Chapter 2 Matrices and Linear Transformations

除了標註※之簡報外,其餘採用李宏毅教授之投影片教材

Matrix Multiplication (Chapter 2.1)

Four aspects for matrix multiplication

1. Dot Product (What you have learned in high school)

Dot Product (special case of Inner Product)

• Dot product: dot product of u and v is

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$
$$= \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u^T v$$

- Three properties of Dot Product $V \times V \rightarrow R$
 - $u \cdot v = v \cdot u$ (commutat
 - $u \cdot (cv + w) = c(u \cdot v) + u \cdot w$

(commutative) (Linear)

• $u \cdot u \ge 0$, and =0 only when $u = \mathbf{0}$

 Given two matrices A and B, the (*i*, *j*)-entry of AB is the dot product of row i of A and column j of B

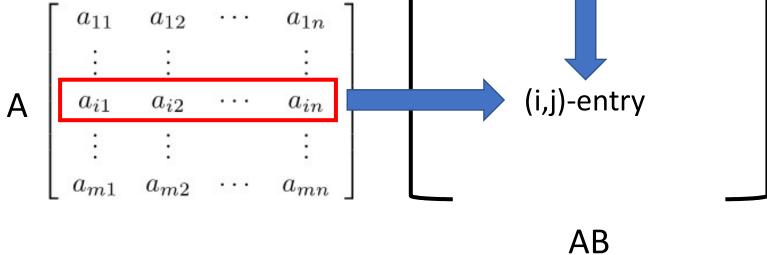
$$C = AB$$
 $C_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$

$$\operatorname{row} i \text{ of } A \longrightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} \\ b_{21} & \cdots & b_{2p} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nj} \end{bmatrix} \xrightarrow{\mathsf{B}} \mathbf{B}$$

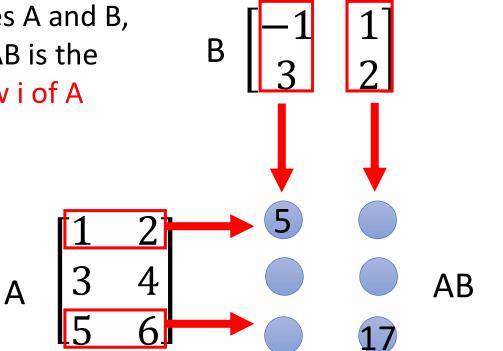
 Given two matrices A and B, the (*i*, *j*)-entry of AB is the dot product of row i of A and column j of B

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 1 \\ 3 & 2 \end{bmatrix}$$
$$(-1) \times 1 + 3 \times 2 \qquad 1 \times 1 + 2 \times 2$$
$$(-1) \times 3 + 3 \times 4 \qquad 1 \times 3 + 2 \times 4$$
$$(-1) \times 5 + 3 \times 6 \qquad 1 \times 5 + 2 \times 6$$

Given two matrices A and B, the (*i*, *j*)-entry of AB is the dot product of row i of A and column j of B $\mathsf{B}\begin{bmatrix}b_{11}&\cdots&b_{1j}&\cdots&b_{1p}\\b_{21}&\cdots&b_{2j}&\cdots&b_{2p}\\\vdots&\vdots&\vdots&\vdots\\b_{n1}&\cdots&b_{nj}&\cdots&b_{np}\end{bmatrix}$

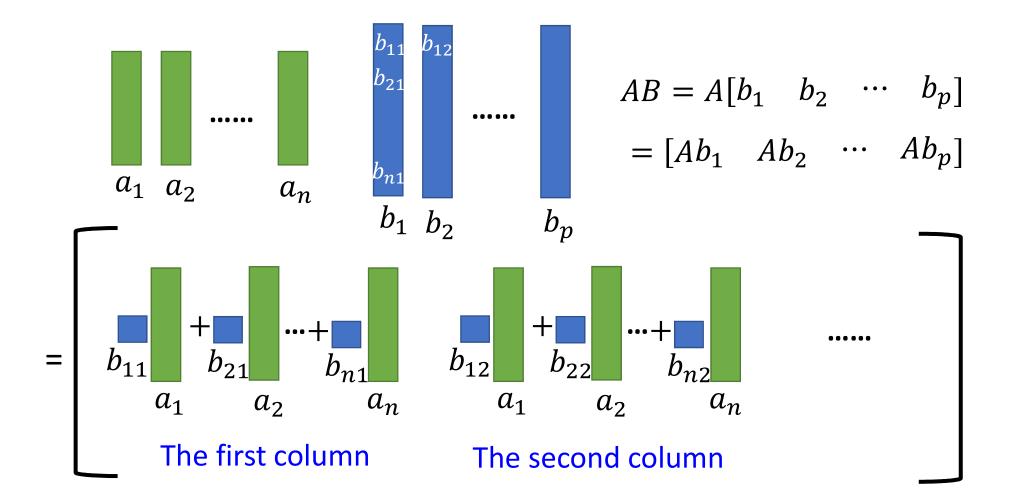


Given two matrices A and B, the (*i*, *j*)-entry of AB is the dot product of row i of A and column j of B

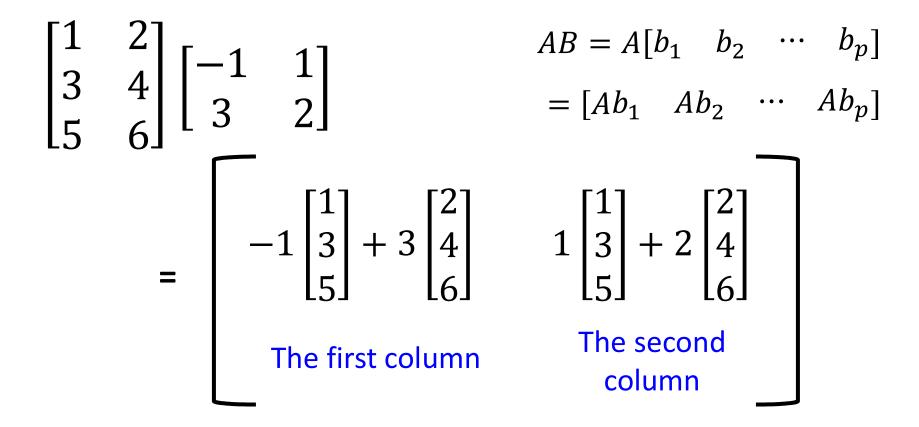


2. Combination of Columns

Combination of Columns

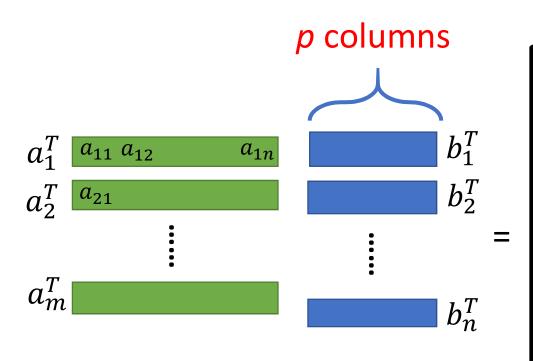


Combination of Columns



3. Combination of Rows

Combination of Rows



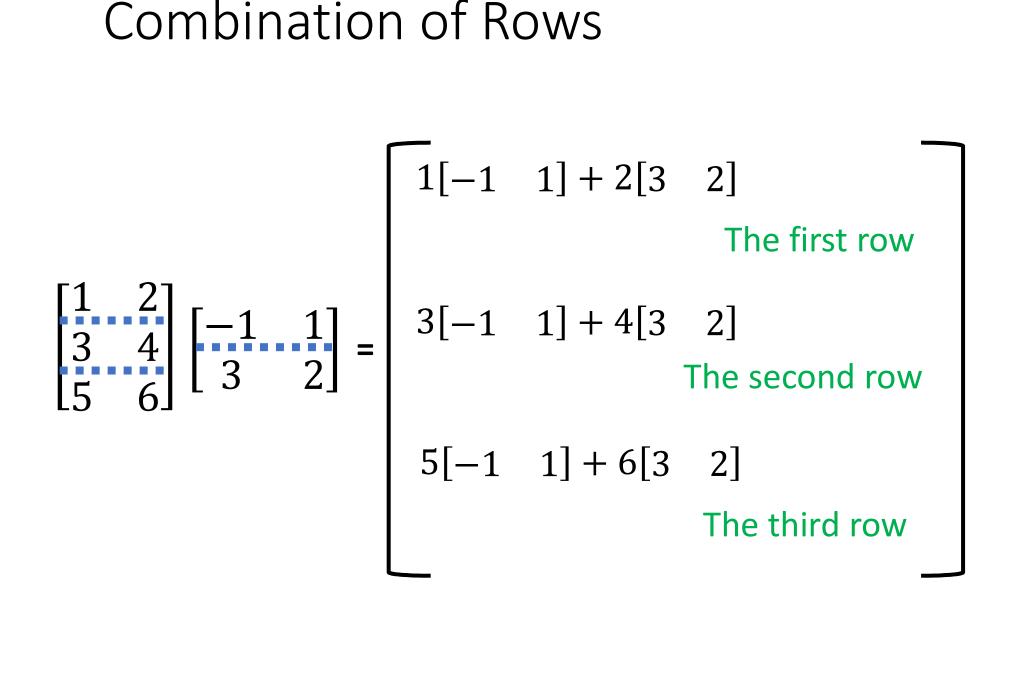
$$a_{11}b_{1}^{T} + a_{12}b_{2}^{T} \cdots + a_{1n}b_{n}^{T}$$

