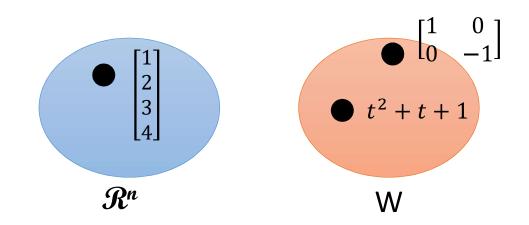
Chapter 7 Vector Space

(除了標註※之簡報外,其餘採用李宏毅教授之投影片教材)

Vector Spaces and Their Subspaces (Chap. 7.1)

Introduction

- Many things can be considered as "vectors".
 - E.g. a function can be regarded as a vector
- We can apply the concept we learned on those "vectors".
 - Linear combination
 - Span
 - Basis
 - Orthogonal



(Abstract) Vector Space

For any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathcal{V} , and scalars a and b in \mathcal{R} , $\mathbf{u} + \mathbf{v}$ and a \mathbf{u} are in \mathcal{V} , and the following axioms hold

- **1.** u + v = v + u
- 2. (u + v) + w = u + (v + w)
- 3. There is an element **0** in \mathcal{V} such that **0** + **u** = **u**
- 4. There is an element $-\mathbf{u}$ in \mathcal{V} such that $-\mathbf{u} + \mathbf{u} = \mathbf{0}$
- 5. 1**u** = **u**
- 6. (ab)u = a(bu) $0 = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ zero vector
- 7. a(**u**+**v**) = a**u** + a**v**
- 8. (a+b)**u** = a**u** + b**u**

Why 0u = 0 and (-1)u = -u?

- Can you prove that $\mathbf{0}\mathbf{u} = \mathbf{0}$ (i.e., zero vector)? • **Ou**
 - (from (3))• = 0 + 0u
 - = (-0u + 0u) + 0u (from (4))
 - = -0u + (0u + 0u) (from (2))
 - = -0u + ((0+0)u) (from (8))
 - = -0u + 0u
 - = 0

- $(0+0=0 \text{ as } 0 \text{ is in } \mathcal{R})$ (from (4))
- Can you prove that (-1)u = -u (i.e., inverse of u)?

Are they vectors?

Are they vectors?

• A matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

- A linear transform
- A polynomial

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}$$

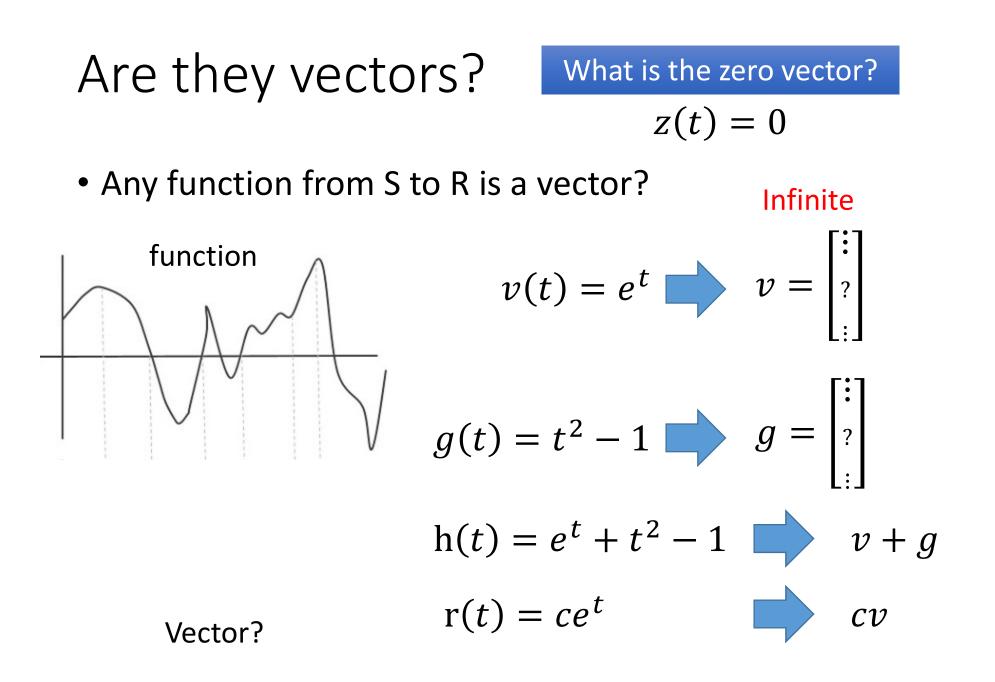
[1

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Choose a

 $1, x, \cdots, x^n$

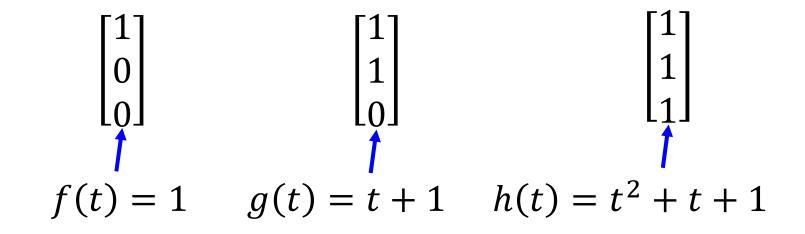
basis



Objects in Different Vector Spaces

All the polynomials with degree less than or equal to 2 form a vector space (often denoted as P_2)

w.r.t. Basis $\{1, t, t^2\}$



Subspaces

Review: Subspace

- A vector set V is called a subspace if it has the following three properties:
- 1. The zero vector **0** belongs to V
- 2. If **u** and **w** belong to V, then **u+w** belongs to V

Closed under (vector) addition

 3. If u belongs to V, and c is a scalar, then cu belongs to V
 Closed under scalar multiplication

Are they subspaces?

• All the functions pass 0 at t₀

- $trace\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = a + d$
- All the matrices whose trace equal to zero
- All the matrices of the form

$$\begin{bmatrix} a & a+b \\ b & 0 \end{bmatrix}$$

- All the continuous functions
- All the polynomials with degree n $t^n, -t^n$
- All the polynomials with degree less than or equal to n

P: all polynomials, P_n : all polynomials with degree less than or equal to n

Linear Combination and Span

Linear Combination and Span

• Matrices

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

Linear combination with coefficient a, b, c

$$a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$

What is Span S?

