Chapter 4

Subspaces and Their Properties
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Subspaces
(Chapter 4.1)



Subspace

e A vector set V is called a subspace of a vector
space W if it has the following three properties:

* 1. The zero vector 0 belongs to V
* 2. If uand w belong to V, then u+w belongs to V

Closed under (vector) addition

* 3. If ubelongsto V, and cis a scalar, then cu

belongstoV e
5 Closed under scalar multiplication
2+3 is linear combination



Examples

aun 7] )
w1
W=1<| w | €R?: 6w —bwy+4ws =0, Subspace of
L | W3 | ) 923?

Property 1.0 €¢ W ‘ 6(0) —5(0) +4(0)=0
Property2.u,ve W= u+tve W

u=[u; u, us1,v=[vy v, v31" usv=[u+v; u,+v, ugtv, |7

6(u +v,) — 5(u,+v,) + 4(us+v,)

=(6u, —5u, +4uy ) +(6v,—5v,+4v;) =0+0=0
Property.ue W=cue W

6(cu,) — 5(cu,) + 4(cu;) =c(6bu, —5u,+4u;) =c0=0



Examples

V={cw|ce R} Subspace?

o]
o

gzn

w1
w9

]ERzzwlzoandwgz()}

Subspace? ueS,uz0=-ugs,
Z;IERZ:w%:wg} 1 1
Subspace? m {_ﬂ S, but H{_l }5 S,

Subspace? {0} Subspace? zero subspace



Subspace vs. Span

* The span of a vector set is a subspace

Let S = {wy,wy, -, w,}  V =Span§
Property1.0 €V

Property2.u,veV,u+veVv

Property3.uel/,cuel

I
—

Next lecture



Column Space and Row Space

1 2
A= 2 4
0 0

* Column space of an m X n matrix A is the span of
its columns. It is denoted as Col A.

AeR™"™ = Col A={Av:v e R"}

If matrix A represents a function A: R*— R™
Col A is the range of the function
(a subspace in R™)

* Row space of an m X n matrix A is the span of its
rows. It is denoted as Row A.

Row A = Col AT
(Row A is a subspace in ")

o O




Column Space = Range

* The range of a linear transformation is the same as

the column space of its matrix.

Linear Transformation

Standard matrix
1 2 1

A= 2 4 0
0 0 2

1
—&

6

T

L1
)
L3
L4

Span

—> Range of T =

1+ 229 + 13 — X4
2561 + 433‘2 — 8334
2333 + 6:134

=~ DO
—_




RREF

* Original Matrix A vs. its RREF R
* Columns:

* The relations between the columns are the
same.

* The span of the columns are different.
ColA # ColR
* Rows:
* The relations between the rows are changed.
* The span of the rows are the same.

Row A = Row R



Consistent

Ax = b have a solution (consistent)

b is the linear combination of columns of A

b is in the span of the columns of A

bisin Col A
1 2 1 -1
A=|2 4 0 -8
00 2 6
Solving Ax = u
1 2 0
RREF([Au])=| 0 0 1
0 0 0

u=

2 2
1 |eColA? v=|1
1 3

RREF([A V]) =

o O =

O = O

-4 0.5
3 1.5
0 O




Null Space

* The null space of an m X n matrix A is the solution
set of Ax=0. It is denoted as Null A.

NullA={veR": Av=0}

The solution set of the homogeneous linear
equations Av = 0.

* Null A is a subspace in R"

A linear function is
one-to-one

)
<4

Null space only
contain 0




Null Space - Example

L

T - R3S R2with T | | _ | T2t 2
N —T1 + 29 — 323
3

Find a generating set for the null space of T.

The null space of T is the set of solutions to Ax =0

a=|2 7 2 e[

X1 = Xy X1 1
W ‘ lX2:| = Xy [1]
r3 =0 X3 0

a generating set for the null space



Basis
(Chapter 4.2)



Basis

* Let V be a nonzero subspace of R". A basis B for V is
a linearly independent generating set of V.

