Chapter 5 Eigenvalues, Eigenvectors, and Diagonozation

(除了標註※之簡報外,其餘採用李宏毅教授之投影片教材)

Eigenvalues and eigenvectors (Chapter 5.1)

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
	- v is an eigenvector of A excluding zero vector

 $A\mathbf{0} = \lambda \mathbf{0}$

 \bullet λ is an eigenvalue of A that corresponds to

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
	- v is an eigenvector of A excluding zero vector
	- \bullet λ is an eigenvalue of A that corresponds to
- T is a *linear operator.* If $T(v) = \lambda v$ (*v* is a vector, is a scalar)
	- ν is an eigenvector of T excluding zero vector
	- \bullet λ is an eigenvalue of T that corresponds to

• Example: Shear Transform

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right)
$$

• Example: Reflection

reflection operator T about the line $y = (1/2)x$

• Example: Rotation

Source of image: https://twitter.com/circleponiponi /status/1056026158083403776

Do any n x n matrix or linear operator have eigenvalues?

How to find eigenvectors (given eigenvalues) (Chapter 5.1)

- An eigenvector of A corresponds to a unique eigenvalue.
- An eigenvalue of *A* has infinitely many eigenvectors.

Example:
\n
$$
A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \quad v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad u = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}
$$
\nEigenvalue = -1

Do the eigenvectors correspond to the same eigenvalue form a subspace?

$$
Av = \lambda v
$$

\n
$$
Au = \lambda u
$$

\n
$$
A(u + v) = \lambda (u + v)
$$

\n
$$
A(u + v) = \lambda (u + v)
$$

Eigenspace

- Assume we know λ is the eigenvalue of matrix A
- Eigenvectors corresponding to

Eigenvectors corresponding to $\lambda + \{0\}$

Eigenvectors corresponding to 2

Check whether a scalar is an eigenvalue (Chapter 5.1)

Check Eigenvalues $Null(A - \lambda I_n):$
eigenspace of λ

• How to know whether a scalar λ is the eigenvalue of A?

Check the dimension of eigenspace of λ

If the dimension is 0

 \blacksquare Eigenspace only contains $\{0\}$

No eigenvector

Check Eigenvalues

(*A* $-\lambda I_n$: eigenspace of λ

• Example: to check 3 and 2 are eigenvalues of the linear operator T

Check Eigenvalues

(*A* $-\lambda I_n$: eigenspace of λ

• Example: check that 3 is an eigenvalue of *B* and find a basis for the corresponding eigenspace

$$
B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}
$$
 find the solution set of $(B - 3I_3)\mathbf{x} = \mathbf{0}$

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_3 \\ x_2 \end{pmatrix}$ find the RREF of *B* $-3I_3$ $=\left[\begin{array}{ccc|c} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] = x_1 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right] + x_3 \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]$

Looking for eigenvalues (Chapter 5.2)

A scalar t is an eigenvalue of A

• Example 1: Find the eigenvalues of

A scalar t is an eigenvalue of A $\blacklozengeleft(A-tI_n)$

$$
A - tI_2 = \begin{bmatrix} -4 - t & -3 \\ 3 & 6 - t \end{bmatrix}
$$

det $(A - tI_2)$

=0

The eigenvalues of *A* are -3 or 5.

• Example 1: Find the eigenvalues of

The eigenvalues of *A* are -3 or 5.

Eigenspace of -3

$$
Ax = -3x \qquad (A+3I)x = 0
$$

find the solution

Eigenspace of 5

 $Ax = 5x$ $(A - 5I)x = 0$

find the solution

• Example 2: find the eigenvalues of linear operator

$$
T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_1 \\ 2x_1 - x_2 - x_3 \\ -x_3 \end{bmatrix}
$$

Standard

$$
A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}
$$

Matrix

$$
A - tI_n = \begin{bmatrix} -1 - t & 0 & 0 \\ 2 & -1 - t & -1 \\ 0 & 0 & -1 - t \end{bmatrix}
$$

$$
det(A - tI_n) = (-1 - t)^3
$$

• Example 3: linear operator on **R** $²$ that rotates a</sup> vector by 90◦

A scalar t is an eigenvalue of A \blacklozenge $det(A - tI_n)$

standard matrix of the 90◦-rotation:

$$
\det\left(\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] - tI_2\right)
$$

No eigenvalues, no eigenvectors

A scalar t is an eigenvalue of A \blacklozenge $det(A - tI_n)$

A is the standard matrix of linear operator T

 (n) : Characteristic polynomial of A linear operator T

 C_n) = 0: Characteristic equation of A linear operator T

Eigenvalues are the roots of characteristic polynomial or solutions of characteristic equation.