All 2x2 matrices whose trace equal to zero

Linear Combination and Span

• Polynomials

$$S = \{1, x, x^2, x^3\}$$

Is $f(x) = 2 + 3x - x^2$ linear combination of the "vectors" in S?

$$f(x) = 2 \cdot 1 + 3 \cdot x + (-1) \cdot x^{2}$$

Span{1, x, x², x³} = P₃

 $Span\{1, x, \cdots, x^n, \cdots\} = P$

Linear Transformations (Chap. 7.2)

Linear transformation

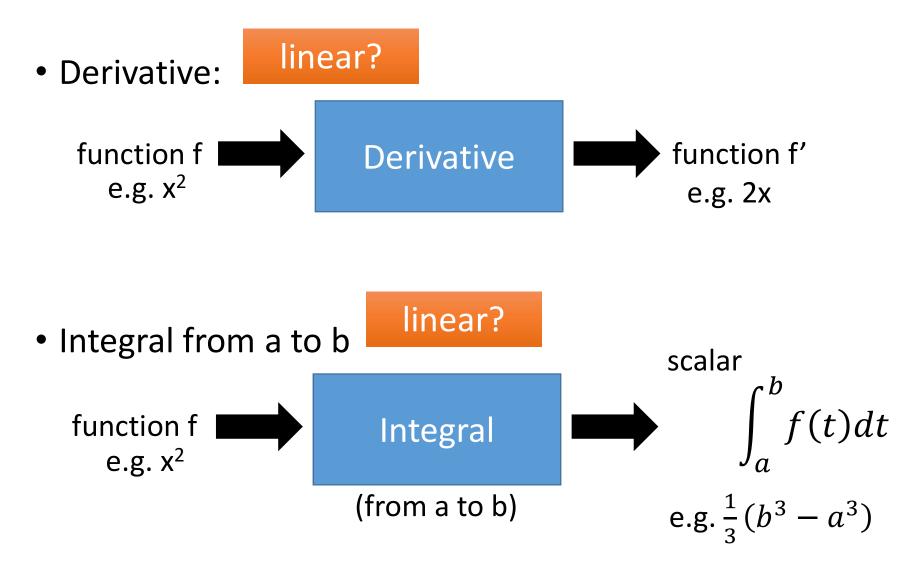
- A mapping (function) T is called linear if for all "vectors" u, v and scalars c:
- Preserving vector addition:

$$T(u+v) = T(u) + T(v)$$

• Preserving vector multiplication: T(cu) = cT(u)

Is matrix transpose linear?

Input: m x n matrices, output: n x m matrices



Null Space and Range

- Null Space
 - The null space of T: V → W is the set of all "vectors" in V such that T(v)=0, where 0 is the zero vector in W.
 - What is the null space of matrix transpose ?

$$\mathsf{T}: \mathcal{M}_{m \times n} \to \mathcal{M}_{n \times m}$$

- Range (or Image)
 - The range of T is the set of all images of T.
 - That is, the set of all "vectors" T(v) for all v in the domain
 - What is the range of matrix transpose?

One-to-one and Onto

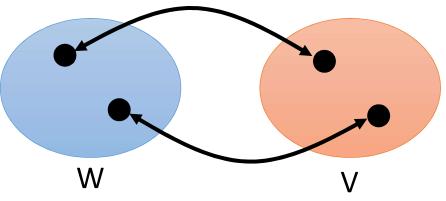
- $D: \mathscr{F}_3 \to \mathscr{F}_3$ defined by D(f) = f'
 - Is D one-to-one? no
 - Is D onto? no

$$x^{3} + 2x + 3$$

$$3x^{2} + 2x$$

$$x^{3} + 2x$$

• Let V and W be vector space.



- A linear transformation T: V→W is called an isomorphism if it is one-to-one and onto
 - Invertible linear transform
 - W and V are isomorphic.

Example 1: U: $\mathcal{M}_{m \times n} \to \mathcal{M}_{n \times m}$ defined by $U(A) = A^T$.

Example 2: $T: \mathscr{P}_2 \rightarrow \mathscr{R}^3$

$$T\left(a+bx+\frac{c}{2}x^{2}\right) = \begin{bmatrix}a\\b\\c\end{bmatrix}$$

Basis and Dimension (Chap. 7.3)

Independent

A basis for subspace V is a linearly independent generation set of V.

• Example

$$S = \{x^2 - 3x + 2, 3x^2 - 5x, 2x - 3\}$$
 is a subset of \mathscr{P}_{2} .

Is it linearly independent?

$$3(x^2 - 3x + 2) + (-1)(3x^2 - 5x) + 2(2x - 3) = 0$$
 No

• Example

 $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ is a subset of 2x2 matrices.

Is it linearly independent?

$$a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

implies that a = b = c = 0

Independent

If $\{v_1, v_2, ..., v_k\}$ are independent, and T is an isomorphism, $\{T(v_1), T(v_2), ..., T(v_k)\}$ are independent

• Example

The infinite vector set $\{1, x, x^2, \dots, x^n, \dots\}$

Is it linearly independent?

 $\Sigma_i c_i x^i = 0$ implies $c_i = 0$ for all *i*. Yes

• Example

 $S = \{e^{t}, e^{2t}, e^{3t}\}$ Is it linearly independent? Yes $ae^{t} + be^{2t} + ce^{3t} = 0 \qquad a + b + c = 0$ $ae^{t} + 2be^{2t} + 3ce^{3t} = 0 \qquad a + 2b + 3c = 0$ $ae^{t} + 4be^{2t} + 9ce^{3t} = 0 \qquad a + 4b + 9c = 0$

Independent

Theorem: If $\{v_1, v_2, ..., v_k\}$ are independent, and T is an isomorphism, $\{T(v_1), T(v_2), ..., T(v_k)\}$ are independent

