
Chapter 2
Matrices and Linear Transformations

除了標註※之簡報外，其餘採用李宏毅教授之投影片教材



Matrix Multiplication
(Chapter 2.1)



1. Dot Product
(What you have learned 

in high school)

Four aspects for matrix 
multiplication



Dot Product 
(special case of Inner Product)
• Dot product: dot product of u and v is

• Three properties of Dot Product V × V  R
• = (commutative)
• (Linear)
• ≧ 0,  and =0 only when = 0

※



Dot Product 

• Given two matrices A and B, the (i, j)-entry of AB is the dot 
product of row i of A and column j of B

A B



Dot Product 

• Given two matrices A and B, the (i, j)-entry of AB is the dot 
product of row i of A and column j of B
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Dot Product 

B

A

AB

Given two matrices A and B, 
the (i, j)-entry of AB is the 
dot product of row i of A 
and column j of B

(i,j)-entry



Dot Product 

A

B

AB
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17

Given two matrices A and B, 
the (i, j)-entry of AB is the 
dot product of row i of A 
and column j of B



2. Combination 
of Columns



Combination of Columns

…… ……

=
… … ……

The first column The second column

ଵଵ

ଶଵ

௡ଵ

ଵଶ



Combination of Columns

=

The first column The second 
column



3. Combination 
of Rows



Combination of Rows

…
… …
… = …
…

ଵଵ ଵଶ

ଶଵ

ଵ௡

p columns



Combination of Rows

=

The first row

The second row

The third row



4. Summation of 
Matrices 



Summation of Matrices 

…… …
…

matrices

p columns



Summation of Matrices 

“1 x 2”
“2 x 1”

“1 x 1”

=

=   

Rank = ? Rank = ?
Block Multiplication



Augmentation and Partition

• Augment: the augment of A and B is [A B]
• Partition:



Block Multiplication

Multiply as the small 
matrices are scalar
Multiply as the small 
matrices are scalar

Don’t switch the order



Block Multiplication

“2 x 2” “2 x 2”

“2 x 2”

2 X 2 2 X 1

1 X 11 X 2



Matrix Multiplication - Multiple 
Input
• Multiple Input

b1A = c1

b2A = c2

bpA = cp

…
…

A b1 b2
… bp

= c1 c2 … cp



Matrix Inverse 
(Chapter 2.3-2.4)



Inverse of Matrix

• A and B are inverses to each other

BA

For 

B A



Inverse of Matrix

A is called invertible if there is a matrix B 
such that and 

B is an inverse of A

Invertible = Non-singular
Not Invertible = Singular

Non-square matrix cannot be invertible



Inverse of Matrix

• Non-square matrix cannot be invertible?

BA

B A

m x n

m x nn x m

n x m
m dimn dimm dim

n dimm dimn dim

2d2d

2d 3d

3d

3d

Is BA  (dim 3 x 3) invertible? 



Inverse of Matrix

• Not all the square matrices are invertible

• Unique



Inverse for matrix product

• A and B are invertible nxn matrices, is AB invertible?

• Let be nxn invertible matrices. The product 
is invertible, and 

yes

 



Inverse for matrix transpose

• If A is invertible, is AT invertible?



How to prove ?
• Method 1:
Express (i, j)-entry of and directly.

• Method 2:
First prove: = , which is not difficult  
( is x ,   and are x 1)

1. ( ) = = = )
= 

2. ( ) = )

※



Application of  Matrix 
Inverse

(Chapter 2.3-2.4)



Solving Linear Equations

• The inverse can be used to solve system of linear 
equations.

However, this method is computationally inefficient.However, this method is computationally inefficient.

If A is invertible.



Invertible
(Chapter 2.3-2.4)



Review - Terminology 

• Given a function f

Domain (定義域) Co-domain (對應域)

Range (值域)

What can go into 
function f

What may possibly 
come out of function f

What actually come 
out of function f



Review - Terminology 

• one-to-one (㇐對㇐) • Onto (映成)

Co-domain = range



One-to-one

• A function f is one-to-one

has one solution

has at most one solution

If co-domain is “smaller” 
than the domain, linear 
function f cannot be 
one-to-one.
If a matrix A is 矮胖, it 
cannot be one-to-one.

