Chapter 4 Subspaces and Their Properties

除了標註※之簡報外,其餘採用李宏毅教授之投影片教材

Subspaces (Chapter 4.1)

Subspace

- A vector set V is called a subspace of a vector space W if it has the following three properties:
- 1. The zero vector **0** belongs to V
- 2. If **u** and **w** belong to V, then **u+w** belongs to V

Closed under (vector) addition

 If u belongs to V, and c is a scalar, then cu belongs to V
 Closed under scalar multiplication

2+3 is linear combination

Examples

$$W = \left\{ \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \in \mathcal{R}^3 : 6w_1 - 5w_2 + 4w_3 = 0 \right\} \quad \begin{array}{c} \text{Subspace of} \\ \mathcal{R}^3 ? \end{array}$$
Property 1. $\mathbf{0} \in W \quad \textbf{matrix} \quad \mathbf{6}(0) - \mathbf{5}(0) + \mathbf{4}(0) = 0$

Property 2. **u**, $\mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$, $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T$ $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 & u_2 + v_1 & u_3 + v_1 \end{bmatrix}^T$ $6(u_1 + v_1) - 5(u_2 + v_2) + 4(u_3 + v_3)$ $= (6u_1 - 5u_2 + 4u_3) + (6v_1 - 5v_2 + 4v_3) = 0 + 0 = 0$ Property 3. $\mathbf{u} \in W \Rightarrow c\mathbf{u} \in W$

$$6(cu_1) - 5(cu_2) + 4(cu_3) = c(6u_1 - 5u_2 + 4u_3) = c0 = 0$$

Examples

 $V = \{cw \mid c \in \mathcal{R}\}$ Subspace?

$$S_{1} = \left\{ \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \in \mathcal{R}^{2} : w_{1} \ge 0 \text{ and } w_{2} \ge 0 \right\}$$

Subspace? $\mathbf{u} \in S_{1}, \mathbf{u} \neq \mathbf{0} \Longrightarrow -\mathbf{u} \notin S_{1}$
$$S_{2} = \left\{ \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \in \mathcal{R}^{2} : w_{1}^{2} = w_{2}^{2} \right\}$$

Subspace?
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \in S_{2} \text{ but } \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \notin S_{2}$$

 \mathscr{R}^n Subspace? {0} Subspace? zero subspace

• The span of a vector set is a subspace Let $S = \{w_1, w_2, \dots, w_k\}$ V = Span S

Property 1. $\mathbf{0} \in V$

Property 2. $u, v \in V, u + v \in V$

Property 3. $u \in V$, $cu \in V$

Column Space and Row Space $A = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 4 & 0 & -8 \\ 0 & 0 & 2 & 6 \end{bmatrix}$

• Column space of an $m \times n$ matrix A is the span of its columns. It is denoted as Col A.

$$A \in \mathcal{R}^{m \times n} \Rightarrow \operatorname{Col} A = \{A\mathbf{v} : \mathbf{v} \in \mathcal{R}^n\}$$

If matrix A represents a function A: $\mathscr{R}^n \to \mathscr{R}^m$

Col A is the range of the function (a subspace in \mathcal{R}^m)

• Row space of an $m \times n$ matrix A is the span of its rows. It is denoted as Row A.

Row $A = \text{Col } A^T$ (Row A is a subspace in \mathcal{R}^n)

Column Space = Range

• The range of a linear transformation is the same as the column space of its matrix.

$$\frac{\text{Linear Transformation}}{T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right) = \begin{bmatrix} x_1 + 2x_2 + x_3 - x_4 \\ 2x_1 + 4x_2 - 8x_4 \\ 2x_3 + 6x_4 \end{bmatrix}$$
Standard matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 4 & 0 & -8 \\ 0 & 0 & 2 & 6 \end{bmatrix} \Rightarrow \text{Range of } T =$$

$$\text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -8 \\ 6 \end{bmatrix} \right\}$$

RREF

- Original Matrix A vs. its RREF R
 - Columns:
 - The relations between the columns are the same.
 - The span of the columns are different.