$$a_{21}b_{1}^{T} + a_{22}b_{2}^{T} \cdots + a_{2n}b_{n}^{T}$$

$$\vdots$$

$$a_{m1}b_{1}^{T} + a_{m2}b_{2}^{T} \cdots + a_{mn}b_{n}^{T}$$

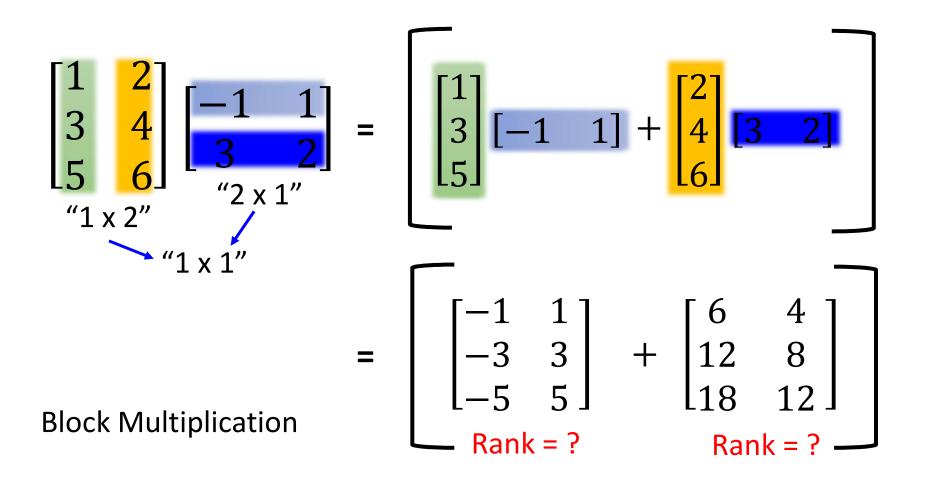
Combination of Rows



4. Summation of Matrices

Summation of Matrices *p* columns b_1^T b_2^T b_3^T $a_1 \ a_2 \ a_3$ b_n^T a_n $= a_1 b_1^T + a_2 b_2^T + \dots + a_n b_n^T$ matrices $1 \times p$ $m \times 1$

Summation of Matrices

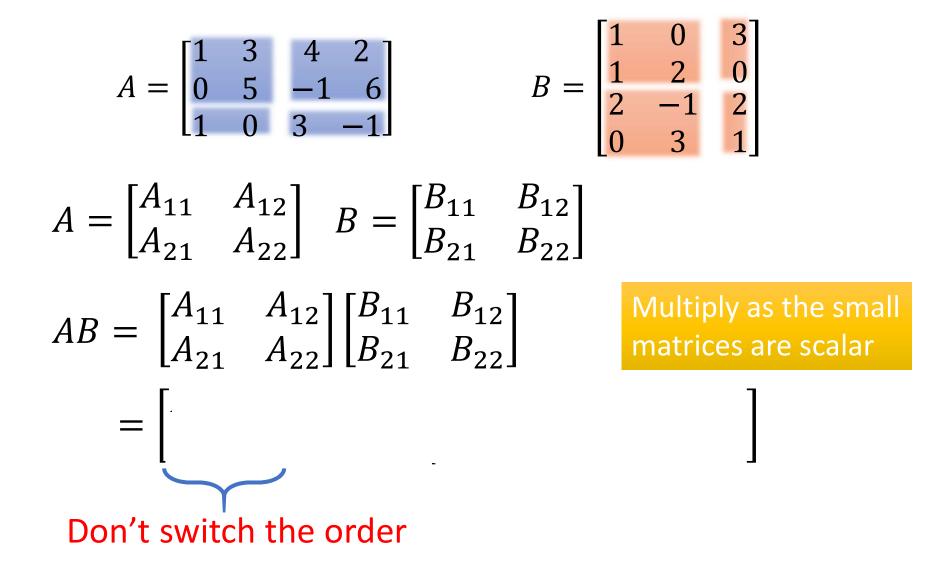


Augmentation and Partition

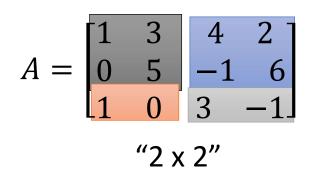
- Augment: the augment of A and B is [A B]
- Partition:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

Block Multiplication

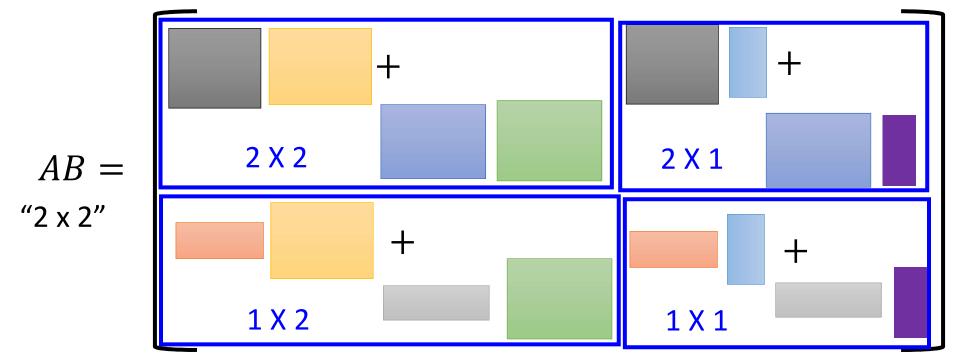


Block Multiplication

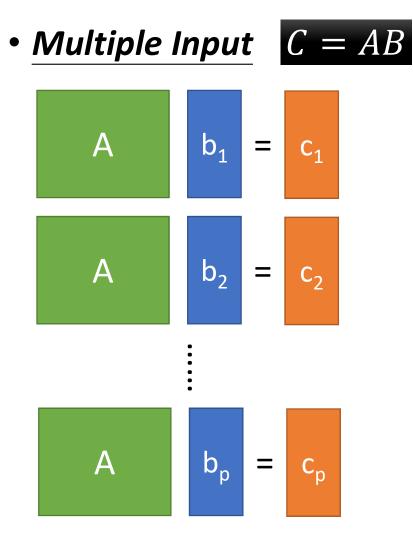


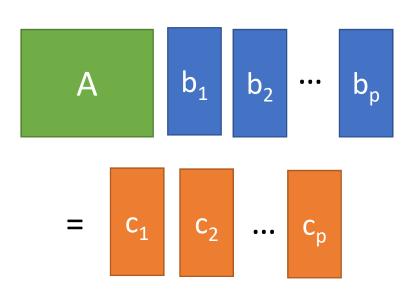
$$B = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 3 & 1 \end{bmatrix}$$

"2 x 2"



Matrix Multiplication - Multiple Input

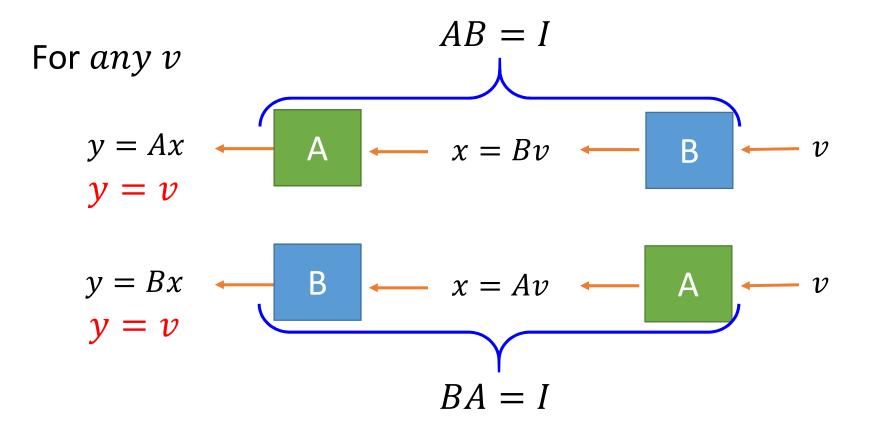




 $AB = A[b_1 \quad b_2 \quad \cdots \quad b_p]$ $= [Ab_1 \quad Ab_2 \quad \cdots \quad Ab_p]$