(Proof)
Suppose
$$a_1 T(v_1) + a_2 T(v_2) + \dots + a_k T(v_k) = 0$$

 $\Rightarrow T(a_1 v_1) + T(a_2 v_2) + \dots + T(a_k v_k) = 0$
 $\Rightarrow T(a_1 v_1 + a_2 v_2 + \dots + a_k v_k) = 0$
 $\Rightarrow a_1 v_1 + a_2 v_2 + \dots + a_k v_k = 0$ ----- (one-to-one)
 $\Rightarrow a_1 = a_2 = \dots = a_k = 0$

Basis

• Example

For the subspace of all 2 x 2 matrices, The basis is

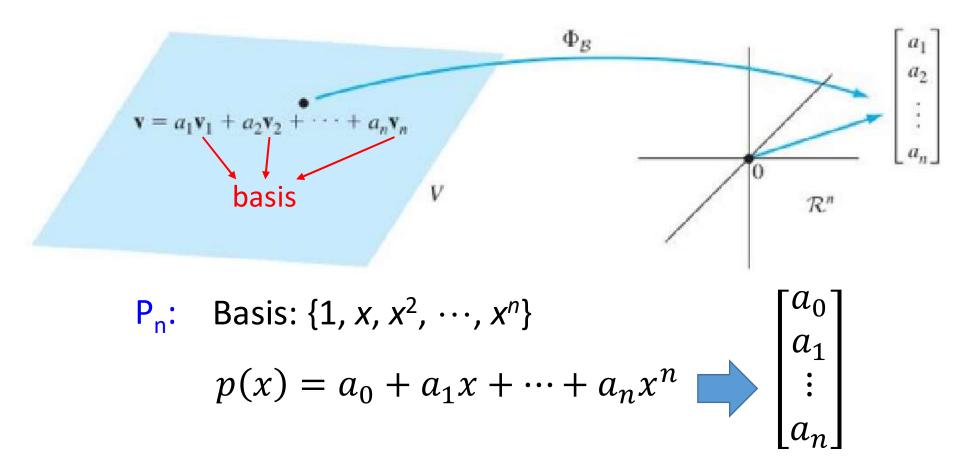
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad \mathsf{Dim} = \mathsf{4}$$

• Example

$$S = \{1, x, x^2, \dots, x^n, \dots\}$$
 is a basis of \mathscr{P} . Dim = inf

Vector Representation of Object

Coordinate Transformation



Coordinate Vectors

Definition

Let \mathscr{B} be a basis for V, $\Phi_{\mathscr{B}} : V \to \mathscr{R}^n$ (coordinate transformation) is an isomorphism. Any vector v in V, $\Phi_{\mathscr{B}}$ (v) is called the coordinate vector of v relative to \mathscr{B} , written as $[v]_{\mathscr{B}}$

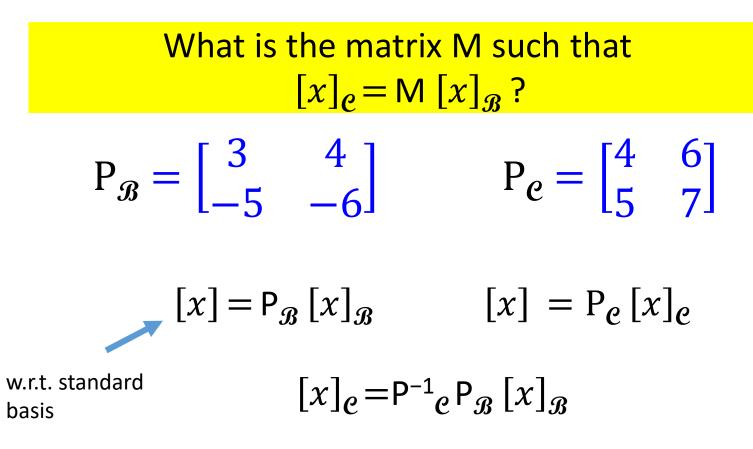
• Example

$$\mathcal{B} = \{1, x, x^2, \dots, x^n\} \text{ is a basis for } \mathcal{P}_n.$$

$$p(x) = a_0 + a_1 x + \dots + a_n x^n \qquad [p(x)]_{\mathcal{B}} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}$$

Coordinate Vectors

Let
$$\mathcal{B} = \{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \end{bmatrix} \}$$
 and $\mathcal{C} = \{ \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix} \}$
be two bases of \mathcal{R}^2

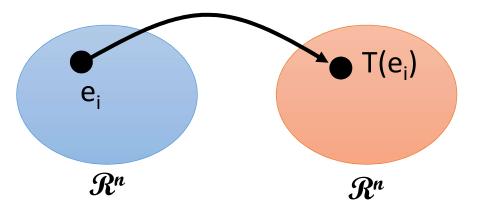


Matrix Representations of Linear Operators (Chap. 7.4)

Matrix Representation of Linear Operator $e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}^{i-th \ coordinate}$

Let T be a linear operator from \mathcal{R}^n to \mathcal{R}^n with standard basis $\mathcal{E} = \{e_1, e_2, ..., e_n\}$. Then the matrix representation of T w.r.t. \mathcal{E} is

 $[\mathsf{T}]_{\mathcal{E}} = [[\mathsf{T}(\mathsf{e}_1)_{\mathcal{E}} \ \mathsf{T}(\mathsf{e}_2)_{\mathcal{E}} \ \dots \ \mathsf{T}(\mathsf{e}_n)_{\mathcal{E}}]$



Linear Transformation and Matrix

$$T(\mathbf{x}) = T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Matrix Representation of Linear Operator

Let T be a linear operator on vector space V with basis $\mathcal{B} = \{v_1, v_2, ..., v_n\}$. Then the matrix representation of T w.r.t. \mathcal{B} is

$$[\mathsf{T}]_{\mathscr{B}} = [[\mathsf{T}(\mathsf{v}_1)_{\mathscr{B}} \ \mathsf{T}(\mathsf{v}_2)_{\mathscr{B}} \ \dots \ \mathsf{T}(\mathsf{v}_n)_{\mathscr{B}}]$$