 $Col A \neq Col R$

- Rows:
 - The relations between the rows are changed.
 - The span of the rows are the same.

Row A = Row R

Ax = b have a solution (consistent)

b is the linear combination of columns of A

b is in the span of the columns of A

b is in Col A

$$A = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 4 & 0 & -8 \\ 0 & 0 & 2 & 6 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \in \operatorname{Col} A? \quad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \in \operatorname{Col} A?$$

Solving Ax = u RREF([A u]) = $\begin{bmatrix} 1 & 2 & 0 & -4 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ RREF([A v]) = $\begin{bmatrix} 1 & 2 & 0 & -4 & 0.5 \\ 0 & 0 & 1 & 3 & 1.5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Null Space

• The null space of an $m \times n$ matrix A is the solution set of Ax=0. It is denoted as Null A.

Null $A = \{ \mathbf{v} \in \mathcal{R}^n : A\mathbf{v} = \mathbf{0} \}$

The solution set of the homogeneous linear equations $A\mathbf{v} = \mathbf{0}$.

• Null A is a subspace in \mathcal{R}^n

Null Space - Example

$$T: \mathcal{R}^3 \to \mathcal{R}^2 \text{ with } T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + 2x_3 \\ -x_1 + x_2 - 3x_3 \end{bmatrix}$$

Find a generating set for the null space of *T*.

The null space of *T* is the set of solutions to $A\mathbf{x} = \mathbf{0}$

a generating set for the null space

Basis (Chapter 4.2)

Basis

Why nonzero?

 Let V be a nonzero subspace of Rⁿ. A basis B for V is a linearly independent generating set of V.

$$\{\mathbf{e}_{1}, \mathbf{e}_{2}, ..., \mathbf{e}_{n}\} \text{ is a basis for } \mathcal{R}^{n}.$$

$$1. \{\mathbf{e}_{1}, \mathbf{e}_{2}, ..., \mathbf{e}_{n}\} \text{ is independent}$$

$$2. \{\mathbf{e}_{1}, \mathbf{e}_{2}, ..., \mathbf{e}_{n}\} \text{ generates } \mathcal{R}^{n}.$$

$$\{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\1\end{bmatrix}\} \text{ is a basis for } \mathcal{R}^{2}$$

$$\begin{bmatrix}1\\-1\end{bmatrix}, \begin{bmatrix}1\\-1\end{bmatrix}\} \{\begin{bmatrix}1\\3\end{bmatrix}, \begin{bmatrix}-3\\1\end{bmatrix}\} \{\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}1\\2\end{bmatrix}\} \text{ any two independent} \text{ vectors form a basis for } \mathcal{R}^{2}$$

Basis

• The pivot columns of a matrix form a basis for its column space.

$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

pivot columns
$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Property

• (a) S is contained in Span S

Basis is always in its subspace

- (b) If a finite set S' is contained in Span S, then Span S' is also contained in Span S
 - Because Span S is a subspace

Ζ

 (c) For any vector z, Span S = Span SU{z} if and only if z belongs to the Span S

Theorem

- 1. A basis is the smallest generating set.
- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
 - The number of vectors in a basis for a nonzero subspace V is called dimension of V (dim V).

Theorem 3

Every basis of \mathscr{R}^n has n vectors.

- The number of vectors in a basis for a subspace V is called the dimension of V, and is denoted dim V
 - The dimension of zero subspace is 0

Example

More from Theorems

Any two bases for a subspace contain the same number of vectors.

 \mathscr{R}^m have a basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m\}$ All bases have m vectors

A basis is the smallest generating set.

A vector set generates \mathcal{R}^m must contain at least *m* vectors.

Because a basis is the smallest generating set

Any other generating set has at least *m* vectors.

dim $\mathcal{R}^m = m$

A basis is the largest independent set in the subspace.

Any independent vector set in \mathcal{R}^m contain at most m vectors.