Matrix Inverse (Chapter 2.3-2.4)

• A and B are inverses to each other



Invertible = Non-singular Not Invertible = Singular

A is called invertible if there is a matrix B such that AB = I and BA = I

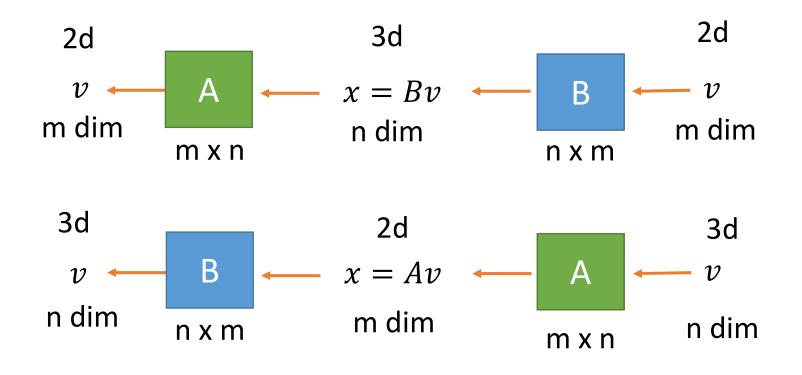
B is an inverse of A $B = A^{-1}$ $A = B^{-1}$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \quad B = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \quad AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Non-square matrix cannot be invertible

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 1 \\ -1 & -1 \\ 0 & 2 \end{bmatrix}$$

• Non-square matrix cannot be invertible?



Is BA (dim 3 x 3) invertible?

• Not all the square matrices are invertible

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• Unique

AB = I BA = I AC = I CA = I

B = BI = B(AC) = (BA)C = IC = C

Inverse for matrix product

• A and B are invertible nxn matrices, is AB invertible? yes

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I$$

• Let A_1, A_2, \dots, A_k be nxn invertible matrices. The product $A_1A_2 \cdots A_k$ is invertible, and

$$(A_1 A_2 \cdots A_k)^{-1} = (A_k)^{-1} (A_{k-1})^{-1} \cdots (A_1)^{-1}$$

Inverse for matrix transpose

• If A is invertible, is A^T invertible?

(AD)T T T

$$(A^T)^{-1} = ? (A^{-1})^T$$

$$(AB)^{T} = B^{T}A^{T}$$
$$A^{-1}A = I \implies (A^{-1}A)^{T} = I \implies A^{T}(A^{-1})^{T} = I$$
$$AA^{-1} = I \implies (AA^{-1})^{T} = I \implies (A^{-1})^{T}A^{T} = I$$

How to prove $(AB)^T = B^T A^T$?

• Method 1:

Express (*i*, *j*)-entry of $(AB)^T$ and B^TA^T directly.

• Method 2:

First prove: $A \cdot x \cdot y = x \cdot A^T y$, which is not difficult (A is $n \times n$, x and y are $n \times 1$)

1.
$$(AB) x \cdot y = A(Bx) \cdot y = Bx \cdot A^T y = x \cdot B^T (A^T y)$$

= $x \cdot (B^T A^T) y$

2.
$$(AB) x \cdot y = x \cdot (AB)^T y$$

Application of Matrix Inverse (Chapter 2.3-2.4)

Solving Linear Equations

• The inverse can be used to solve system of linear equations.

$$A\mathbf{x} = \mathbf{b}$$

If A is invertible.
 $A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$
 $\mathbf{x} = A$

$$x_{1} + 2x_{2} = 4$$

$$3x_{1} + 5x_{2} = 7$$

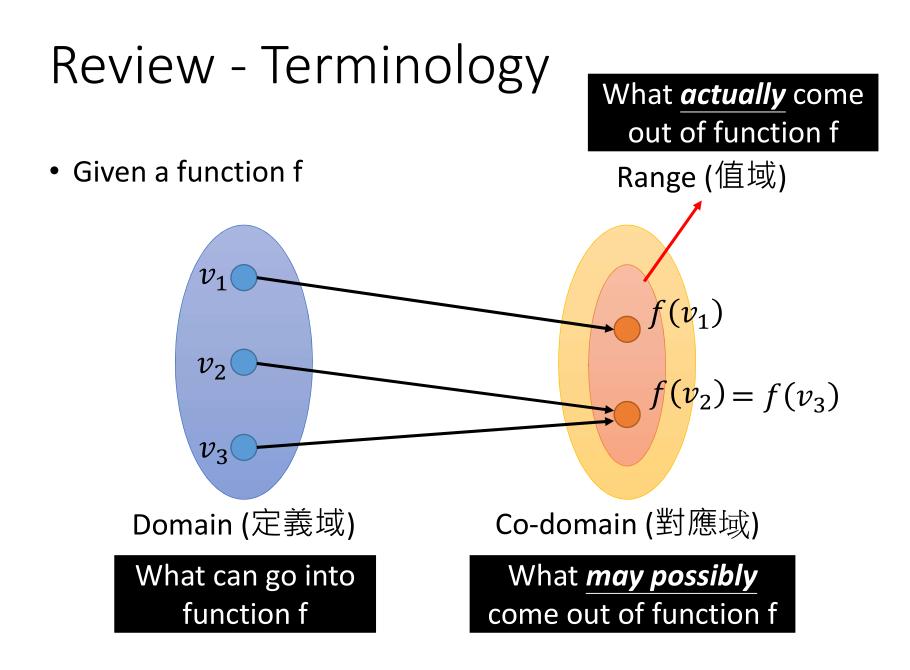
$$Ax = b$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

$$= \begin{bmatrix} -5 & 2\\ 3 & -1 \end{bmatrix} \begin{bmatrix} 4\\ 7 \end{bmatrix} = \begin{bmatrix} -6\\ 5 \end{bmatrix}$$

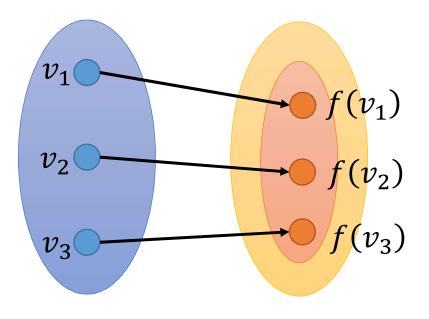
However, this method is computationally inefficient.

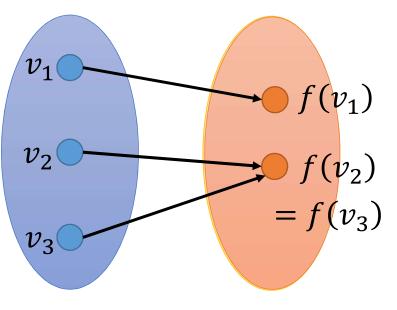
Invertible (Chapter 2.3-2.4)



Review - Terminology

• one-to-one (一對一) • Onto (映成)

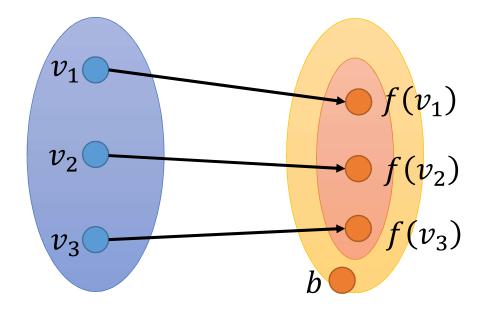




Co-domain = range

One-to-one

• A function f is one-to-one



f(x) = b has one solution f(x) = b has at most one solution

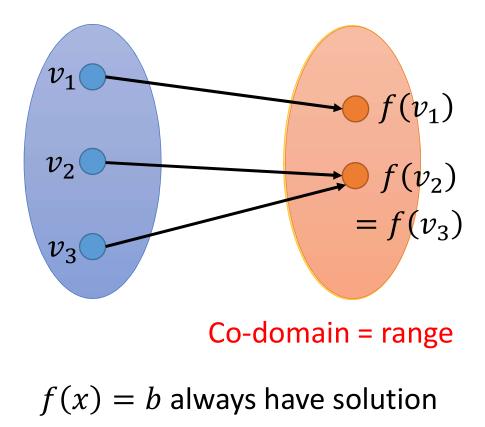
If co-domain is "smaller" than the domain, linear function f cannot be one-to-one.