- In general, a matrix A and RREF of A have different characteristic polynomials. Different Eigenvalues
- Similar matrices have the same characteristic polynomials **be Stade as The same Eigenvalues**

$$
det(B - tI) = det(P^{-1}AP - P^{-1}(tI)P)
$$

=
$$
det(P^{-1}(A - tI)P)
$$

=
$$
det(P^{-1})det(A - tI)det(P)
$$

=
$$
\left(\frac{1}{det(P)}\right)det(A - tI)det(P) = det(A - tI)
$$

- Question: What is the order of the characteristic polynomial of an *nn* matrix *A*?
	- The characteristic polynomial of an $n \times n$ matrix is indeed a polynomial with degree *n*
	- Consider det($A tI_n$)

- Question: What is the number of eigenvalues of an *n n* matrix *A*?
	- Fact: An *n* x *n* matrix A have less than or equal to *n* eigenvalues
	- Consider complex roots and multiple roots

Characteristic Polynomial vs. Eigenspace

• Characteristic polynomial of A is

• The eigenvalues of an upper triangular matrix are its diagonal entries.

Characteristic Polynomial:

$$
\begin{bmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{bmatrix} \qquad \det \begin{bmatrix} a-t & * & * & * \\ 0 & b-t & * \\ 0 & 0 & c-t \end{bmatrix}
$$

$$
= (a-t)(b-t)(c-t)
$$

The determinant of an upper triangular matrix is the product of its diagonal entries.

Diagonalization (Chapter 5.3)

Review

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
	- v is an eigenvector of A excluding zero vector
	- \bullet λ is an eigenvalue of A that corresponds to
- Eigenvectors corresponding to λ are nonzero solution of $(A - \lambda I_n)\mathbf{v} = \mathbf{0}$

Eigenvectors

corresponding to λ

Eigenspace of λ :

 $= Null(A - \lambda I_n) - \{0\}$ eigenspace

Eigenvectors

corresponding to $\lambda + \{0\}$

• A scalar t is an eigenvalue of A

$$
\det(A - tI_n) = 0
$$

Review

• Characteristic polynomial of A is

Outline

- An nxn matrix A is called diagonalizable if $^{\rm -1}$
	- D: nxn diagonal matrix
	- P: nxn invertible matrix
- Is a matrix A diagonalizable?
	- If yes, find D and P

$$
P = [p_1 \cdots p_n]
$$

\nDiagonalizable
\n• If A is diagonalizable
\n
$$
A = PDP^{-1} \longrightarrow AP = PD
$$
\n
$$
AP = [Ap_1 \cdots Ap_n]
$$
\n
$$
PD = [d_1e_1 \cdots d_ne_n]
$$
\n
$$
PD = P[d_1e_1 \cdots dp_ne_n]
$$
\n
$$
= [Pd_1e_1 \cdots Pd_ne_n]
$$
\n
$$
= [d_1Pe_1 \cdots d_ne_n]
$$
\n
$$
= [d_1Pe_1 \cdots d_ne_n]
$$
\n
$$
= [d_1P_1 \cdots d_np_n] \longrightarrow Ap_i = d_ip_i
$$

 $_i$ is an eigenvector of A corresponding to eigenvalue d_i

How to diagonalize a matrix A?

- Find *n* independent eigenvectors corresponding if Step 1: $\frac{n \times n \times n}{n}$ and form an invertible P
- Step 2: The eigenvalues corresponding to the eigenvectors in P form the diagonal matrix *D.*

Diagonalizable

A set of eigenvectors that correspond to distinct eigenvalues is linearly independent.

Diagonalizable

A set of eigenvectors that correspond to distinct eigenvalues is linearly independent.

Diagonalizable - Example • Diagonalize a given matrix 100 0 12 0 21 *A* $\sqrt{2}$ Ξ. $= \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$

characteristic polynomial is (*^t* + 1) 2 (*t* _____ $-3)$ \longrightarrow eigenvalues: 3, -1

eigenvalue 3 eigenvalue 1 $B_1 =$ $\overline{0}$ 1 1 $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ $\left\{\begin{array}{c} 1 \\ 1 \end{array}\right\}$ $B_2 =$ $1 \mid 0$ 0 |,| 1 0 | | -1 $\left[\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\1\end{bmatrix}\right]$ $\left\{ \left| \begin{array}{c} 0 \\ 0 \end{array} \right|, \left| \begin{array}{c} 1 \\ -1 \end{array} \right| \right\}$ $\left\lfloor \left\lfloor 0 \right\rfloor \left\lfloor -1 \right\rfloor \right\rfloor$ $A = PDP^{-1}$, where 01 0 10 1 $1 \quad 0 \quad -1$ *P* $= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ 30 0 $0-\!10$ $0 \quad 0 \quad -1$ *D* $=\begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Test for a Diagonalizable Matrix

• An *n* x *n* matrix *A* is diagonalizable if and only if both the following conditions are met.

The characteristic polynomial of *A* factors into a product of linear factors.

 σ_n) Factorization $\overline{1}$ $^{m_1}(t-\lambda_2$ m_2 ... $(t-\lambda_k$ $m_{\bm{k}}$

For each eigenvalue λ of A, the multiplicity of λ algebraic multiplicity) equals the dimension of the corresponding eigenspace (geometric multiplicity).

Independent Eigenvectors

An *n* x *n* matrix *A* is diagonalizable

=

The eigenvectors of A can form a basis for Rⁿ.