Rank

```
Matrix A is full rank
if Rank A = min(m,n)
```

Matrix A is *rank deficient* if Rank A < min(m,n)

- Given a mxn matrix A:
 - Rank $A \le \min(m, n)$
 - Because "the columns of A are independent" is equivalent to "rank A = n"
 - If m < n, the columns of A is dependent.

[* * * *]	([*] [*] [*] [*])
* * * *	} * , * , * , * , * }
* * * *	([*] [*] [*] [*])
3 X 4	A matrix set has 4 vectors
Rank A \leq 3	belonging to R ³ is dependent

In R^m, you cannot find more than m vectors that are independent.

Theorem 1

A basis is the smallest generating set.

If there is a generating set S for subspace V,

The size of basis for V is smaller than or equal to S.

Reduction Theorem

There is a basis containing in any generating set S.

S can be reduced to a basis for V by removing some vectors.

Theorem 1 – Reduction Theorem

所有的 generating set 心中都有一個 basis

S can be reduced to a basis for V by removing some vectors.

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a generating set of subspace V

Subspace V = Span S Let $A = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k].$ = Col A

Theorem 1 – Reduction Theorem

所有的 generating set 心中都有一個 basis

Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k *independent* vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space

S can be extended to a basis by adding more vectors

Theorem 2 – Extension Theorem

Independent set: 我不是一個 basis 就是正在成為一個 basis

There is a subspace V Given a independent vector set S (elements of S are in V) If Span S = V, then S is a basis If Span S \neq V, find v₁ in V, but not in Span S

 $S = S \cup \{v_1\}$ is still an independent set

If Span S = V, then S is a basis If Span S \neq V, find v₂ in V, but not in Span S

 $S = S \cup \{v_2\}$ is still an independent set

You will find the basis in the end.

Textbook P245

 Any two bases of a subspace V contain the same number of vectors

Theorem 3

Suppose { \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_k } and { \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_p } are two bases of *V*. Let $A = [\mathbf{u}_1 \, \mathbf{u}_2 \cdots \mathbf{u}_k]$ and $B = [\mathbf{w}_1 \, \mathbf{w}_2 \cdots \mathbf{w}_p]$. Since { \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_k } spans *V*, $\exists \mathbf{c}_i \in \mathcal{R}^k$ s.t. $A\mathbf{c}_i = \mathbf{w}_i$ for all $i \Rightarrow A[\mathbf{c}_1 \, \mathbf{c}_2 \cdots \mathbf{c}_p] = [\mathbf{w}_1 \, \mathbf{w}_2 \cdots \mathbf{w}_p] \Rightarrow AC = B$ Suppose $C\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} \in \mathcal{R}^p \Rightarrow AC\mathbf{x} = B\mathbf{x} = \mathbf{0}$ B is independent vector set $\Rightarrow x = \mathbf{0} \Rightarrow \mathbf{c}_1 \, \mathbf{c}_2 \cdots \mathbf{c}_p$ are independent $\mathbf{c}_i \in \mathcal{R}^k \Rightarrow p \le k$

Reversing the roles of the two bases one has $k \le p \Longrightarrow p = k$.

Theorem 4.9

- If V and W are subspaces of \mathbb{R}^n with V contained in W, then dim V \leq dim W
- If dim V = dim W, V=W
- Proof:

 $\rm B_{\rm V}$ is a basis of V, V in W, $\rm B_{\rm V}$ in W

 \Rightarrow B_v is an independent set in W

By extension theorem, B_V is in the basis of W \implies dim V \leq dim W If dim V = dim W =k

 B_v is a linear independent set in W, with k elements

It is also the span of W

R³ is the only 3-dim subspace of itself

Concluding Remarks

- 1. A basis is the smallest generation set.
- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
 - The number of vectors in a basis for a nonzero subspace V is called dimension of V (dim V).

Confirming that a set is a Basis (Chapter 4.2) Intuitive Way

 Definition: A basis B for V is an <u>independent</u> <u>generating set</u> of V.