If a matrix A is 矮胖, it cannot be one-to-one. The reverse is not true.

If a matrix A is one-toone, its columns are independent.

Onto

• A function f is onto

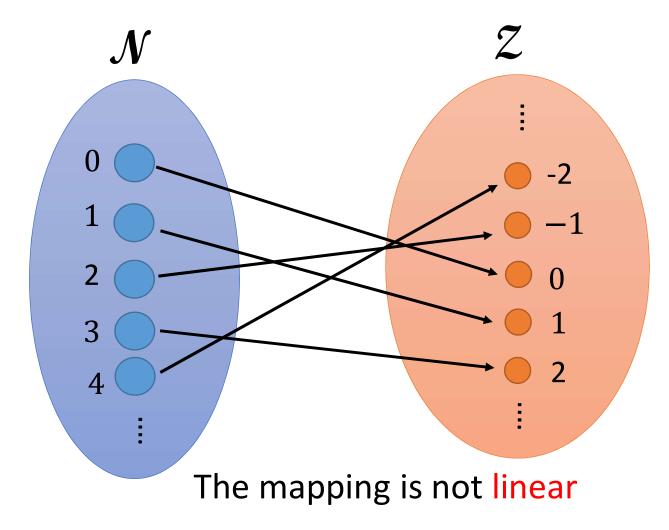


If co-domain is "larger" than the domain, linear function f cannot be onto. If a matrix A is 高瘦, it cannot be onto.

The reverse is not true.

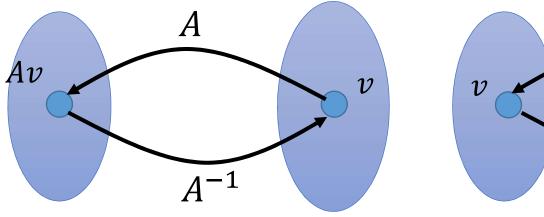
If a matrix A is onto, rank A = no. of rows, i.e., no zero row in RREF

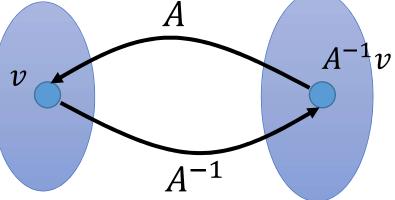
1-1 and Onto Function from $\mathcal N$ (Natural Numbers) to $\mathcal Z$ (Integers)



Invertible

• A is called invertible if there is a matrix B such that AB = I and BA = I ($B = A^{-1}$)



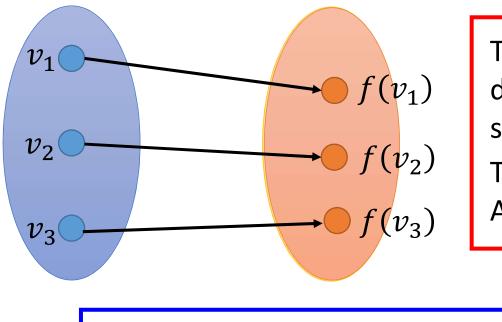


A must be one-to-one

A must be onto (不然 A⁻¹ 的 input 就會有限制)

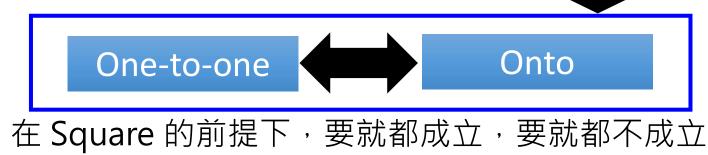
One-to-one and onto An invertible matrix A is always square.

• A linear function f is one-to-one and onto



The domain and codomain must have "the same size".

The corresponding matrix A is square.



Equivalent Conditions of Invertibility

- Let A be an n x n matrix. A is invertible if and only if
 - The columns of A span Rⁿ
 - For every b in Rⁿ, the system Ax=b is consistent
 - The rank of A is n
 - The columns of A are linearly independent
 - The only solution to Ax=0 is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an n x n matrix B such that $BA = I_n$
 - There exists an n x n matrix C such that $AC = I_n$

Invertible

- Let A be an n x n matrix.
 - Onto \rightarrow One-to-one \rightarrow invertible
 - The columns of A span Rⁿ
 - For every b in Rⁿ, the system Ax=b is consistent

Rank A = n

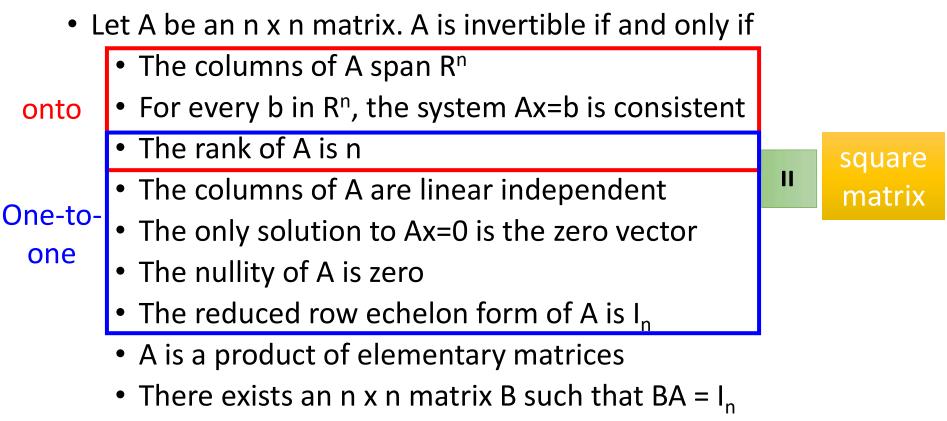
- The rank of A is the number of rows
- One-to-one \rightarrow Onto \rightarrow invertible
 - The columns of A are linear independent
 - The rank of A is the number of columns /
 - The nullity of A is zero
 - The only solution to Ax=0 is the zero vector
 - The reduced row echelon form of A is I_n

Is A Invertible?

Let A be an n x n matrix. A is invertible if and only if
 The reduced row echelon form of A is I_n

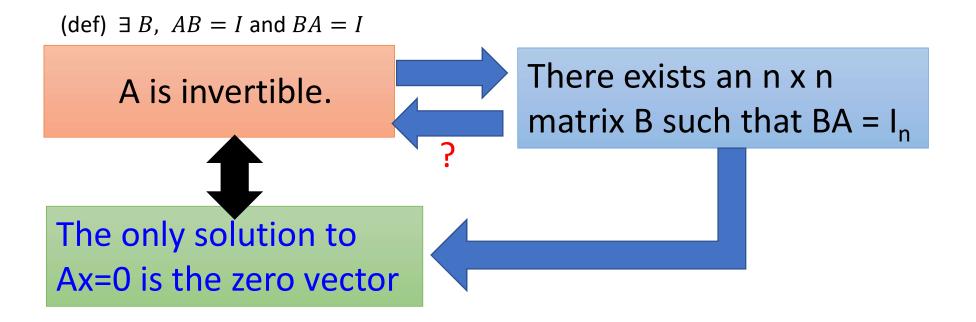
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 4 & 8 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \operatorname{\mathsf{In}} \operatorname{\mathsf{Invertible}}$$
$$B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\operatorname{\mathsf{Not Invertible}}$$