Example: $\mathcal{B} = \{1, x\}.$

 \mathbf{X}

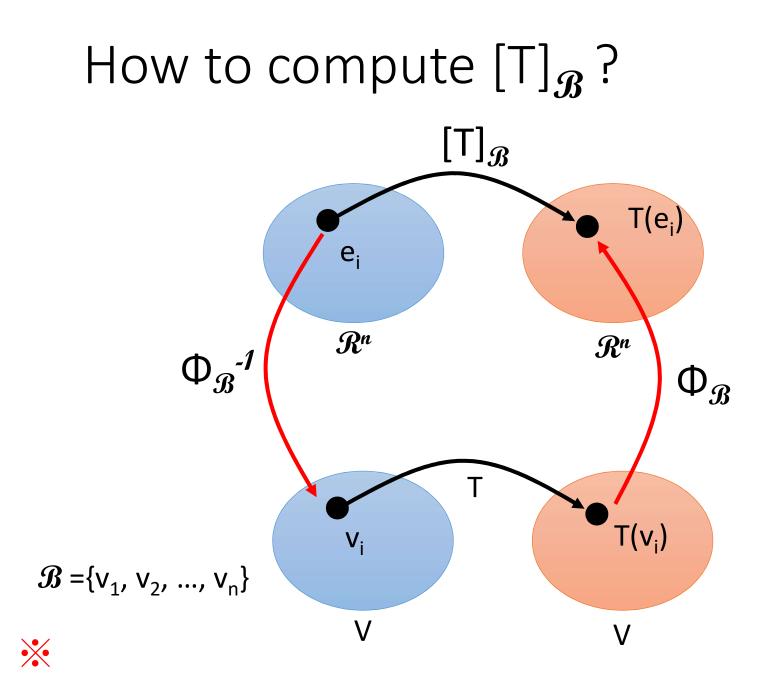
$$T(1) = 1 + 2x \quad T(x) = 3x \qquad [T]_{\mathscr{B}} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$

 $T(2-x) = 2(1+2x) - (3x) = 2+x \quad [T(2-x)]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

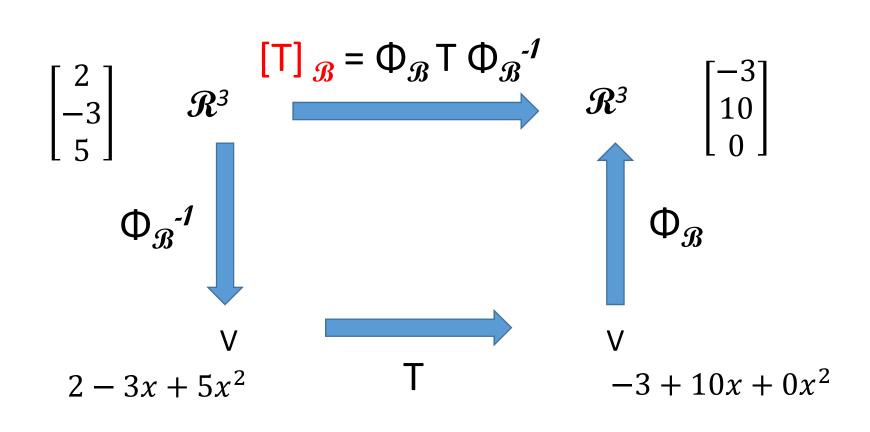
Linear Operator T: $V \rightarrow V$ $[\mathsf{T}]_{\mathscr{B}}$ $[T(x)]_{\mathcal{B}}$ $[x]_{\mathcal{B}}$ \mathcal{R}^n Rn $\Phi_{\mathscr{B}}$ $\Phi_{\mathscr{B}}$ T(x) Χ V V $\mathcal{B} = \{v_1, v_2, ..., v_n\}$

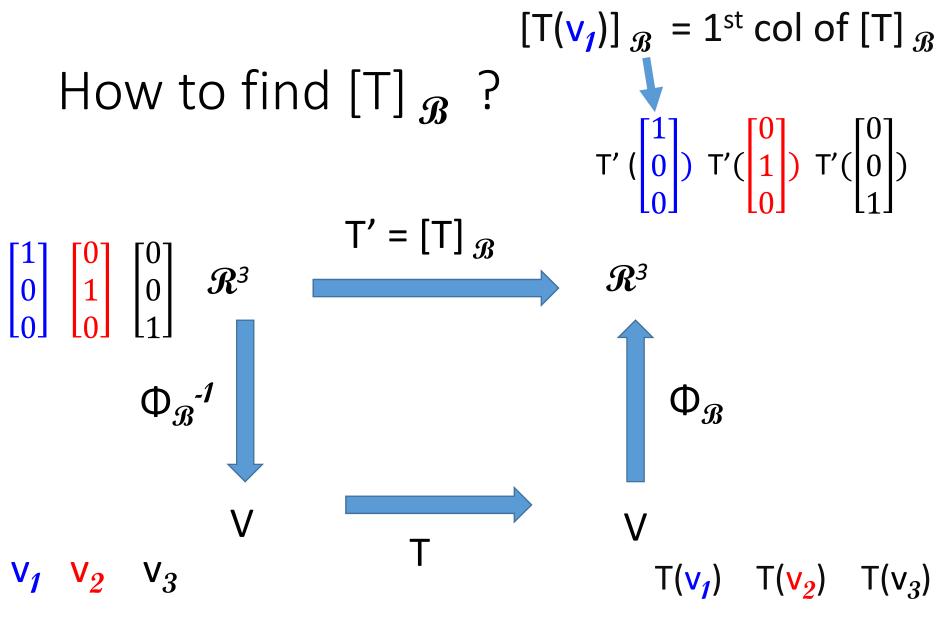
What is the matrix for T?