$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathcal{R}^3 : v_1 - v_2 + 2v_3 = 0 \right\} \quad \begin{array}{c} \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\} \\ \text{Is } \mathcal{C} \text{ a basis of } V? \end{array}$$

Independent? yes Generating set? difficult

$$C = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ generates V}$$

Another way Assume that dim V = k. Suppose S is a subset of V with k vectors

If S is independent

S is basis

By the extension theorem, we can add more vector into S to form a basis.

However, S already have k vectors, so it is already a basis.

If S is a generating set S is basis

By the reduction theorem, we can remove some vector from S to form a basis.

However, S already have k vectors, so it is already a basis.
Example

• Is **B** a basis of V?

$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \in \mathcal{R}^4 : v_1 + v_2 + v_4 = 0 \right\} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} \right\}$$

Independent set in V? yes

Dim V = ? 3
$$\square$$
 is a basis of V.

Example

Dimension of Basis (Chapter 4.3)

$$Col A = Range$$

• Basis: The pivot columns of A form a basis for Col A.

• Dimension:

Dim (Col A) = number of pivot columns = rank A

Rank A (revisit)

Maximum number of Independent Columns

Number of Pivot Columns

Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space

Dimension of the range of A

Row A

• Basis: Nonzero rows of RREF(A)

$$A = \begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ -5 & -2 & 5 & -5 & -3 \\ -2 & -1 & 3 & 2 & -10 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \mathsf{REF}$$

Row A = Row R

(The elementary row operations do not change the row space.)

a basis of Row R

()

- = a basis of Row A
- Dimension: Dim (Row A) = Number of Nonzero rows

= Rank A

Rank A (revisit)

Maximum number of Independent Columns

Number of Pivot Column

Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space

= Dim (Row A)

Dimension of the range of A

= Dim (Col A^{T})

• Proof

Example 2, P256

Jull A	A =	$\begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ -5 - 2 & 5 & -5 & -3 \end{bmatrix}$	R =	$\begin{bmatrix} 10 & 1 & 0 & 1 \\ 01 - 50 & 4 \\ 00 & 0 & 1 - 2 \end{bmatrix}$
Basis		$\begin{bmatrix} 2 & 2 & 3 & 3 \\ -2 & -1 & 3 & 2 & -10 \end{bmatrix}$		

• Basis:

 \mathbb{N}

- Solving Ax = 0
- Each free variable in the parametric representation of the general solution is multiplied by a vector.
- The vectors form the basis.

$$\begin{array}{c} x_{1} + x_{3} + x_{5} = 0 \\ x_{2} - 5x_{3} + 4x_{5} = 0 \\ x_{4} - 2x_{5} = 0 \end{array} \xrightarrow{x_{2}} x_{3} = x_{3} \text{ (free)} \\ x_{4} = 2x_{5} \\ x_{5} = x_{5} \text{ (free)} \end{array} \xrightarrow{x_{1}} x_{1} \\ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{array} = x_{3} \begin{bmatrix} -1 \\ 5 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{5} \begin{bmatrix} -1 \\ -4 \\ 0 \\ 2 \\ 1 \end{bmatrix} \\ x_{5} = x_{5} \text{ (free)} \end{array}$$

Null A

- Basis:
 - Solving Ax = 0
 - Each free variable in the parametric representation of the general solution is multiplied by a vector.
 - The vectors form the basis.
- Dimension:

Dim (Null A) = number of free variables = Nullity A

= n - Rank A

Dimension Theorem

Four fundamental subspaces of $A: \mathbb{R}^n \to \mathbb{R}^m$

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$

Solutions of Ax = bZero, One, Infinity ...

The Meaning of Matrix Transpose

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$A : \mathbb{R}^{n} \to \mathbb{R}^{m} \qquad A^{T} : \mathbb{R}^{m} \to \mathbb{R}^{n}$$

$$\chi \longrightarrow A\chi$$

$$Ax \cdot y = x \cdot A^{\mathsf{T}}y$$

Preservation of dot product in Rⁿ and R^m

Finite vs. Infinite-dimension Vector Space

- Care has to be taken when dealing with infinitedimension vector spaces.
- E.g. Consider the "vector space" containing all polynomial functions with basis P={1, x , x², x³, ...}

Is it really a vector space?