Summary



• There exists an n x n matrix C such that $AC = I_n$

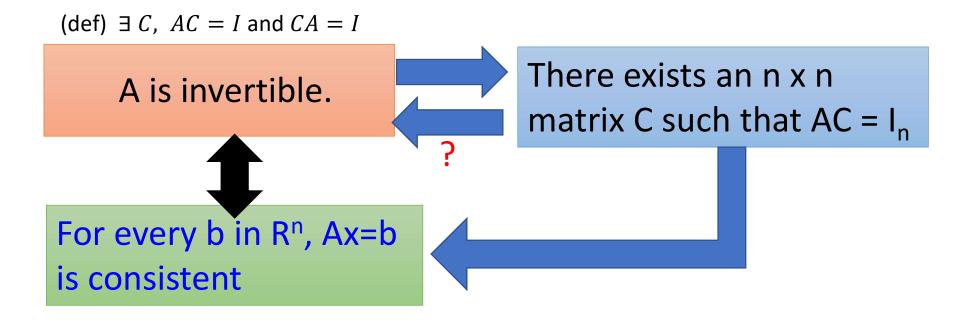
Invertible A is n x n



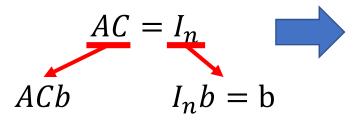
If Av = 0, then

$$BA = I_n \qquad \qquad v = 0$$
$$BAv = 0 \qquad I_n v = v$$

Invertible A is n x n

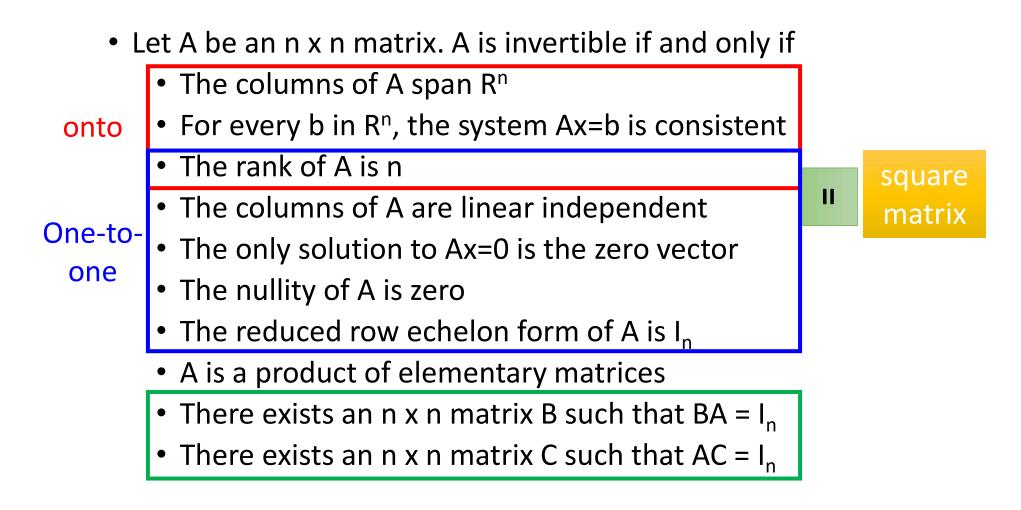


For any vector b,



Cb is always a solution for b

Summary



$$AC = I_n \implies CA = I_n$$
?

Theorem: Let A be an n x n matrix. If there exists an n x n matrix C such that $AC = I_n$, then $CA = I_n$.

(Proof) We first prove that the columns of C (c_1 , c_2 , ..., c_n) are linear independent. Suppose $d_1c_1 + d_2c_2 + ... + d_nc_n = 0$, then

 $d_1 A c_1 + d_2 A c_2 + ... + d_n A c_n = A0 = 0.$

AC=I_n implies $d_1 e_1 + d_2 e_2 + \dots + d_n e_n = 0$, which is only true if d_1, d_2, \dots, d_n are all zero, since e_1, e_2, \dots, e_n are standard bases. Let $x = k_1 c_1 + k_2 c_2 + \dots + k_n c_n = Cy$, for $y = (k_1, k_2, \dots, k_n)^T$. Thus Ax=ACy=y (sinca AC=I_n). CAx=Cy=x, for arbitrary x. Hence CA=I_n

Exercise

AB invertible \Rightarrow *A* and *B* are invertible (Proof)

 $AB \text{ invertible} \Rightarrow \exists C, (AB)C = I$ $\Rightarrow A(BC) = I$ $\Rightarrow A \text{ is invertible}$ $AB \text{ invertible} \Rightarrow \exists C, C(AB) = I$ $\Rightarrow (CA)B = I$ $\Rightarrow B \text{ is invertible}$

Exercise

I - BA invertible $\Rightarrow I - AB$ invertible

(Proof) Suppose I - AB is not invertible $\exists u \neq 0, (I - AB) u = 0 \Rightarrow u = ABu \Rightarrow Bu \neq 0$ Consider (I - BA)Bu = B(I - AB)u = 0Let $B u = v (\neq 0)$. (I - BA)v = 0 $\Rightarrow (I - BA)$ not invertible -- contradiction

Inverse of Elementary Matrices (Chapter 2.3-2.4)

Elementary Row Operation

- Every elementary row operation can be performed by matrix multiplication.
- 1. Interchange

elementary matrix

$$\begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

• 2. Scaling

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{k} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$$

• 3. Adding *k* times row i to row j:

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{k} & \mathbf{1} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ ka+c & kb+d \end{bmatrix}$$

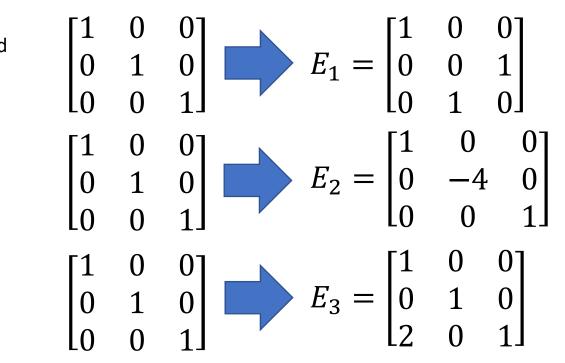
Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

Exchange the 2nd and 3rd rows

Multiply the 2nd row by -4

Adding 2 times row 1 to row 3



Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad E_1 A = \qquad \qquad E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$E_2 A = \qquad \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_3 A = \qquad \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of Elementary Matrix

Reverse elementary row operation

Exchange the 2nd and 3rd rows Exchange the 2nd and 3rd rows
$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \longleftarrow \qquad E_{1}^{-1} = \begin{bmatrix} \\ \end{bmatrix}$$
Multiply the 2nd row by -4 Multiply the 2nd row by -1/4
$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \bigoplus \qquad E_{2}^{-1} = \begin{bmatrix} \\ \end{bmatrix}$$

Adding 2 times row 1 to row 3

Adding -2 times row 1 to row 3

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad \longleftarrow \qquad E_3^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

RREF vs. Elementary Matrix

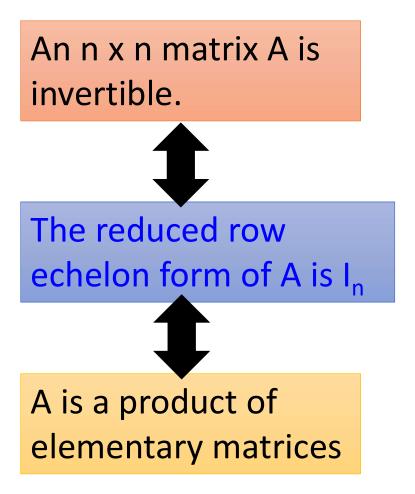
• Let A be an mxn matrix with reduced row echelon form R.

$$E_k \cdots E_2 E_1 A = R$$

 There exists an invertible m x m matrix P such that PA=R

$$P = E_k \cdots E_2 E_1$$

$$P^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$



 $R=RREF(A)=I_n$

$$E_k \cdots E_2 E_1 A = I_n$$

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} I_n$$

$$= E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$

Find Inverse of a Matrix (Chapter 2.3-2.4)

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \qquad \text{Find } e, f, g, h$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, A is not invertible.

 Let A be an n x n matrix. A is invertible if and only if the reduced row echelon form of A is In

$$\frac{E_k \cdots E_2 E_1 A}{A^{-1}} = R = I_n$$

$$A^{-1} = E_k \cdots E_2 E_1$$

- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is a nxn matrix (not RREF)
- If $R = I_n$, then A is invertible

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & I_n \end{bmatrix}$$
$$= \begin{bmatrix} R & E_k \cdots E_2 E_1 \end{bmatrix}$$
$$I_n \qquad A^{-1}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 4 & 8 \end{bmatrix} \xrightarrow{\text{RREF}} \text{In Invertible}$$

$$\begin{bmatrix} A & I_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 6 & | & 0 & 1 & 0 \\ 3 & 4 & 8 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & -2 & -1 & | & -3 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -7 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & | & -20 & 6 & 3 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -16 & 4 & 3 \\ -2 & 1 & 0 & | & 7 & -2 & -1 \\ 0 & 0 & 1 & | & 7 & -2 & -1 \end{bmatrix}$$

$$A^{-1}$$

- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is a nxn matrix (not RREF)
- If $R = I_n$, then A is invertible
 - B = A⁻¹
- To find $A^{-1}C$, transform [A C] into its RREF [R C']

• C' = A⁻¹C

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & C \end{bmatrix} = \begin{bmatrix} R & E_k \cdots E_2 E_1 C \end{bmatrix}$$

$$I_n \qquad A^{-1}$$

Linear Transformation (Chapter 2.6)