If a matrix A is one-to-
one, its columns are 
independent.

The reverse is not true.

=



Onto

• A function f is onto

always have solution

If co-domain is “larger” 
than the domain, linear 
function f cannot be 
onto.
If a matrix A is 高瘦, it 
cannot be onto.

If a matrix A is onto, 
rank A = no. of rows, i.e., 
no zero row in RREF 

Co-domain = range

The reverse is not true.

=



1-1 and Onto Function from N
(Natural Numbers) to Z (Integers)

The mapping is not linear

.
.

2

2

-2

N Z

.
※



Invertible

• A is called invertible if there is a matrix B such that 
and ( )

A must be one-to-one A must be onto
(不然 的 input 就會有限制)



One-to-one and onto

• A linear function f is one-to-one and onto

The domain and co-
domain must have “the 
same size”.
The corresponding matrix 
A is square.

One-to-oneOne-to-one OntoOnto

在 Square 的前提下，要就都成立，要就都不成立

An invertible matrix A 
is always square.
An invertible matrix A 
is always square.



Equivalent Conditions of 
Invertibility
• Let A be an n x n matrix. A is invertible if and only if

• The columns of A span Rn

• For every b in Rn, the system Ax=b is consistent
• The rank of A is n
• The columns of A are linearly independent
• The only solution to Ax=0 is the zero vector
• The nullity of A is zero
• The reduced row echelon form of A is In

• A is a product of elementary matrices
• There exists an n x n matrix B such that BA = In

• There exists an n x n matrix C such that AC = In



Invertible

• Let A be an n x n matrix.
• Onto → One-to-one → inverƟble

• The columns of A span Rn

• For every b in Rn, the system Ax=b is consistent
• The rank of A is the number of rows

• One-to-one → Onto → inverƟble
• The columns of A are linear independent
• The rank of A is the number of columns
• The nullity of A is zero
• The only solution to Ax=0 is the zero vector
• The reduced row echelon form of A is In

Rank A = n



Is A Invertible?

• Let A be an n x n matrix. A is invertible if and only if
• The reduced row echelon form of A is In

In InvertibleInvertible

Not InvertibleNot Invertible

RREF

RREF



Summary

• Let A be an n x n matrix. A is invertible if and only if
• The columns of A span Rn

• For every b in Rn, the system Ax=b is consistent
• The rank of A is n
• The columns of A are linear independent
• The only solution to Ax=0 is the zero vector
• The nullity of A is zero
• The reduced row echelon form of A is In

• A is a product of elementary matrices
• There exists an n x n matrix B such that BA = In

• There exists an n x n matrix C such that AC = In

onto

One-to-
one

= square 
matrix
square 
matrix



A is invertible.

Invertible

There exists an n x n 
matrix B such that BA = In

?

The only solution to 
Ax=0 is the zero vector

If , then ….

A is n x n

(def)  and 



A is invertible.

Invertible

There exists an n x n 
matrix C such that AC = In

?

For every b in Rn, Ax=b 
is consistent

For any vector b,

is always a solution for 

A is n x n

(def)  and 



Summary

• Let A be an n x n matrix. A is invertible if and only if
• The columns of A span Rn

• For every b in Rn, the system Ax=b is consistent
• The rank of A is n
• The columns of A are linear independent
• The only solution to Ax=0 is the zero vector
• The nullity of A is zero
• The reduced row echelon form of A is In

• A is a product of elementary matrices
• There exists an n x n matrix B such that BA = In

• There exists an n x n matrix C such that AC = In

onto

One-to-
one

= square 
matrix
square 
matrix



AC = In   CA = In ?