No!

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

which does not converge to a polynomial function.

Coordinate System (Chapter 4.4)

Coordinate System

- Each coordinate system is a "viewpoint" for vector representation.
 - The same vector is represented differently in different coordinate systems.
 - Different vectors can have the same representation in different coordinate systems.
- A vector set *B* can be considered as a coordinate system for Rⁿ if:
 - 1. The vector set $\boldsymbol{\mathcal{B}}$ spans the R^n
 - 2. The vector set ${\boldsymbol{\mathcal{B}}}$ is independent

 $\boldsymbol{\mathscr{B}}$ is a basis of R^n

Coordinate System

• Let vector set $\mathcal{B} = \{u_1, u_2, \cdots, u_n\}$ be a basis for a subspace \mathbb{R}^n

• For any v in Rⁿ, there are unique scalars c_1, c_2, \dots, c_n such that $v = c_1u_1 + c_2u_2 + \dots + c_nu_n$

$$\mathscr{B}$$
-coordinate vector of v:
 $\begin{bmatrix} v \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathcal{R}^n$
(用 \mathscr{B} 的觀點來看 v)

 $\mathcal{E}=\{e_1, e_2, \cdots, e_n\}$ (standard vectors) $v = [v]_{\mathcal{E}}$ \mathcal{E} is Cartesian coordinate system (直角坐標系)

Coordinate System

- A vector set *B* can be considered as a coordinate system for Rⁿ if:
- 1. The vector set ${\boldsymbol{\mathscr{B}}}$ spans the ${\mathsf{R}}^{\mathsf{n}}$

Every vector should have a representation

• 2. The vector set ${\boldsymbol{\mathcal{B}}}$ is independent

 ${\boldsymbol{\mathscr{B}}}$ is a basis of ${\sf R}^{\sf n}$

Why Basis?

- Let vector set $\mathcal{B} = \{u_1, u_2, \dots, u_k\}$ be independent.
- Any vector v in Span \mathcal{B} can be uniquely represented as a linear combination of the vectors in \mathcal{B} .
- That is, there are unique scalars a_1, a_2, \dots, a_k such that $v = a_1u_1 + a_2u_2 + \dots + a_ku_k$
- Proof:

Unique? $v = a_1u_1 + a_2u_2 + \dots + a_ku_k$ $v = b_1u_1 + b_2u_2 + \dots + b_ku_k$ $(a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_k - b_k)u_k = 0$ *B* is independent $a_1 - b_1 = a_2 - b_2 = \dots = a_k - b_k = 0$

Change Coordinate (Chapter 4.4)

Coordinate System

• Let vector set $\mathcal{B} = \{u_1, u_2, \cdots, u_n\}$ be a basis for a subspace \mathbb{R}^n

• For any v in Rⁿ, there are unique scalars c_1, c_2, \dots, c_n such that $v = c_1u_1 + c_2u_2 + \dots + c_nu_n$

$$\mathscr{B}$$
-coordinate vector of v:
 $\begin{bmatrix} v \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathcal{R}^n$
(用 \mathscr{B} 的觀點來看 v)

Other System \rightarrow Cartesian

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\} \quad [v]_{\mathcal{B}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$
$$v = 3 \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 6 \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} 7\\-7\\5 \end{bmatrix}$$
$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\} \quad [u]_{\mathcal{C}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$
$$u = 3 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + 6 \begin{bmatrix} 4\\5\\6 \end{bmatrix} - 2 \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \begin{bmatrix} 13\\20\\27 \end{bmatrix}$$

Other System \rightarrow Cartesian

- Let vector set $\mathcal{B}=\{u_1, u_2, \cdots, u_n\}$ be a basis for a subspace \mathbb{R}^n
- Matrix $B = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$

Given $[v]_{\mathcal{B}}$, how to find v? $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

$$v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

 $= B[v]_{\mathcal{B}}$ (matrix-vector product)

