Linear Algebra

Fall 2024, Quiz # 2 Reference Solutions

Dec. 6, 2024

- 1. (30 pts) True or False. (No explanations needed. No penalty for incorrect answer.)
 - (1) A matrix whose rows form an orthonormal basis for \mathbb{R}^n is an orthogonal matrix. Sol. True. If A's rows form an orthonormal basis, so do A^T 's columns. Thus A^T is an orthogonal matrix, which implies $(A^T)^T = (A^T)^{-1} = (A^{-1})^T$. So $A^T = A^{-1}$, A is orthogonal.
 - (2) The following matrix is diagonalizable $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 8 \\ 0 & 0 & 13 \end{bmatrix}$

Sol. True.

- (3) If a matrix A has trivial null space, Null(A) = {0}, then as a function A is one-to-one. Sol. True.
- (4) If λ is an eigenvalue for matrix A, then the eigenvectors with eigenvalue λ are scalar multiples of each other.
 Sol. False.
- (5) If matrix A is diagonalizable, then A is invertible. Sol. False. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- (6) Suppose v is an eigenvector of matrix A with eigenvalue λ, then v is also an eigenvector of matrix A² with eigenvalue λ² Sol. True.
- (7) If A and B are similar matrices, then they have the same eigenvectors. Sol. False. They have the same eigenvalues, but not necessarily the same eigenvectors. $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$
- (8) In \mathbb{R}^3 , if v (a 3×1 column vector) is a unit vector on a line L, then vv^T is the projection matrix onto line L. Sol. True.
- (9) If P is an orthogonal projection matrix onto a subspace W, then the eigenvalue of P is either 0 or 1. Sol. True.
- (10) If A and B are matrices whose eigenvalues, counted with their algebraic multiplicities, are the same, then A and B are similar.

Sol: False. $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- (11) If 0 is an eigenvalue of an $n \times n$ matrix A, then rank(A) < n. Sol: True
- (12) Given $n \times n$ symmetric matrices A and B, then AB is always a symmetric matrix. Sol: False $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- (13) Matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is similar to matrix $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$ Sol: False. Determinants are different.
- (14) If 1 is the only eigenvalue of a diagonalizable n × n matrix A, then A must be the identity matrix I_n.
 Sol: True. A = PI_nP⁻¹ = PP⁻¹ = I_n

- (15) If A^2 is the zero matrix, then the only possible eigenvalue is 0. Sol: True.
- 2. (10 pts) Let A be a 2 × 2 matrix such that $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector for A with eigenvalue 2, and $\begin{bmatrix} 2\\3 \end{bmatrix}$ is an eigenvector for A with eigenvalue 1. If $v = \begin{bmatrix} 3\\4 \end{bmatrix}$, compute A^3v .

Sol. Let
$$\lambda_1 = 2, p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda_2 = 1, \text{ and } p_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
. Then $A = PDP^{-1}$ where
 $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, P = \begin{bmatrix} p_1 & p_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}, P^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}^T = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$
 $A^3v = PD^3P^{-1}v = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2^3 & 0 \\ 0 & 1^3 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix}$

3. (20 pts) Let W be the subspace spanned by the vectors $w_1 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$ and $w_1 = \begin{bmatrix} 4\\0\\1 \end{bmatrix}$. Find a basis for W^{\perp} . (Hint: Let $A = \begin{bmatrix} 2 & 4\\1 & 0\\-2 & 1 \end{bmatrix}$. $W^{\perp} = null(A^T)$)

Sol. Since $W^{\perp} = null(A^T)$,

$$A^{T}x = 0 \Rightarrow \begin{bmatrix} 2 & 1 & -1 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} -1 \\ 10 \\ 4 \end{bmatrix}.$$
 So $\begin{bmatrix} -1 \\ 10 \\ 4 \end{bmatrix}$ is a basis for W^{\perp} .

4. (20 pts) Let $B = \left\{ \begin{bmatrix} -2\\2\\1\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\-2\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\2\\-2 \end{bmatrix} \right\}$ be an orthogonal basis, and W is a subspace spanned by B. Find the orthogonal projection of $\begin{bmatrix} -13\\18\\9\\1 \end{bmatrix}$ into W. Show your work in sufficient detail.

Sol. Since *B* is an orthogonal basis, we can convert it into an orthonormal basis $B' = \begin{cases} \frac{1}{5} \begin{bmatrix} -2\\2\\1\\4 \end{bmatrix}, \frac{1}{5} \begin{bmatrix} 4\\1\\-2\\2 \end{bmatrix}, \frac{1}{5} \begin{bmatrix} 1\\4\\2\\-2 \end{bmatrix} \}$. Then the orthogonal projection operator $P_W = CC^T$ where $C = \frac{1}{5} \begin{bmatrix} -2&4&1\\2&1&4\\1&-2&2\\4&2&-1 \end{bmatrix}$. The orthogonal projection of $v = \begin{bmatrix} -13\\18\\9\\1 \end{bmatrix}$ is $P_W v = CC^T v = \begin{bmatrix} -11\\16\\13\\2 \end{bmatrix}$.

5. (20 pts) Let $A = \begin{bmatrix} -2 & 12 \\ -1 & 5 \end{bmatrix}$.

- (a) What is the characteristic polynomial of A?
- (b) Find the eigenvalues of A.
- (c) For each eigenvalue, find the eigenvector(s) that generates the eigenspace corresponding to the eigenvalue.
- (d) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

Sol.

(a) The characteristic polynomial of A is

$$f(\lambda) = det(A - \lambda I) = det\begin{pmatrix} -2 - \lambda & 12\\ -1 & 5 - \lambda \end{pmatrix} = (-2 - \lambda)(5 - \lambda) + 12 = (\lambda - 1)(\lambda - 2)$$

(b) Two eigenvalues: $\lambda_1 = 1$ and $\lambda_2 = 2$.

$$\begin{array}{l} \text{(c)} \quad (A - \lambda_1 I)x = 0 \Rightarrow \begin{bmatrix} -3 & 12\\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 4\\ 1 \end{bmatrix} \Rightarrow p_2 = \begin{bmatrix} 4\\ 1 \end{bmatrix} \\ (A - \lambda_2 I)x = 0 \Rightarrow \begin{bmatrix} -4 & 12\\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3\\ 1 \end{bmatrix} \Rightarrow p_2 = \begin{bmatrix} 3\\ 1 \end{bmatrix} \\ \text{(d)} \quad D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} \\ P = \begin{bmatrix} p_1 & p_2 \end{bmatrix} = \begin{bmatrix} 4 & 3\\ 1 & 1 \end{bmatrix}$$