{e,, e, ..., e }is abasis for R".
1.{e,, e, ..., e }is independent

2.{e;, e, ..., e} generates R".

1] 1071, . . P
{_O] , [1]} is a basis for R

(VY 1 G L L e st




Basis

* The pivot columns of a matrix form a basis for its

column space.

1| 2 (=1l 2|1 2°
1] =2 1123 6 RREF
21 4 |=3|l2|l0 3| ° —
=3 -6 | 2J[0f3 9 |
pivot columns
([ 1

Col A = Span <

o O O =

SO O

o O = O

O = O O

O NN

—1
0
1
0

)
-3
2
0




Property

 (a) Sis contained in Span S Basis is always in
its subspace

e (b) If afinite set S’ is contained in Span S, then Span S’ is
also contained in Span S

. Span S
e Because Span S is a subspace a
Span §’

* (c) For any vector z, Span S = Span SU{z} if and only if z
belongs to the Span S




Theorem

* 1. A basis is the smallest generating set.

e 2. A basis is the largest independent vector set in
the subspace.

* 3. Any two bases for a subspace contain the same
number of vectors.

* The number of vectors in a basis for a nonzero
subspace V is called dimension of V (dim V).



Every basis of R"
* The number of vectors in a basis for a subspace V is
called the dimension of V, and is denoted dim V

* The dimension of zero subspace is O

A A

dim R?=2 dim R3=3




7] )

L1

2 ’ Find dim V
s € R* : ar—23%r+dxs—bxr=—-=0, FINA diM

T4 | X1 = 3x2 - 5x3 +6x4 } dim V — 3

[ 319 — brg + 624 |

N ! /

Basis? Independent vector set that
generates V



More from Theorems

Any two bases for a subspace contain the same number

of vectors.

R" have a basis {e, e,, ..., e,} All bases have m vectors
dim R" =m

A basis is the smallest generating set.

A vector set generates ™ must contain at least m vectors.
Because a basis is the smallest generating set
Any other generating set has at least m vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in ™ contain at most m vectors.



Independent

All columns are
independent

Every columniis a
pivot column

Every column in
RREF(A) is standard

vector.

3X4

* * * *
[* * * *]
* * * *

Columns are Iine*
independent

RREFI C:';mnot be a
lplvot column

1 0 0

0 1 0 =

0 0 1 =




Matrix A is full rank

if Rank A = min(m,n)

Rank

Matrix A is rank deficient

* Given a mxn matrix A: if Rank A < min(m,n)

* Rank A < min(m, n)

* Because “the columns of A are independent” is
equivalent to “rank A=n"

* If m < n, the columns of A is dependent.

oo LML

3X4 A matrix set has 4 vectors
Rank A <3 belonging to R?is dependent

In R™, you cannot find more than m vectors that are independent.




Consistent or not

A:mXn

Span{@, ‘* ,@n} =R™ = RankA = no. of rows

1 !

m independent vectors can

span R™

More than m vectors in R™
must be dependent.




Theorem 1

A basis is the smallest generating set.

If there is a generating set S for subspace V,

The size of basis for V is smaller than or equal to S.

Reduction Theorem
There is a basis containing in any generating
set S.

S can be reduced to a basis for V by removing
some vectors.




Theorem 1 — Reduction Theorem

FRBE™ generating set L\ EE —1E basis

S can be reduced to a basis for V by removing some
vectors.