Cartesian \rightarrow Other System

$$v = \begin{bmatrix} 1\\ -4\\ 4 \end{bmatrix} \quad \mathscr{B} = \left\{ \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix} \right\} \quad \text{find } [\mathbf{v}]_{\mathscr{B}}$$
$$c_1 \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix} = \begin{bmatrix} 1\\ -4\\ 4 \end{bmatrix} \quad [\mathbf{v}]_{\mathscr{B}} = \begin{bmatrix} c_1\\ c_2\\ c_3 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 1 & 1\\ 1 & -1 & 2\\ 1 & 1 & 2 \end{bmatrix} \quad \text{B is invertible (?)} \quad \text{independent}$$
$$B[v]_{\mathscr{B}} = v \quad \longrightarrow \quad [v]_{\mathscr{B}} = B^{-1}v = \begin{bmatrix} -6\\ 4\\ 3 \end{bmatrix}$$

Let $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ be a basis of \mathbb{R}^n . $[b_i]_{\mathcal{B}} = ?e_i$ (Standard vector)

Equation of ellipse

Equation of ellipse

Use another coordinate system

What is the equation of the ellipse in the new coordinate system?

$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1$$

Equation of ellipse

$$\mathcal{B} = \left\{ \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \right\} \quad \mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1 \Rightarrow \frac{\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{3^2} + \frac{\left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{2^2} = 1$$

$$\begin{bmatrix} x'\\y' \end{bmatrix} = B^{-1} \begin{bmatrix} x\\y \end{bmatrix}$$

Linear Function in Coordinate System (Chapter 4.5)

Basic Idea

Basic Idea

Sometimes a function can be complex

• T: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

Sometimes a function can be complex

• T: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

special case: ${\boldsymbol{\mathcal L}}$ is the *horizontal axis*

Describing the function in another coordinate system

• T: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

In another coordinate system ${\boldsymbol{\mathcal{B}}}$

Describing the function in another coordinate system

• T: reflection about a line ${m L}$ through the origin in ${m R}^2$

Linear Operator vs. Matrix

Corresponding matrix of operator T depends on the coordinate system

$$[T] = B[T]_{\mathcal{B}}B^{-1}$$

$$[T]_{\mathcal{B}} = B^{-1}[T]B$$
similar
similar

• Example: reflection operator T about the line y = (1/2)x

• Example: reflection operator T about the line y = (1/2)x

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 0.4 & 0.2 \\ -0.2 & 0.4 \end{bmatrix} B = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

$$c_{2} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix} \qquad \underbrace{v = (1/2)x}_{C_{1}} \qquad \begin{bmatrix} v \end{bmatrix}_{\mathscr{B}} \qquad \begin{bmatrix} T \end{bmatrix}_{\mathscr{B}} \qquad \begin{bmatrix} T(v) \end{bmatrix}_{\mathscr{B}}$$

$$T\left(\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}\right) = \begin{bmatrix}3x_{1}+x_{3}\\x_{1}+x_{2}\\-x_{1}-x_{2}+3x_{3}\end{bmatrix} \quad \mathcal{B} = \left\{\begin{bmatrix}1\\1\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\1\\2\\1\\1\end{bmatrix}\right\}$$
$$\begin{bmatrix}T]_{\mathfrak{B}} = ?$$
$$\begin{bmatrix}T]_{\mathfrak{B}} = ?$$
$$\begin{bmatrix}T]_{\mathfrak{B}} = ?$$
$$\begin{bmatrix}T(v)]_{\mathfrak{B}} = B^{-1}[T]B$$
$$\begin{bmatrix}T]_{\mathfrak{B}} = B^{-1}[T]B$$
$$B^{-1}$$
$$B$$

Example (P279) Determine T

$$[T]_{\mathcal{B}} = \begin{bmatrix} B^{-1}c_1 & B^{-1}c_2 & B^{-1}c_3 \end{bmatrix} = B^{-1}C$$
$$[T] = B[T]_{\mathcal{B}}B^{-1} = BB^{-1}CB^{-1} = CB^{-1}$$

Conclusion

