A) = 3.
- 3. (10 pts) Find a quadratic polynomial, say $f(x) = ax^2 + bx + c$, such that f(1) = 1, f(2) = 9, f(3) = 27. To this end, find the values of a, b and c. Show your derivation in sufficient detail.

Sol. Suppose

$$f(1) = a + b + c = 1$$

$$f(2) = 4a + 2b + c = 9$$

$$f(3) = 9a + 3b + c = 27$$

Apply the following elementary row operations to the augmented matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 1 & 9 \\ 9 & 3 & 1 & 27 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -3 & 5 \\ 0 & -6 & -8 & 18 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{5}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

So c = 3, b = -7, a = 5.

4. (10 pts) Given an $n \times n$ matrix $A = I - uu^T$, where I is the $n \times n$ identity matrix and u is a column vector in \mathbb{R}^n with $u^T u = 1$ (note that this is just the number 1), prove that AA = A.

Sol.

$$AA = (I - uu^{T})(I - uu^{T})$$
$$= I - 2uu^{T} + uu^{T}uu^{T}$$
$$= I - 2uu^{T} + u(u^{T}u)u^{T}$$
$$= I - 2uu^{T} + u(1)u^{T}$$
$$= I - uu^{T} = A$$

5. (10 pts) For what values of k, if any, is the vector b in the span of the columns of A?

$$A = \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & -2\\ 0 & -2 & 4\\ -1 & 0 & -3 \end{bmatrix}, \quad b = \begin{bmatrix} -1\\ 1\\ k-2\\ 1 \end{bmatrix}$$

Show your work in sufficient detail.

Sol.

For b to be in the span of the columns of A, Ax = b must have non-zero solutions. Consider the augmented matrix

$$B = \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & -2 & 4 & k-2 \\ -1 & 0 & -3 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & k \\ 0 & 0 & 0 & 0 \end{bmatrix} = \operatorname{RREF}(B)$$

If $k \neq 0$, then RREF(B) is inconsistent and Ax = b does not have solutions. So b is in the span of the columns of A if k = 0.

6. (15 pts) Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others.

(1		[1]		[-1]		$\left[-2\right]$)
J	0		2		-2		-2	
Ì	-1	,	3	,	0	,	7	Ì
l	0		4		1		11	J

Sol. Suppose there exist scalars x_1, x_2, x_3, x_4 such that Ax = b where

$$A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 2 & -2 & -2 \\ -1 & 3 & 0 & 7 \\ 0 & 4 & 1 & 11 \end{bmatrix} \text{ and } x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Apply elementary row operations to the augmented matrix:

[1]	1	-1	-2	0	[1	1	-1	-2	0	[1	1	-1	-2	0	Г	1	1	-1	-2	0
0	2	-2	-2	0	0	1	-1	-1	0	0	1	$^{-1}$	$^{-1}$	0		0	1	-1	$^{-1}$	0
-1	3	0	7	0	$\Rightarrow _0$	4	-1	5	0	$\Rightarrow _0$	0	3	9	0	\Rightarrow	0	0	1	3	0
0	4	1	11	0	0	0	5	15	0	$\Rightarrow \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$	0	1	3	0		0	0	0	0	0

Clearly x_4 is free. Let $x_4 = -1$. Then we have $x_3 = 3$, $x_2 = 2$, $x_1 = -1$. Therefore the set of vectors is linearly dependent and

$-1\begin{bmatrix}1\\0\\-1\\0\end{bmatrix}+2\begin{bmatrix}1\\0\end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix}$	$ = \begin{bmatrix} -2\\ -2\\ 7\\ 11 \end{bmatrix} $	
---	---	--	--

- 7. (10 pts) Let A and B be two $n \times n$ matrices such that AB is invertible.
 - (a) Prove that B is invertible.
 - (b) Prove that A is invertible.

(Hint: You may use the following facts. A matrix C is NOT invertible if and only if Cx = 0 has a non-zero solution. Furthermore, if C and D are invertible, CD is also invertible.)

Sol.

- (a) Suppose B is not invertible, then there exists an $x \neq 0$ such that Bx = 0. In this case, (AB)x = A(Bx) = 0. Since $x \neq 0$, AB is not invertible a contradiction.
- (b) From (a), B is invertible, so B^{-1} exists. We then have $AB(B^{-1}) = A(BB^{-1}) = A$. Since AB and B^{-1} are both invertible, A is also invertible.
- 8. (10 pts) Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

- (a) Find a 4×2 matrix B such that $AB = I_2$, where I_2 is the 2×2 identity matrix.
- (b) Explain why there is no 4×2 matrix C such that $CA = I_4$, where I_4 is the 4×4 identity matrix.

Sol.

(a) Let
$$B = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{bmatrix}$$
 such that $AB = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then we find the solution for x_i and y_i :
For x_i : $\begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$, so $(x_1, x_2, x_3, x_4) = (a, b, 1 - a - b, a - 1)$.
For y_i : $\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$, so $(y_1, y_2, y_3, y_4) = (c, d, -c - d, c + 1)$.
So $B = \begin{bmatrix} a & c \\ b & d \\ 1 - a - b & -c - d \\ a - 1 & c + 1 \end{bmatrix}$. For example, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$.

- (b) Suppose there exists a 4×2 matrix C such that $CA = I_4$. $rank(CA) = rank(I_4) = 4$ and $rank(CA) \leq rank(A) = 2$ a contradiction.
- 9. (10 pts) Find the inverse of the following matrix A by row reducing [A|I].

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 4 \\ 0 & 2 & 7 \end{bmatrix}.$$

Sol.

$$[A|I] = \begin{bmatrix} 1 & 3 & 5 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 2 & 7 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 5 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 11 & -7 \\ 0 & 1 & 0 & 0 & -7 & 4 \\ 0 & 0 & 1 & 0 & 2 & -1 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} 1 & 11 & -7 \\ 0 & -7 & 4 \\ 0 & 2 & -1 \end{bmatrix}$.