Linear Transformation

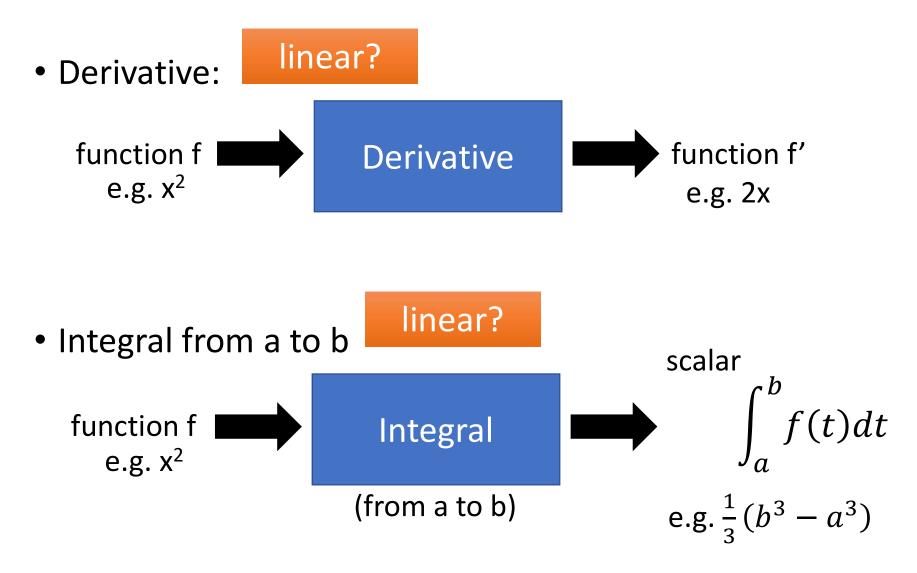
- A mapping (function) T is called linear if for all "vectors" u, v and scalars c:
- Preserving vector addition:

$$T(u+v) = T(u) + T(v)$$

• Preserving vector multiplication: T(cu) = cT(u)

Is matrix transpose linear?

Input: m x n matrices, output: n x m matrices



Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $e_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$ $T(e_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, T(e_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, T(e_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}, e_n = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$

Then the $m \times n$ matrix whose *n* columns correspond to $T(e_i)$

$$A = [T(e_1) \mid T(e_2) \mid \dots \mid T(e_n)] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

is such that $T(\mathbf{v}) = A\mathbf{v}$ for every \mathbf{v} in \mathbb{R}^n .

A is called the standard matrix for *T*.

Proof:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

$$T \text{ is a L.T.} \Rightarrow T(\mathbf{v}) = T(v_1 e_1 + v_2 e_2 + \dots + v_n e_n)$$

= $T(v_1 e_1) + T(v_2 e_2) + \dots + T(v_n e_n)$
= $v_1 T(e_1) + v_2 T(e_2) + \dots + v_n T(e_n)$
$$A\mathbf{v} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a_{11} v_1 + a_{12} v_2 + \dots + a_{1n} v_n \\ a_{21} v_1 + a_{22} v_2 + \dots + a_{2n} v_n \\ \vdots \\ a_{m1} v_1 + a_{m2} v_2 + \dots + a_{mn} v_n \end{bmatrix}$$

$$= v_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + v_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + v_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$
$$= v_{1}T(e_{1}) + v_{2}T(e_{2}) + \dots + v_{n}T(e_{n})$$

Therefore, $T(\mathbf{v}) = A\mathbf{v}$ for each \mathbf{v} in \mathbb{R}^n

$$T(\mathbf{x}) = T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Let A be an $m \times n$ matrix. The function T defined by $T(\mathbf{v}) = A\mathbf{v}$ is a linear transformation from R^n into R^m .

Rotation Matrix

• (Rotation in the plane)

Show that the L.T. $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix

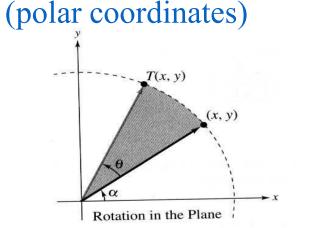
$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

has the property that it rotates every vector in R^2 counterclockwise about the origin through the angle θ .

Sol:

 $v = (x, y) = (r \cos \alpha, r \sin \alpha)$

- r: the length of v
- α : the angle from the positive *x*-axis counterclockwise to the vector *v*



Rotation Matrix

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r\cos\alpha \\ r\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos\theta\cos\alpha - r\sin\theta\sin\alpha \\ r\sin\theta\cos\alpha + r\cos\theta\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos(\theta + \alpha) \\ r\sin(\theta + \alpha) \end{bmatrix}$$

r: the length of $T(\mathbf{v})$

 $\theta + \alpha$: the angle from the positive *x*-axis counterclockwise to the vector $T(\mathbf{v})$

Thus, $T(\mathbf{v})$ is the vector that results from rotating the vector \mathbf{v} counterclockwise through the angle θ .

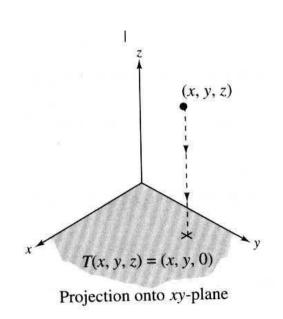
Projection Matrix

• A projection in R^3

The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

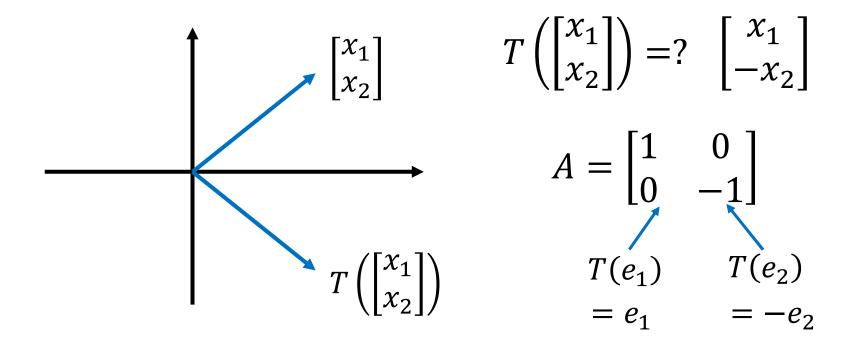
is called a projection in R^3 .



Linear transformation and matrix

- Example: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

special case: ${m {\cal L}}$ is the *horizontal axis*



Composition of Linear Transformations (Chapter 2.7)

Matrix Multiplication - Meaning

Composition

• Given two transformations f and g, the transformation g(f(.)) is the composition $g \circ f$.

$$y = g(v)$$

$$g \quad v = f(x)$$

$$f \quad x$$

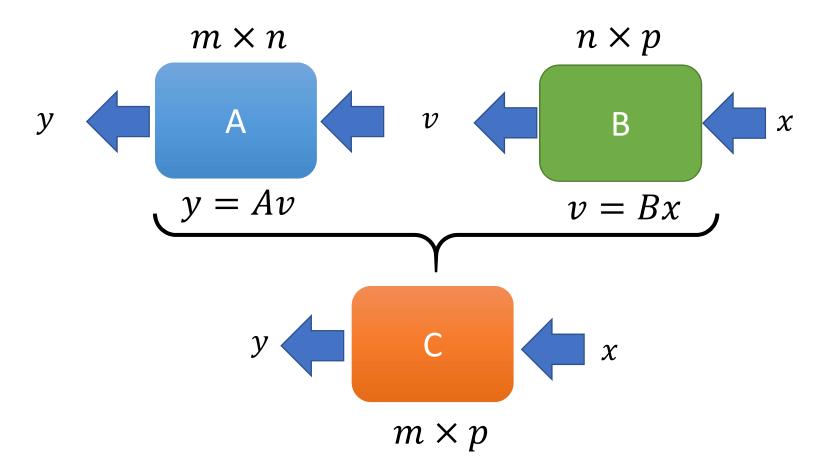
$$y = g(f(x))$$

$$g \circ f \quad x$$

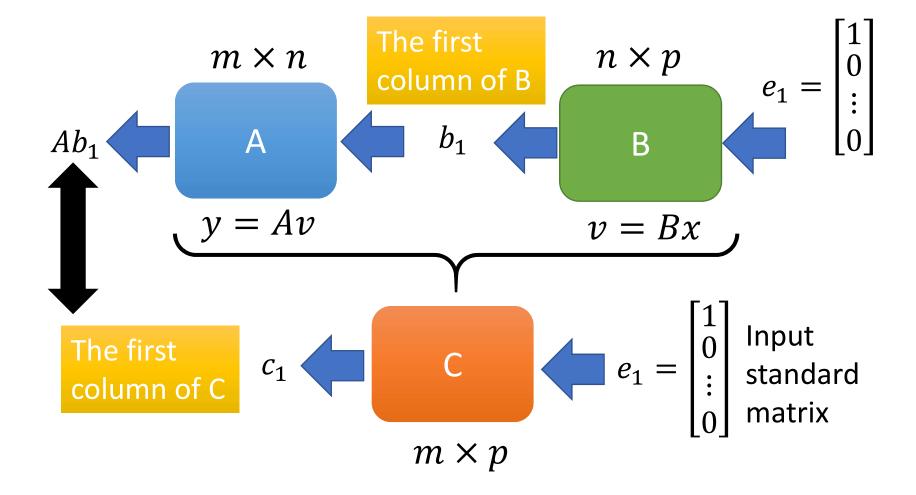
Matrix multiplication is the composition of two linear transformations.