Theorem:  Let A be an n x n matrix. If there exists an n x 
n matrix C such that AC = In , then CA = In .
(Proof) We first prove that the columns of C (c1 , c2 , …, cn ) are  
linear independent. Suppose d1c1 + d2c2+ … + dncn =0, then 

d1Ac1 + d2Ac2+ … + dnAcn= A0 = 0. 
AC=In implies d1e1 + d2e2+ … + dnen =0, which is only true if 
d1 ,d2 , …, dn are all zero, since e1 , e2 , …, en are standard bases. 
Let x= k1c1 + k2c2+ … + kncn = Cy, for y= (k1 ,k2 , …, kn )T .  

Thus Ax=ACy=y  (sinca AC=In).  CAx=Cy=x, for arbitrary x.  
Hence CA=In

※



invertible and are invertible
(Proof)

invertible 

is invertible
invertible 

is invertible
※



invertible invertible
(Proof)
Suppose is not invertible 

≠ 0, ( ) =0 = ≠ 0
Consider ( )

= ( ) = 0
Let = (≠ 0). 

( )
( ) not invertible -- contradiction

※



Inverse of 
Elementary Matrices

(Chapter 2.3-2.4)



Elementary Row Operation

 Every elementary row operation can be performed by 
matrix multiplication. 

 1. Interchange

 2. Scaling

 3. Adding k times row i to row j:

0
01
1

1
k0
0

1
1k
0

elementary matrixelementary matrix



Elementary Matrix

• How to find elementary matrix?
• Apply the desired elementary row operation on 

Identity matrix

Exchange the 2nd

and 3rd rows

Multiply the 2nd

row by -4

Adding 2 times 
row 1 to row 3



Elementary Matrix

• How to find elementary matrix?
• Apply the desired elementary row operation on 

Identity matrix



Exchange the 2nd and 3rd rows

Multiply the 2nd row by -4

Adding 2 times row 1 to row 3

Exchange the 2nd and 3rd rows

Inverse of Elementary Matrix

Multiply the 2nd row by -1/4

Adding -2 times row 1 to row 3

Reverse elementary row 
operation
Reverse elementary row 
operation



RREF vs. Elementary Matrix

• Let A be an mxn matrix with reduced row echelon 
form R.

• There exists an invertible m x m matrix P such that 
PA=R



Invertible

The reduced row 
echelon form of A is In

A is a product of 
elementary matrices

An n x n matrix A is 
invertible. R=RREF(A)=In



Find Inverse 
of  a Matrix
(Chapter 2.3-2.4)



2 X 2 Matrix

If , A is not invertible.

Find 



Algorithm for Matrix Inversion

• Let A be an n x n matrix. A is invertible if and only if 
the reduced row echelon form of A is In



Algorithm for Matrix Inversion

• Let A be an n x n matrix. Transform [ A In ] into its 
RREF [ R B ]
• R is the RREF of A 
• B is a nxn matrix (not RREF)

• If R = In, then A is invertible
• B = A-1



Algorithm for Matrix Inversion

In InvertibleInvertibleRREF



Algorithm for Matrix Inversion

• Let A be an n x n matrix. Transform [ A In ] into its 
RREF [ R B ]
• R is the RREF of A 
• B is a nxn matrix (not RREF)

• If R = In, then A is invertible
• B = A-1

• To find A-1C, transform [ A C ] into its RREF [ R C’ ]
• C’ = A-1C



Linear Transformation
(Chapter 2.6)



Linear Transformation

• A mapping (function) T is called linear if for all 
“vectors” u, v and scalars c:

• Preserving vector addition:

• Preserving vector multiplication:

Is matrix transpose linear?Is matrix transpose linear?

Input: m x n matrices, output: n x m matrices



Linear Transformation

• Derivative:

• Integral from a to b

Derivativefunction f function f’
e.g. x2 e.g. 2x

Integralfunction f

scalar

e.g. x2

e.g. (from a to b)

linear?linear?

linear?linear?