Suppose § ={u,, u,, ..., u,} is a generating set of
subspace V

SubspaceV =Span$§ LetA=[u; u, - u,.].
= Col A

- The basis of Col A is
the|pivot columns of A[ Subset of §




Theorem 1 — Reduction Theorem

Subspace IV = Span § = Col A =

M 11
) 1—-1
S = )
\L—3.
1
-1
4 = 2
—3

01 [t
—2 1
141’3
L6112
2 2
—2 2
4 2
—6 L2 1[0

W O W -

}: nnmab{

O W O N

N

W ow -
}o W o N

RREF

0

Span ¢

y

\

Smallest éenerétin_g set

FRERY generating set L EB—

Y

Generation set

o O O =

OO O N

o O = O

o = O O

—1
0
1
0

& basis

Y

(NI NUR )

0

—5
—3
2

0

/



Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k
independent vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space

S can be extended to a basis by adding more vectors



Theorem 2 — Extension Theorem

Independent set:

A =—1E basis @& 1FE A& —1E basis

There is a subspace V
Given a independent vector set S (elements of S are in V)

If Span S =V, then S is a basis
If Span S #V, find v, inV, but not in Span S

S=S U {v,}isstill an independent set

{If Span S =V, then S is a basis
If Span S #V, find v, in V, but not in Span S

S =S U {v,}is still an independent set

V

------ You will find the basis in the end.



Textbook P245

Theorem 3

* Any two bases of a subspace V contain the same
number of vectors

Suppose {u,, u,, ..., u.fand {w;, w,, ..., wp}are two bases of V.
LetA=[uju,-ujandB=[w,w, w,]

Since {u,, u,, ..., u,}spans V, 3¢, € R*s.t. Ac,=w, forall i

= Alc, ¢, ¢, l=[w,w, -w,] =AC=8B

Suppose Cx =0 forsomex € R° = ACx=Bx=0

B is independent vector set = x=0 = ¢, ¢, - ¢, are independent
c,' S ‘(]zk = p <k

Reversing the roles of the two bases one has k<p = p = k.



Theorem 4.9

* If Vand W are subspaces of R" with V contained in
W, thendimV <dimW

e IfdimV=dimW, V=W

* Proof:
B, is a basisof V, Vin W, B, in W

» B, is an independent set in W

By extension theorem, B, is in the basis of W » dimV <dimW
If dim V =dim W =k
B, is a linear independent set in W, with k elements

» It is also the span of W



R3 is the only 3-dim subspace of itself

L

W

The 2-dim subspace
with basis {u,v}

The 0-dim
subspace

with basis



Concluding Remarks

* 1. A basis is the smallest generation set.

e 2. A basis is the largest independent vector set in
the subspace.

* 3. Any two bases for a subspace contain the same
number of vectors.

* The number of vectors in a basis for a nonzero
subspace V is called dimension of V (dim V).



Confirming that

a set Is a Basis
(Chapter 4.2)



Intuitive Way

e Definition: A basis B for V is an independent

generating set of V.

V=

\

€R3:v1—02+203:0

Independent? Yes

Generating set? difficult

!
C = 1
0

\

|l

/

Is C a basis of V?

1
1
0

Y

} generates V

|



Another way

Find a basis for V

* Given a subspace V, assume that we already know that dim
V = k. Suppose S is a subset of V with k vectors

If Sis independent

m) S is basis

If Sis a generating set =) S js basis

([ 7 )

V:< V9 €R32’01U2—|—2’030>C{

\ L - /

DimV =2 (parametric representation)

1
1
0

Y

Is C a basis of V?

C is a subset of V with 2 vectors
C is a basis of V
Independent? yes

|



A th Assume that dim V = k. Suppose
Nno er Way S is a subset of V with k vectors

If Sis independent mmm) S s basis

By the extension theorem, we can add more
vector into S to form a basis.

However, S already have k vectors, so it is already
a basis.

If Sis a generating set =) S js basis

By the reduction theorem, we can remove some
vector from S to form a basis.

However, S already have k vectors, so it is already
a basis.



Example

e |s B a basis of V?

U2
U3

ER*: v +va4+vs=0

DimV="? 3 - P is a basis of V.