Matrix Multiplication -Composition

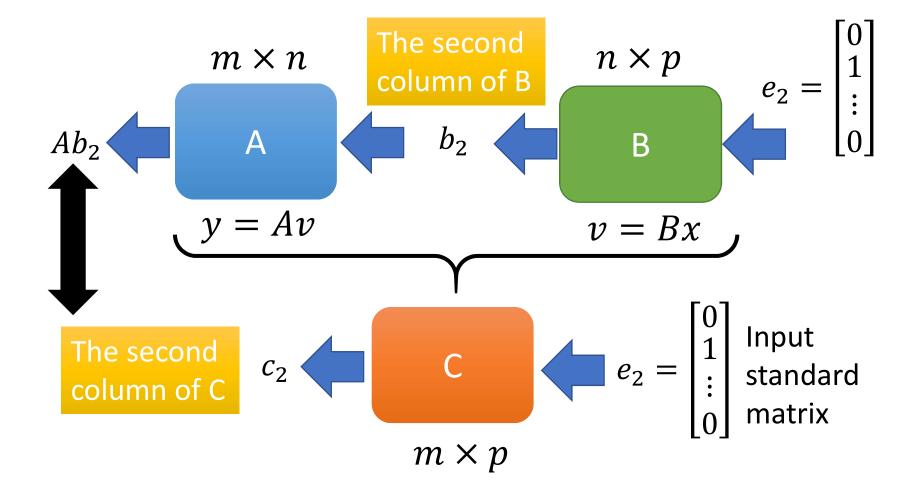
<u>Composition</u>

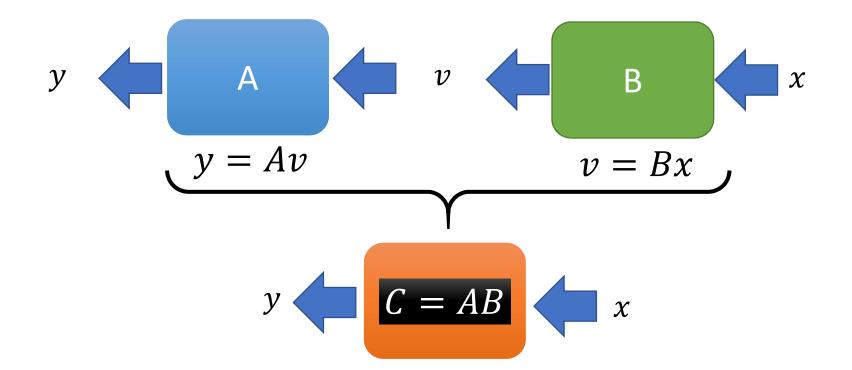


Matrix Multiplication - Meaning



Matrix Multiplication - Meaning

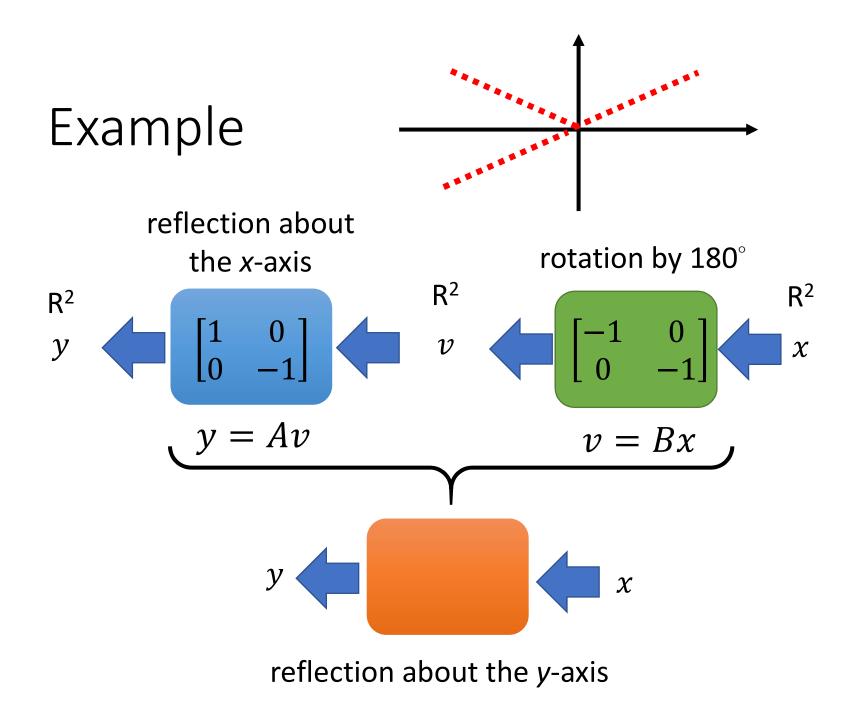




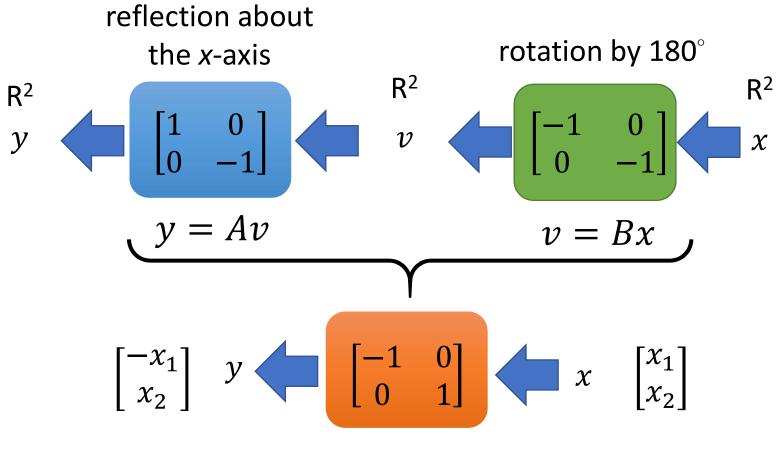
The composition of A and B is

$$C = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

Matrix Multiplication



Example
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} & -1 \end{bmatrix}$$



reflection about the y-axis

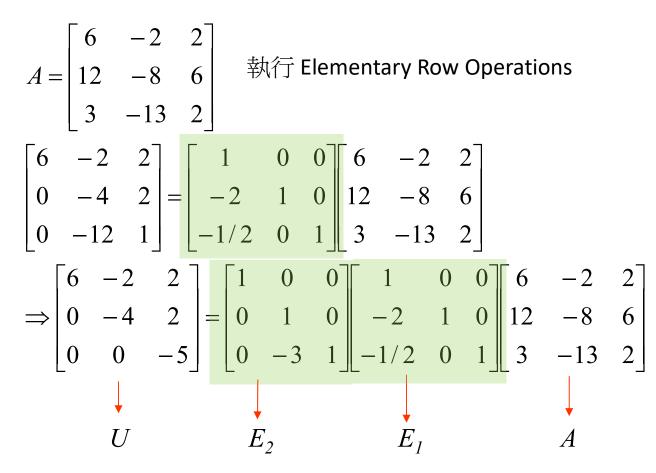
LU Decomposition (Chapter 2.6*)

LU Decomposition

Let A be an $m \times m$ <u>nonsingular</u> square matrix. There exist two L and U such that A=LU, where L is a lower triangular matrix and U is an upper triangular matrix (assuming no row exchange in doing RREF on A).

$$L = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & \cdots & l_{mm} \end{bmatrix} \qquad U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ 0 & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{mm} \end{bmatrix}$$

How to do LU decomposition?



 $A \approx ... \approx U$ (upper triangular) $\Rightarrow U = E_k \cdots E_1 A \Rightarrow A = (E_1)^{-1} \cdots (E_k)^{-1} U$

How to do LU decomposition?