Linear Transformation and Matrix

… 

※
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Linear Transformation and Matrix

※
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Linear Transformation and Matrix

※
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Linear Transformation and Matrix

 

※



Linear Transformation and Matrix

※

Let A be an mn matrix. The function T defined by

vv AT )(

is a linear transformation from Rn into Rm.
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Rotation Matrix

※

Show that the L.T.                       given by the matrix

has the property that it rotates every vector in R2 

counterclockwise about the origin through the angle . 

• (Rotation in the plane)
22: RRT 





  


cossin
sincos

A

Sol:
)sin,cos(),(  rryxv  (polar coordinates)

r： the length of v

：the angle from the positive 

x-axis counterclockwise to 

the vector v



Rotation Matrix

※
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r：the length of T(v)

 +：the angle from the positive x-axis counterclockwise to

the vector T(v)

Thus, T(v) is the vector that results from rotating the vector v 

counterclockwise through the angle . 



Projection Matrix

※

is called a projection in R3.

• A projection in R3

The linear transformation                        is given by33: RRT 


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000
010
001

A



Linear transformation and matrix

• Example: reflection about a line L through the 
origin in R2

special case: L is the horizontal axis



Composition of Linear 
Transformations

(Chapter 2.7)



Matrix Multiplication - Meaning

• Composition
• Given two transformations and , the transformation 

is the composition

◦◦

Matrix multiplication is the composition of 
two linear transformations.



Matrix Multiplication -
Composition
• Composition

BAA

CC



Matrix Multiplication - Meaning

BAA

CC
Input 
standard 
matrix

The first 
column of C
The first 
column of C

The first 
column of B
The first 
column of B



Matrix Multiplication - Meaning

BAA

CC
Input 
standard 
matrix

The second 
column of C
The second 
column of C

The second 
column of B
The second 
column of B



The composition of A and B is

   

Matrix MultiplicationMatrix Multiplication

BAA

CC



Example

R2R2R2

reflection about 
the x-axis rotation by 180

reflection about the y-axis



Example

R2R2R2

reflection about 
the x-axis rotation by 180

reflection about the y-axis



(Chapter 2.6*)

※



LU Decomposition
Let A be an m ×m nonsingular square matrix. There exist two 
L and U such that  A=LU, where L is a lower triangular matrix 
and U is an upper triangular matrix (assuming no row 
exchange in doing RREF on A). 
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How to do LU decomposition?

A … U (upper triangular)   
 U = Ek  E1 A    A = (E1)1  (Ek)1 U
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※

執行 Elementary Row Operations



How to do LU decomposition?
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Compute

We have = = LU

※



Use LU decomposition to solve 
system of linear equations

Based on the above, we have A = LU, 

To solve AX = b, we first solve LY = b

(AX = LUX = b;   Let UX=Y)

Then

Now, we solve UX =Y
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








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LU Decomposition vs. Gaussian 
Elimination

What is the challenge of solving
!!!  Huge matrix A !!!

Time complexity for solving systems of linear equations 
(on n x n matrices)
• Gaussian Elimination:  O(n3)  time
• LU Decomposition: O(n3) time 

• Given L and U, solving (LU)x = b: O(n2) time 
Suppose we need to solve Ax=b1, b2, … bm

• Naïve Gaussian Elimination:  O(mn3)  time
• LU Decomposition: O(n3)  + mO(n2)   time 

• Other  matrix decomposition:  Cholesky, QR, spectral, singular value
※

1
-2

3

n

n2 time



Cholesky Decomposition

A simplified version of LU decomposition for 
symmetric matrices.  

A=LLT,
where L is a lower triangular matrix

E.g.  

※



Matrix Decomposition  A=XYZ

• Decomposing a matrix into the product of a sequence 
of  “nice” matrices (normally 2 or 3) is very useful in 
Linear Algebra. 

• Analogy: Given the product of two prime numbers 
m=p*q, decomposing m into p and q is considered 
computationally difficult, on which the famous RSA 
crypto system is based. 

• There are several important matrix decomposition 
approaches in Linear Algebra, including “Singular 
Value Decomposition”  which is behind the success of  
Google search. 