\

B = q

\

— = O

Independent set in V? yes




Example
* Is B a basis of V= Span S ? B is a subset of V with 3
vectors

(11 =17 7371 (17 1] [07)
_ )1 3 1 1 g2 0 1
S =< el bl 2 e 2 , \ ol lol L1y

L2 (-1 [ 1] |-1]) Lo [T ] 1)

1 -1 3 1 1 0 0 —=2/3

1 3 1 1 o 1 0 1/3 _ B
A=y 7 L o (mpRy= 0 0 1 2/3 dimA = 3

2 -1 1 -1 00 0 o0

(1 1 0] 1 0 0

2 0 1 0o 1 ol [ndependent
B=lo o1 | ™ R=]y o 4 . .

001 1 0 0 0 m) B is a basis of V.




Dimension of Basis
(Chapter 4.3)



Col A = Range

* Basis: The pivot columns of A form a basis for Col A.

1 2 |-1 2|1 2
-1 =2 | 1) 2|3 6
2 4 13|l 210 3
-3 -6 [ 2]0]3 9

pivot columns

e Dimension:

Dim (Col A)

= Col A = Span «

= number of pivot columns

=rank A

2 Y

pivot columns

Y

SN DN DY




Rank A (revisit)

Maximum number of Independent Columns
Number of Pivot Columns
Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space

Dimension of the range of A




Row A

* Basis: Nonzero rows of RREF(A)

i e P AR T B |
el 9@ L v Sl RREF L (IBEFES A0 d
e WUEE S S = R=lgga 0 =3
il il mgee s e =1 Ll S el )
Row A = Row R a basis of Row R
(The elementary row operations = a basis of Row A

do not change the row space.)

* Dimension: Dim (Row A) = Number of Nonzero rows

= Rank A



Rank A (revisit)

Maximum number of Independent Columns
Number of Pivot Column
Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space = Dim (Row A)

Dimension of the range of A = Dim (Col AT)




Rank A = Rank A'

* Proof

“om (col

~Oim (Row
TN




Example 2, P256

Null A

* Basis:
* Solving Ax=0

3
1

1 -2

0 1
—5-25
—2—1 3

1 5 ]
0 1
—5 =3
2 —10.

(10101
01-50 4
00 0 1-2

100000 .

e Each free variable in the parametric representation of

the general solution is multiplied by a vector.

e The vectors form the basis.

x1+x3+x5—0

—5x3+4x5—0»

—2x5=0

X4

X5

—X3 — X5
5x3 — 4Xxs

X3 (free)
2x5

X5 (free)

—1 —17
5 4
1 + Xs 0
0 2

L 0
~




Null A

* Basis:
* Solving Ax=0

e Each free variable in the parametric representation of
the general solution is multiplied by a vector.

e The vectors form the basis.

e Dimension:

Dim (Null A) = number of free variables
= Nullity A
=n - Rank A



Dimension Theorem

Dim (Col A) Dim (Null A) If A'is mxn
=Rank A =n - Rank A Dim (R") =n

Dim of Range J&; I Dim of Domain

range



Four fundamental

subspaces of
A: R"— RM

A:R"—> RM

R" « Rm: AT

w(A): A

dimr

one-to-one

Aq11 Q1
a1 Q22

Am1  Am2

Col(A): Ax

dimr

__________________ >




Solutions of Ax = b
Zero,One, Infinity ...

No Solution

One Solution

Infinite Solutions




The Meaning of Matrix Transpose

(d11 Q12 Aip
_aml amz U amn_
A: R"— RmM AT: Rm— R"
X - AX
ATy < Y
Ax -y =x-Aly

Preservation of dot product in R"and R™



Finite vs. Infinite-dimension
Vector Space

* Care has to be taken when dealing with infinite-
dimension vector spaces.

e E.g. Consider the “vector space” containing all

polynomial functions with basis P={1, x ,x?, x3, .

s it really a vector space?

No!

x* X

e=1l+x+—+—+
2! 3!

which does not converge to a polynomial function.

}



Coordinate System
(Chapter 4.4)



Coordinate System

* Each coordinate system is a “viewpoint” for vector
representation.

* The same vector is represented differently in
different coordinate systems.