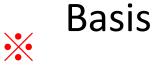
 $[\mathsf{T}]_{\mathscr{B}} = [[\mathsf{T}(\mathsf{v}_1)_{\mathscr{B}} \ \mathsf{T}(\mathsf{v}_2)_{\mathscr{B}} \ \dots \ \mathsf{T}(\mathsf{v}_n)_{\mathscr{B}}]$



Matrix Representation
of Linear OperatorRepresent it as a matrix $\mathscr{B} = \{1, x, x^2\}$ $\Phi_{\mathscr{B}}(2 - 3x + 5x^2) = (2, -3, 5)^T$





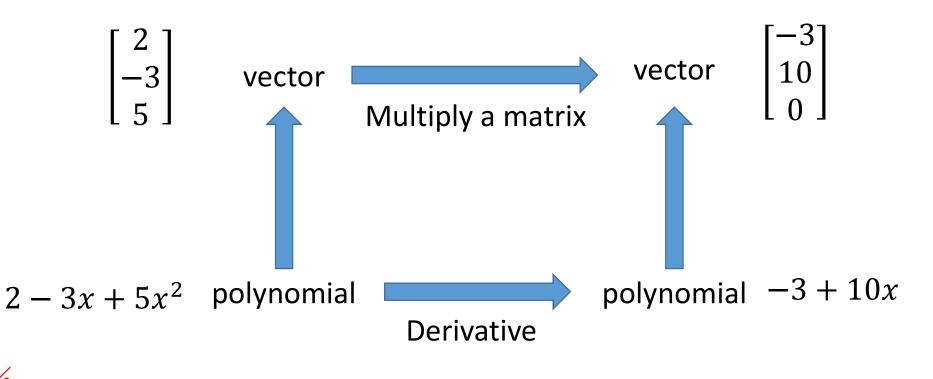


Example
Let
$$T: \mathscr{P}_2 \Rightarrow \mathscr{P}_2$$
 defined as
 $T(p(x)) = p(0) + 3p(1) x + p(2)x^2$
 $\mathscr{B} = \{1, x, x^2\}$ is a basis for \mathscr{P}_2 .
 $T(1) = 1 + 3x + x^2 \Rightarrow [T(1)]_{\mathscr{B}} = (1, 3, 1)^T$
 $T(x) = 0 + 3x + 2x^2 \Rightarrow [T(x)]_{\mathscr{B}} = (0, 3, 2)^T$
 $T(x^2) = 0 + 3x + 4x^2 \Rightarrow [T(x)]_{\mathscr{B}} = (0, 3, 4)^T$
 $[T]_{\mathscr{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix}$

*

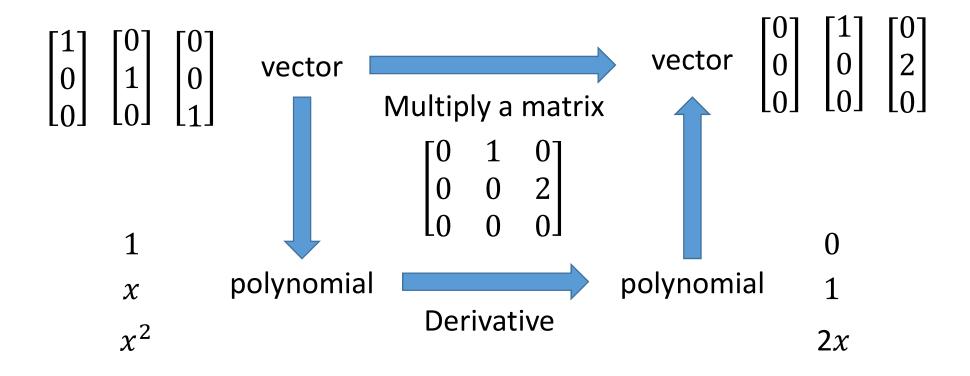
- Example:
 - D (derivative): $P_2 \rightarrow P_2$

Represent it as a matrix



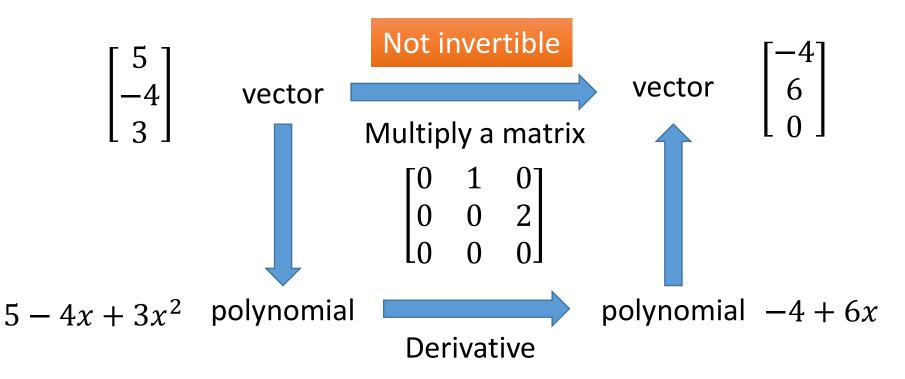
- Example:
 - D (derivative): $P_2 \rightarrow P_2$

Represent it as a matrix



٥٦	1	[0	[5]
0	0	2	-4
LO	0	0]	[3]

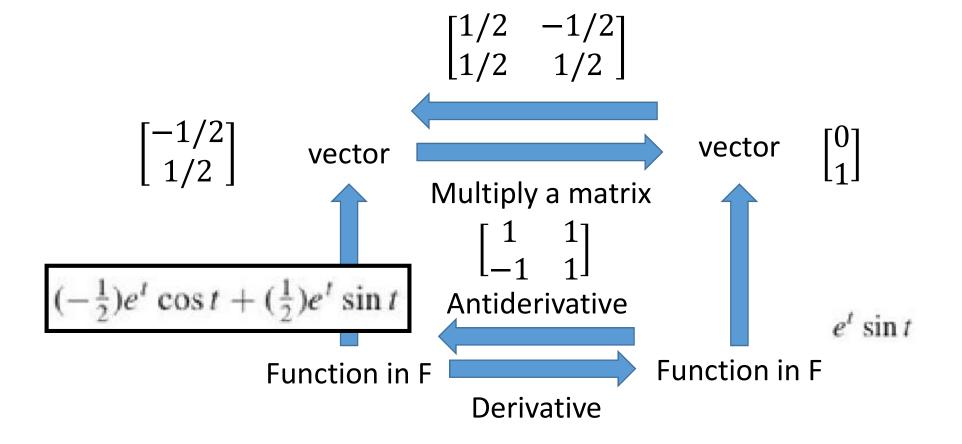
- Example:
 - D (derivative): $P_2 \rightarrow P_2$



- Example:
 - D (derivative): Function set F \rightarrow Function set F
 - Basis of F is $\{e^t \cos t, e^t \sin t\}$