※



Some Important Matrix 
Decompositions

※

Method Form Property Restriction

LU A=LU L: lower-triangular
U: upper-triangular

A: square matrix; no 
interchange in RREF

Cholesky A=LLT L: lower-triangular A:  symmetric square matrix

Eigenvalue A=PDP-1 P: columns are eigenvectors
D: diagonal (eigenvalues)

A is square with complete 
eigenvectors

Schur A=UTU-1 U: orthonormal
T: upper triangular (eigenvalues 
along diagonal)

A is square, U and T might be 
complex matrices

QR A=QR R: upper triangular 
Q: orthonormal columns

A has linearly  independent
column vectors

SVD A=USVT U, V: orthogonal
S: diagonal

None



More on Matrix
Rank



Recall

r5 = r1+r4a5 = a1+a4

a1 a2 a3 a4 a5 a6 r1 r2 r3 r4 r5 r6

Column Correspondence Theorem

# of ind. columns of A = # of ind. columns of R※



Recall
Row operations preserve “span”

# of ind. rows of A = # of ind. rows of R

-1
s1
s2
s3
s4

s1
s2
s3
t4

t4 = s1+s4

3s1+2s2-5s3+1s4 =       3s1+2s2-5s3+1(t4+s1)

※



Review: Rank A
def Maximum Number of Independent Columns

Number of Pivot Columns

Number of Non-zero rows

Number of Basic Variables

Maximum Number of Independent Rows

# of ind. Rows (Columns) in A = # of ind. Rows (Columns)  in R※



Properties of Rank

• A is a m x n matrix. 

• A is said to have full rank if Rank A = m or Rank A = n.
• A is said to be rank deficient if it does not have full rank.

• Rank A = Rank AT  

Note:  Rows of A = Columns of AT

# ind. Rows of A = # ind. Columns of AT

Rank A                         Rank AT

min( m , n )

※



Properties of Rank

• Let E be an elementary matrix 

(proof)   Elementary row operations preserve row

independency.

• If A is a m x n matrix, and Q is a m x m invertible
matrix.
(Invertible matrix is a product of elementary matrices.) 

Rank( A)

Rank( )

※



Properties of Rank

• (1) If A is a m x n matrix, and B is a n x k matrix.

• (2) If B is a matrix of rank n, then

• (3) If A is a matrix of rank n, then



Properties of Rank

(1a)

=
? It can also have 

zero rows

in RREF

P is an invertible matrix



(1b)

(proof)

rank(AB) = rank(BTAT)  ≤  rank(BT) = rank(B)

Properties of Rank

※



Properties of Rank
Suppose A is a m x n matrix, and B is a n x k matrix.

We know 
(2) If B is a matrix of rank n, then 

ଵ௡

ଶ௡

ଵ

ଶ

௡

=

1 𝒃𝟏 + 0 𝑏ଶ+ … + 𝑎ଵ௡𝑏௡

0 𝑏ଵ + 𝟏 𝒃𝟐+ … + 𝑎ଶ௡𝑏௡

1

2

𝑟

Linear 
Independent

in RREF
P is an invertible matrix

※



Suppose A is a m x n matrix, and B is a n x k matrix.

We know 
(3) If A is a matrix of rank n, then 

(proof)
rank(AB) = rank(BTAT)  = rank(BT) = rank(B)

Properties of Rank

※



Suppose A is a m x n matrix.
T

T , is an invertible matrix, n x n is in 
RREF.  Hence, = ( )

T = −1 T −1 T = 
T = T = 

= = ( )

T = [ T); 0] ; is full rank.

Properties of Rank

ଵ௡

ଶ௡1

※



Properties of Rank

※

>  



Properties of Rank
Given a  n x k matrix M, let TM be its linear 
transformation. 

is the maximum number of linear 
independent vectors in range(TM). 

TM

TM

TM

※



Properties of Rank

• If A is a m x n matrix, and B is a n x k matrix.

BA

HW: Proof 