* Different vectors can have the same
representation in different coordinate systems.
* A vector set #B can be considered as a coordinate
system for R" if:
e 1. The vector set #B spans the R"
* 2. The vector set #B is independent



Coordinate System

* Let vector set B={uq, u,, -, u,} be a basis for a subspace
Rn

» P is a coordinate system

* For any vin R", there are unique scalars ¢4, ¢,, ***, ¢;,; such
thatv = cquq + couy, + -+ cLuy,

9B -coordinate vector of v: C1
[U]g3 — . | €RY
(JEH B E/‘]Eﬁ;%ﬁ%% U) i Cn




New Coordinate System 43

{e,, e,}isa coordin‘gte system by = [ﬂ b, = [_11]

[2] — e, + 4e, [Z] — 6by + (=2)b,



Vector

=[] -l

': 2
3 o [3
2| -
€7
811 2 3 | 5

b1 = [o?s] b2 = [o(.)sl




Vector

=[] -l

4
3 - .[é]home
2.
€2
o 2 3 4 5

b1 = [0%5] b2 = [0(.)5]



New Coordinate System 43

'

{e,, e,}is a coordinate system

[2] — 8e, + 4e, [Z] — 6b, + (=2)b,

E={eq, e3,:*, e} (standard vectors) UV = [V]g

€ is Cartesian coordinate system (EH AR 1E£)

_|



Coordinate System

* A vector set # can be considered as a coordinate
system for R" if:

e 1. The vector set #B spans the R"
# Every vector should have a representation

e 2. The vector set #B is independent

# Unique representation
PB is a basis of R"



Why Basis?

* Let vector set B={uq, u,, -, u;} be independent.

e Any vector v in Span B can be uniquely represented as a
linear combination of the vectors in $.

* That is, there are unique scalars a4, a,, -+, a; such that v =
aiuq + au, + -+ apuy

* Proof:

Unique? v =aquq; + aru, + -+ azuy
v = biuq + byu, + -+ bruy
(a1 —buqg + (ay — by)uy + -+ (ag — b)u, =0
3B is independent » a,—b,=a,—-b,=---=a,—b,=0



Change Coordinate
(Chapter 4.4)



Coordinate System

* Let vector set B={uq, u,, -, u,} be a basis for a subspace
Rn

» P is a coordinate system

* For any vin R", there are unique scalars ¢4, ¢,, ***, ¢;,; such
thatv = cquq + couy, + -+ cLuy,

9B -coordinate vector of v: C1
[U]g3 — . | €RY
(JEH B E/‘]Eﬁ;%ﬁ%% U) i Cn




oD el
-

B el
] B



Other System — Cartesian

* Let vector set B={uq, u,, -+, U, } be a basis for a
subspace R"

e Matrix B=[u1 Uz -+ Uy
o
c
Given [v]g, howto findv?  [v]g = ?
_CTl

UV =CiUq + CUy + -+ C/LU,

= Blv]gp (matrix-vector product)



Cartesian — Other System

1 1 1 1
v = [_4 fB:{ 1 ,[—1],[2]} find [v]4
4 Ul1ll2
T 1] 1] 1] [ 1 C1]
c1| 1 | +ecl| -1 |+l 2| =] —4 [V]$= Co
1] 1 2 | 4 ¢4
1 1 1
B=|1 -1 2] B is invertible (?)
1 1 2
s

Blvlg=v mmp vlg=B'v =] 4
| 3.



Cartesian «> Other System

‘LetB=1{b,,b,,..,b}
[vlg =B~ 'v

%
o
v = Blv]g c,

Let B={by, by, -, by} be a basis of R". |b;] p =7e;

(Standard vector)



Equation of ellipse

Rotate 45°




Equation of ellipse

Use another coordinate system

B

(X)"

by b
_E_ __E_
_ 2 2
_{ E ) _2 }
L 2 2

What is the equation of the ellipse
in the new coordinate system?