Matrix RepresentationBasis of F isof Linear Operator $\{e^t \cos t, e^t \sin t\}$

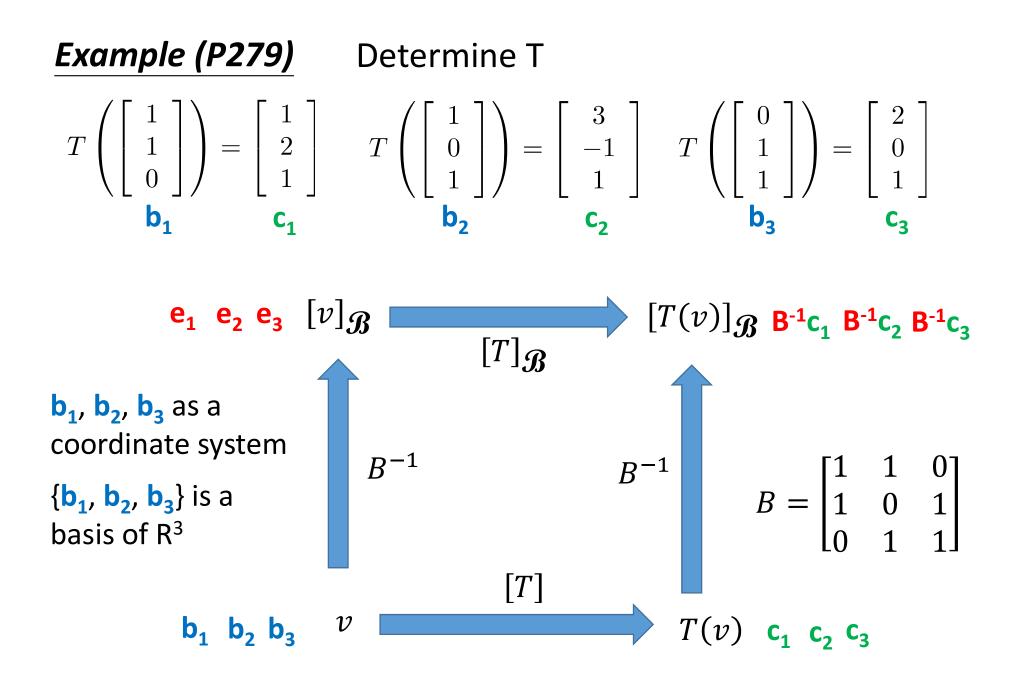


Linear operator between two bases

Let $T: \mathcal{V} \to \mathcal{W}$ be a linear operator between \mathcal{V} and \mathcal{W} . $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ and $\mathcal{B}' = \{b'_1, b'_2, \dots, b'_n\}$ bases of \mathcal{V} and \mathcal{W} .

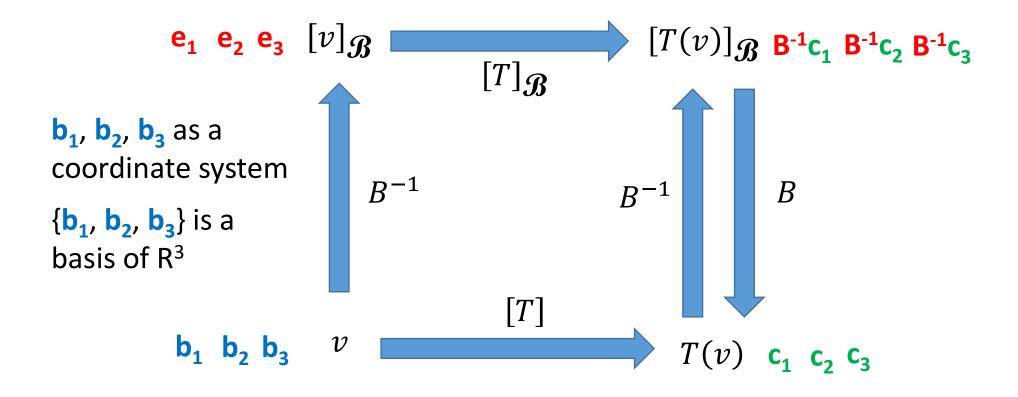
What is matrix representation \mathcal{M} of T w.r.t. \mathcal{B} and \mathcal{B}' i.e., $[T(x)]_{\mathcal{B}'} = \mathcal{M}[x]_{\mathcal{B}}$?

$\mathcal{M} = [\mathsf{T}[\mathsf{b}_1]_{\mathcal{B}'}, \mathsf{T}[\mathsf{b}_2]_{\mathcal{B}'}, \dots, \mathsf{T}[\mathsf{b}_n]_{\mathcal{B}'}]$



Example (P279) Determine T

$$[T]_{\mathcal{B}} = \begin{bmatrix} B^{-1}c_1 & B^{-1}c_2 & B^{-1}c_3 \end{bmatrix} = B^{-1}C$$
$$[T] = B[T]_{\mathcal{B}}B^{-1} = BB^{-1}CB^{-1} = CB^{-1}$$



Eigenvalue and Eigenvector

$T(\boldsymbol{v}) = \lambda \boldsymbol{v}, \, \boldsymbol{v} \neq \boldsymbol{0}, \, \boldsymbol{v}$ is eigenvector, λ is eigenvalue

Chap. 7.4

Eigenvalue and Eigenvector

Consider derivative (linear transformation, input & output are functions)
 Is e^{at} an "eigenvector"? ae^{at} What is the "eigenvalue"? a

Every scalar is an eigenvalue of derivative.

- Consider Transpose (also linear transformation, input & output are matrices)
- Is $\lambda = 1$ an eigenvalue?

Symmetric matrices form the eigenspace

Is $\lambda = -1$ an eigenvalue?

Skew-symmetric matrices form the eigenspace.