=

 $det(A - tI_n)$ 1 and n_2 and n_k Eigenspace: $d_1=m_1$ $d_2^{\vphantom{2}}=m_2$ …… $d_k^{\vphantom{2}}=m_k$ $\overline{1}$ $\frac{m_1}{t-\lambda_2}$ $\frac{m_2}{\ldots}$ ($t-\lambda_k$ $\boldsymbol{m}_{\boldsymbol{k}}$ Eigenvalue: (dimension) $_{1}$ т и $_{2}$ т … т и $_{k}$

Geometric Meaning of Diagonalization $A = PDP^{-1}$

Red and blue axes correspond to the directions of two eigenvectors

How to Cope with Nondiagonalizable Matrices

Question: If A is not diagonizable (i.e., $A \neq$ $^{\rm -1}$, can we write $\mathrm{A} = U T U^{-1}$, where T is "near diagonal"?

Schur Decomposition: Any square matrix A can be written as $A = UTU^{-1}$, where U is an "orthonormal" matrix" and T is "upper triangular" with eigenvalues on the diagonal.

$$
T = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix}
$$

Jordan Normal Form

Theorem: For every n x n matrix A, there exists an $^{-1}AO = I$ where J is in Jordan Normal Form.

Jordan Normal Form

Application of Diagonalization

• If A is diagonalizable,

$$
A = PDP^{-1} \longrightarrow A^m = PD^m P^{-1}
$$

• Example: .85 (Study) (IG) 197 .03 Study Study IG .15 .85 .15Study IG .85 .85 .15.15 .03 .97 .727 .273 ………….15

 $\begin{bmatrix} .727 \\ .273 \end{bmatrix}$ $\begin{bmatrix} .85 & .03 \\ .15 & .97 \end{bmatrix}$ $\begin{bmatrix} .85 \\ .15 \end{bmatrix}$ $\begin{bmatrix} .85 & .03 \\ .15 & .97 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ -1 \longrightarrow \wedge m \longrightarrow \wedge \wedge m \wedge -1

Diagonalizable

• Diagonalize a given matrix

$$
\det (A - tI_2)
$$
\n
$$
A - .82I_2 \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \rightarrow P = \begin{bmatrix} -1 & 1 \\ 1 & 5 \end{bmatrix}
$$
\n
$$
A - I_2 \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -.2 \\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{p}_2 = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \xrightarrow{\text{(invertible)}}
$$
\n
$$
D = \begin{bmatrix} .82 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
A = PDP^{-1} \text{ where } P = \begin{bmatrix} -1 & 1 \\ 1 & 5 \end{bmatrix}, D = \begin{bmatrix} .82 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
A^m = P D^m P^{-1}
$$

$$
= \begin{bmatrix} -1 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} (.82)^m & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 5 \end{bmatrix}^{-1}
$$

$$
= \frac{1}{6} \begin{bmatrix} 1 + 5(.82)^m & 1 - (.82)^m \\ 5 - 5(.82)^m & 5 + (.82)^m \end{bmatrix}
$$

When $m \to \infty$, The beginning $m = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ condition does not influence. $\begin{bmatrix} 1/6 & 1/6 \\ 5/6 & 5/6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 5/6 \end{bmatrix} \begin{bmatrix} 1/6 & 1/6 \\ 5/6 & 5/6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 5/6 \end{bmatrix}$

Diagonalization of linear operators* (Chapter 5.4)

Diagonalization of Linear Operator

• Example 1:
$$
T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 8x_1 + 9x_2 \\ -6x_1 - 7x_2 \\ 3x_1 + 3x_2 - x_3 \end{bmatrix}
$$

The standard matrix is
$$
A = \begin{bmatrix} 8 & -t & 9 & 0 \\ -6 & -7 & -t & 0 \\ 3 & 3 & -1 \end{bmatrix}
$$

 \Rightarrow the characteristic polynomial is $-(t+1)^2(t)$ $-2)$

Eigenvalue -1: Eigenvalue 2:

\n
$$
\mathcal{B}_1 = \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \qquad \mathcal{B}_2 = \left\{ \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} \right\} \qquad \Rightarrow \mathcal{B}_1 \cup \mathcal{B}_2 \text{ is a basis of } \mathcal{R}^3
$$

Diagonalization of Linear Operator

• Example 2:
$$
T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_1 + x_2 + 2x_3 \\ x_1 - x_2 \\ 0 \end{bmatrix}
$$

The standard matrix is $A = \begin{bmatrix} -1 & 1 & 2 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

$$
\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

is and and a fact the contract of the contract
In the contract of the contract

$$
x_1 - x_2 = 0 \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}
$$

$$
[T] = B[T]_{\mathcal{B}}B^{-1}
$$

$$
[T]_{\mathcal{B}} = B^{-1}[T]B
$$

similar
similar
similar

• Example: reflection operator *T* about the line *y* = (1/2)*^x*

Diagonalization of Linear Operator

• Reference: Chapter 5.4

Diagonalization of Linear Operator

• If a linear operator T is diagonalizable