L

32

22



Equation of ellipse

V2] [_¥2] ,
7l 2 2 XL L
o3[ 2 -2 ] e [
.24 L 2




Linear Function In

Coordinate System
(Chapter 4.5)



Basic ldea

Simple Function

Anoth.er Input’ — output’
coordinate

system

Cartesian
coordinate  Input IS Output

system Complex Function



Basic ldea

Simple Function

Anoth.er Input’ — output’
coordinate

system

Cartesian
coordinate  nput IS Output

system Complex Function



Sometimes a function can be
complex ......

» T: reflection about a line £ through the origin in R*

-

[T] =[T(er) TC(ez)]

NT(liizl) _'




Sometimes a function can be
complex ......

» T: reflection about a line £ through the origin in R*

special case: L is the horizontal axis

Lo (el =




Describing the function in another
coordinate system

» T: reflection about a line £ through the origin in R*

In another coordinate system & ....

B = {b1» bz}

DD

T(by) = —b,




Describing the function in another
coordinate system

» T: reflection about a line £ through the origin in R*

Tl = [(1) —01]

Input and output
are both in B

[T]b1 — b1
L mh [T1g([bilg) = [bilg

In another coordinate system 8 ...

PB matrix of T:

[bz]{/} = €2




Flowchart

g = [(1) —01]

b, vl e——) T (v)] R

bz‘\/ reflection about the
horizontal line

ZT—e: v & T (v)

reflection about a line £



Linear Operator vs. Matrix

vV ) T (1)

v]p e——) [T(W)] g

Ve ——) [T(W)]e

Corresponding matrix of operator T depends on
the coordinate system



g = [(1) —01]

V] e— [T(W)] g

/ reflection about the

horizontal line
reflection about a line £




Flowchart

B coordinate
system B

Cartesian B~ 1
coordinate
system [T]

similar similar



» Example: reflection operator T about the line y = (1/2)x

b= ]

) 0.4 2 1
B-1 = ] B = ]
02 04
y=(1/2)x

o=

1T] 5
)/ v]lg — [T(v)]qg
"2
b= ] [0 —1]
B—l

0

1
A




» Example: reflection operator T about the line y = (1/2)x

po1_ [ 04 b 2 —1
T] = 0.6 0.3 —0.2 04] ]

0.8 —0.6 Tl

[v]lg n———) [T(v)]g

_[-05 y=(1/2)x
REE
€1 = [42}] B~ B

[T] = C[T]cC™ v — T(v)
“los -0 7] = Bll]g5"



Example (P279)

I1 356’1 + X3
T X9 = T+ Ty B =
I3 —X1 — T2 + 35133

[Tlg =?
3 0 1 v]g ) [T (v)]qp
IT|=1]1 1 0 [T ](3_ -1[T]B
1 -1 3 J
1 1 2 »
B=[1 2 1] B B
1 3 1
3 -9 8 T]is known
Tla=|—-1 3 —3] — T(v)
N P

[T] =B [T]lgB™!



Example (P279) Determine T

1] [ 1] 1 3] 0 | [ 2]
T 1 = | 2 T 0 = | —1 T 1 =10

0 1] 1 1] 1 | 1]

b, Cy b, C, b, C3
e, e, e; [v]g — [T(v)]g Bc, Blc, Blc,
T]fB
b, b, b;asa
coordinate system .
B~ B~1

{b,, b,, b;}isa
basis of R3



Example (P279) Determine T

[Tlg =[B~'c; B~ 'c, B 'c;] =B~IC

[T] =B[TlgB™' = BB~1CcB~! = ¢!

e; e e; [v]g n—) [T(v)]g Blc, Blc, Blc,

IT]q
b, b, b;asa
coordinate system
B~ B~1 B
{b,, b,, b;}isa
basis of R3
[T]

b, b, b, vV ) T(,) c, ¢



Conclusion

| IT]q
% coordinate [v]lg n—) [T(v)]g
system [T1g= B~ *[T]B
B
Cartesian B~
coordinate
system — T(v)