Symmetric:

 $A^T = A$

Skew-symmetric:

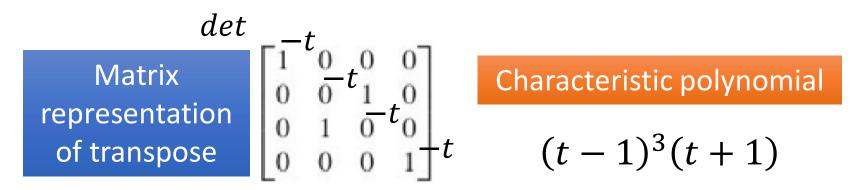
 $A^T = -A$

Consider Transpose of 2x2 matrices



Eigenvalue and Eigenvector

Consider Transpose of 2x2 matrices



 $\lambda = 1$

 $\lambda = -1$

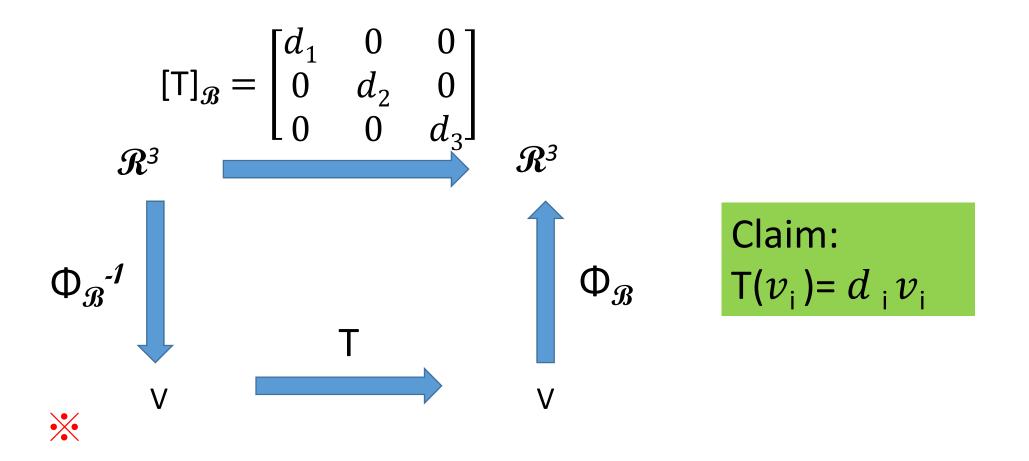
Symmetric matrices

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} \quad \text{Dim=3}$$

Skew-symmetric matrices

$$\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$$

Diagonalizable Linear Operator T is diagoalizable if there is a basis $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ s.t. $[T]_{\mathcal{B}}$ is diagonal

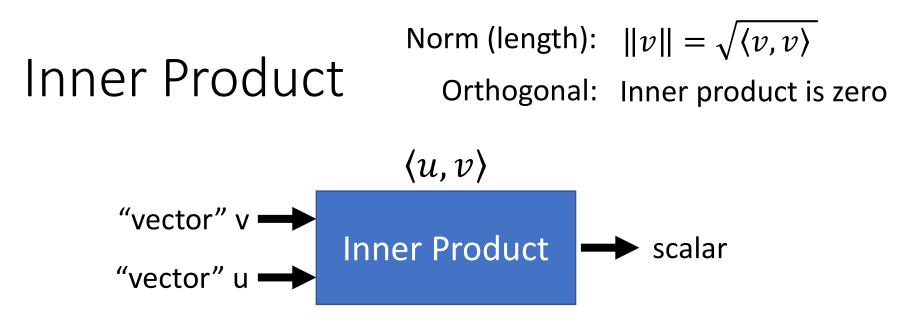


Diagonalizable Linear Operator

The following statements are equivalent

- T is diagoalizable
- There is a basis $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ s.t. $[T]_{\mathcal{B}}$ is diagonal
- T has a basis consisting of eigenvectors
- For every basis \mathcal{B} , $[T]_{\mathcal{B}}$ is diagoalizable

Inner Product Spaces (Chap. 7.5)

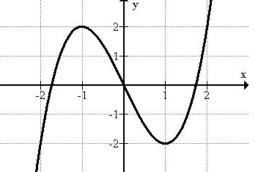


For any vectors u, v and w, and any scalar a, the following axioms hold:

1. $\langle u, u \rangle > 0$ if $u \neq 0$ 3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ 2. $\langle u, v \rangle = \langle v, u \rangle$ 4. $\langle au, v \rangle = a \langle u, v \rangle$ Dot product is a special case of inner product $c(u \cdot v)$ c > 0Can you define other inner product for normal vectors?

- 1. $\langle u, u \rangle > 0$ if $u \neq 0$ 2. $\langle u, v \rangle = \langle v, u \rangle$ 3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ 4. $\langle au, v \rangle = a \langle u, v \rangle$
- Continuous functions in C[-1, 1]

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)dx$$



Axiom (1):

$$f \neq 0 \Rightarrow f^2(c) > 0$$
, for some c in $[-1, 1]$.
 $\Rightarrow f^2(t) > d > 0$, t in $[c - \varepsilon, c + \varepsilon]$.
 $\Rightarrow \langle f, f \rangle = \int_{-1}^{1} f^2(t) dt = f^2(t) > 2\varepsilon d > 0$

Axioms (2 - 4): Easy to check

$$1. \langle u, u \rangle > 0 \text{ if } u \neq 0$$

$$2. \langle u, v \rangle = \langle v, u \rangle$$

$$3. \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

$$4. \langle au, v \rangle = a \langle u, v \rangle$$

• Inner product for any function with input [-1, 1]

$$\langle g,h \rangle = \int_{-1}^{1} g(x)h(x)dx = \int_{-1}^{1} xdx = 0$$

$$\begin{aligned} |s g(x) = 1 \text{ and} \\ h(x) = x \text{ orthogonal}? \end{aligned}$$
 yes

$$\langle g,h \rangle = \sum_{i=-10}^{10} g\left(\frac{i}{10}\right) h\left(\frac{i}{10}\right)$$
 Can it be inner product for general functions?

$$u\left(\frac{i}{10}\right) = 0$$
, otherwise $\neq 0$ $\langle u, u \rangle = 0$, but $u \neq 0$

Inner Product

• Inner Product of Matrix

Frobenius inner product

$$\langle A, B \rangle = trace(AB^T)$$

= $trace(BA^T)$

Check Axioms (1-4)

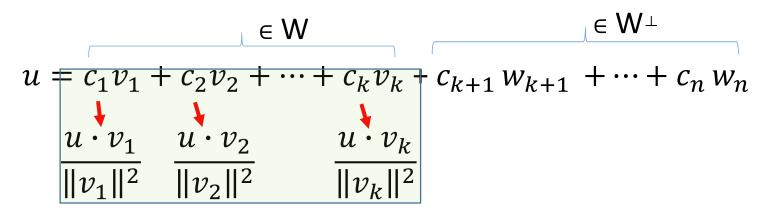
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \end{pmatrix} = 1 \cdot 5 + 2 \cdot 6 + 3 \cdot 7 + 4 \cdot 8 = 70$$

Element-wise multiplication

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad ||A|| = \sqrt{1^2 + 2^2 + 3^2 + 4^2}$$

Orthogonal Projection

Consider a subspace W with orthogonal basis S =
 {v₁, v₂, …, v_k} of an *n*-dim vector space V. Let u be any
 vector in V, which can be written as



orthogonal projection of u on W

• If S an orthonormal basis of W.

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$
$$u \cdot v_1 \quad u \cdot v_2 \qquad u \cdot v_k$$

 \mathbf{X}

Orthogonal Projection

Consider a subspace W with orthonormal basis S = {v₁, v₂, …, v_k} of an *n*-dim vector space V. The orthogonal projection of u on W can be written as

$$(u \cdot v_1)v_1 + (u \cdot v_2)v_2 + \dots + (u \cdot k)v_k$$

$$= v_1(v_1 \cdot u) + v_2(v_2 \cdot u) + \dots + v_k(v_k \cdot u)$$

$$= v_1(v_1^T u) + v_2(v_2^T u) + \dots + v_k(v_k^T u)$$

$$= (v_1v_1^T + v_2v_2^T + \dots + v_kv_k^T)u$$

$$= (v_1v_1^T + v_2v_2^T + \dots + v_kv_k^T)u$$
Recall that is *S* is an arbitrary basis, the projection matrix is $C(C^TC)^{-1}C^T$

Orthogonal Basis

Let $\{u_1, u_2, \dots, u_k\}$ be a basis of a subspace V. How to transform $\{u_1, u_2, \dots, u_k\}$ into an orthogonal basis $\{v_1, v_2, \dots, v_k\}$?

Then $\{v_1, v_2, \dots, v_k\}$ is an orthogonal basis for W

After normalization, you can get orthonormal basis.

Orthogonal/Orthonormal Basis

- Find orthogonal/orthonormal basis for P₂
 - Define an inner product of P₂ by

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t) dt$$

Find a basis {1, x, x²} $\longrightarrow v_1, v_2, v_3$
 $\mathbf{v}_1 = \mathbf{u}_1$
 $\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}$
 $\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 = x^2 - \frac{1}{3}$

- 1

Orthogonal/Orthonormal Basis

- Find orthogonal/orthonormal basis for P₂
 - Define an inner product of P₂ by

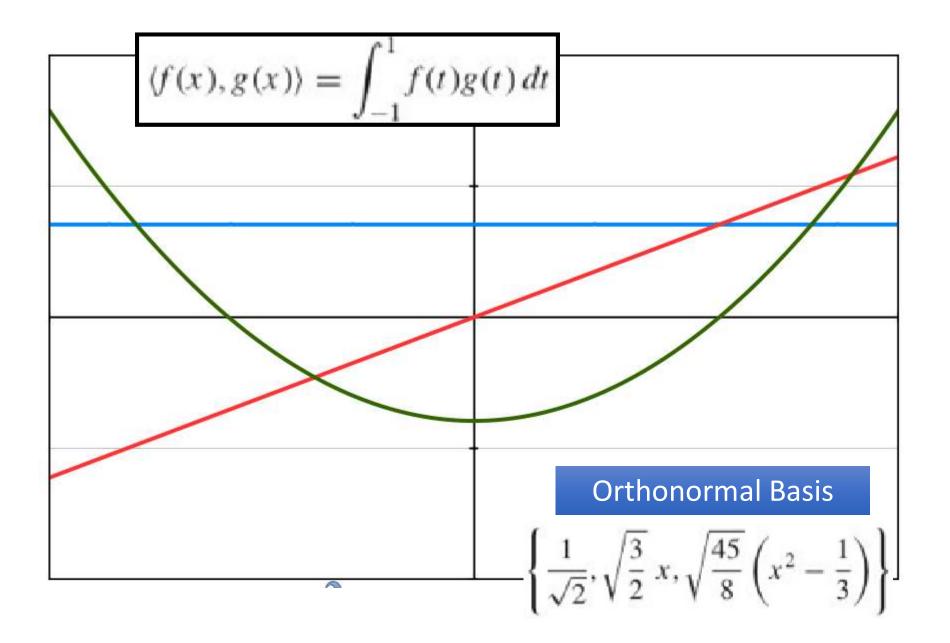
$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t) dt$$

• Get an orthogonal basis $\{1, x, x^2-1/3\}$

$$\|\mathbf{v}_1\| = \sqrt{\int_{-1}^{1} 1^2 \, dx} = \sqrt{2} \qquad \|\mathbf{v}_2\| = \sqrt{\int_{-1}^{1} x^2 \, dx} = \sqrt{\frac{2}{3}}$$

Orthonormal Basis

$$\|\mathbf{v}_3\| = \sqrt{\int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2} \, dx = \sqrt{\frac{8}{45}} \qquad \left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} \, x, \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right)\right\}$$



Least square approx. of x^3 ? $\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right)\right\}$ Orthonormal Basis Compute orthogonal projection of $f = x^3$ on P₂ Orthogonal projection is $\langle f, v_1 \rangle v_1 + \langle f, v_2 \rangle v_2 + \langle f, v_3 \rangle v_3$ Hence, the l.s.a. of x^3 is 2/5 x $\langle f, v_1 \rangle = \int_{-1}^{1} 1/\sqrt{2} t^3 dt = 0$ $\langle f, v_2 \rangle = \int_{-1}^1 \sqrt{3/2} t^4 dt = (2/5)\sqrt{3/2}$ $\langle f, v_3 \rangle = \int_{-1}^{1} \sqrt{45/8} (t^2 - 1/3) t^3 dt = 0$