Compute

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{bmatrix}$$

We have
$$A = \begin{bmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 \\ 0 & -4 & 2 \\ 0 & 0 & -5 \end{bmatrix} = LU$$

Use LU decomposition to solve system of linear equations

Based on the above, we have A = LU,

To solve AX = b, we first solve LY = b(AX = LUX = b; Let UX = Y)

Then
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 8 \\ -2 \\ -15 \end{bmatrix}$$

Now, we solve UX = Y

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 6 & -2 & 2 \\ 0 & -4 & 2 \\ 0 & 0 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \\ -17 \end{bmatrix}$$

$$\begin{bmatrix} 6 & -2 & 2 \\ 0 & -4 & 2 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ -2 \\ -15 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

LU Decomposition vs. Gaussian Elimination

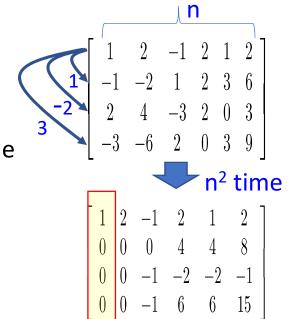
What is the challenge of solving $A\mathbf{x} = \mathbf{b}$!!! Huge matrix A !!!

Time complexity for solving systems of linear equations (on $n \times n$ matrices)

- Gaussian Elimination: O(n³) time
- LU Decomposition: O(n³) time
 - Given L and U, solving (LU)x = b: O(n²) time

Suppose we need to solve $Ax=b_1, b_2, \dots b_m$

- Naïve Gaussian Elimination: O(mn³) time
- LU Decomposition: O(n³) + mO(n²) time



Cholesky Decomposition

A simplified version of LU decomposition for symmetric matrices.

A=LL^T,

where L is a lower triangular matrix

 $\mathbf{\mathbf{X}}$

E.g.
$$\begin{bmatrix} 2 & 4 & -3 \\ 4 & 14 & -9 \\ -3 & -9 & 12 \end{bmatrix} = \begin{bmatrix} 2^{1/2} & 0 & 0 \\ 8^{1/2} & 6^{1/2} & 0 \\ -\frac{9}{(2)}^{1/2} & -\frac{3}{(2)}^{1/2} & 6^{1/2} \end{bmatrix} \begin{bmatrix} 2^{1/2} & 8^{1/2} & -\frac{9}{(2)}^{1/2} \\ 0 & 6^{1/2} & -\frac{3}{(2)}^{1/2} \\ 0 & 0 & 6^{1/2} \end{bmatrix}$$

Matrix Decomposition A=XYZ

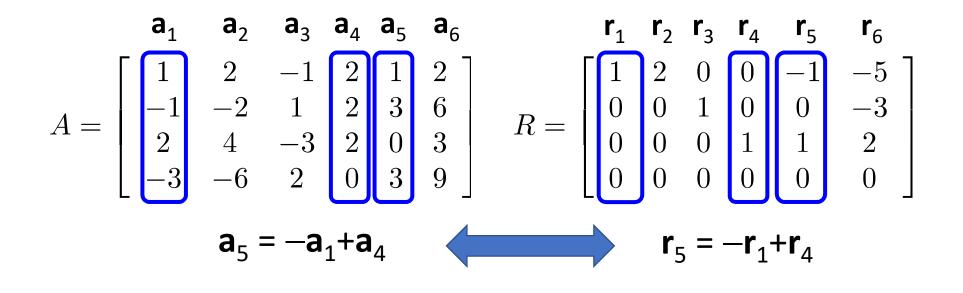
- Decomposing a matrix into the product of a sequence of "nice" matrices (normally 2 or 3) is very useful in Linear Algebra.
- Analogy: Given the product of two prime numbers m=p*q, decomposing m into p and q is considered computationally difficult, on which the famous RSA crypto system is based.
- There are several important matrix decomposition approaches in Linear Algebra, including "Singular Value Decomposition" which is behind the success of Google search.

Some Important Matrix Decompositions

Method	Form	Property	Restriction
LU	A=LU	L: lower-triangular U: upper-triangular	A: square matrix; no interchange in RREF
Cholesky	A=LL [⊤]	L: lower-triangular	A: symmetric square matrix
Eigenvalue	A=PDP ⁻¹	P: columns are eigenvectors D: diagonal (eigenvalues)	A is square with complete eigenvectors
Schur	A=UTU ⁻¹	U: orthonormal T: upper triangular (eigenvalues along diagonal)	A is square, U and T might be complex matrices
QR	A=QR	R: upper triangular Q: orthonormal columns	A has linearly independent column vectors
SVD	A=USV [⊤]	U, V: orthogonal S: diagonal	None

More on Matrix Rank

Recall Column Correspondence Theorem



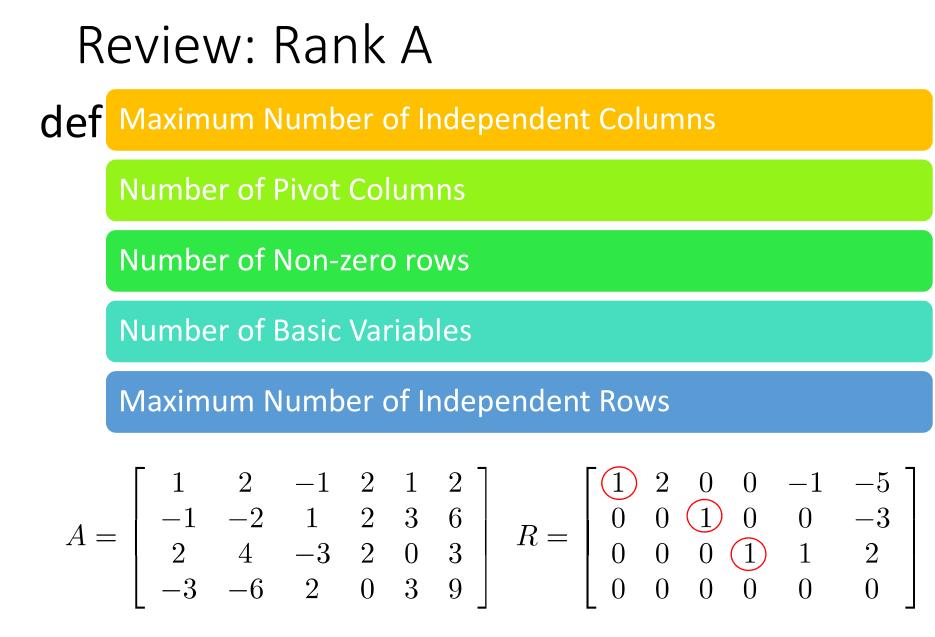
of ind. columns of A = # of ind. columns of R

*

Recall

Row operations preserve "span"

of ind. rows of A = # of ind. rows of R



of ind. Rows (Columns) in A = # of ind. Rows (Columns) in R

 \mathbf{X}

• A is a m x n matrix.

$Rank A \leq min(m, n)$

- A is said to have **full rank** if Rank A = m or Rank A = n.
- A is said to be **rank deficient** if it does not have full rank.
- Rank $A = Rank A^T$

```
Note: Rows of A = Columns of A^T
# ind. Rows of A = # ind. Columns of A^T
Rank A Rank A^T
```


• Let E be an elementary matrix Rank(EA) = Rank(A)

(proof) Elementary row operations preserve row independency.

If A is a m x n matrix, and Q is a m x m invertible matrix.
 Rank(QA) = Rank(A) (Invertible matrix is a product of elementary matrices.)

(1) If A is a m x n matrix, and B is a n x k matrix.
Rank(AB) ≤ min(Rank(A), Rank(B))
(2) If B is a matrix of rank n, then

Rank(AB) = Rank(A)

• (3) If A is a matrix of rank n, then

Rank(AB) = Rank(B)

(1a)

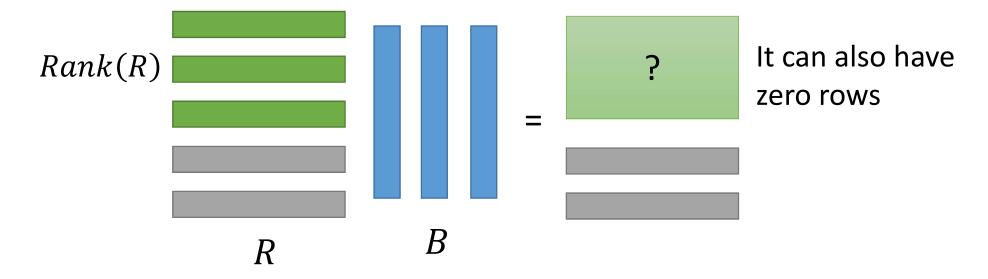
$Rank(AB) \leq Rank(A)$

PA = R in RREF

Rank(AB) = Rank(PAB) = Rank(RB)

P is an invertible matrix

Rank(A) = Rank(PA) = Rank(R)



Properties of Rank (1b) $Rank(AB) \leq Rank(A) \Rightarrow Rank(AB) \leq Rank(B)$

(proof) $rank(AB) = rank(B^TA^T) \leq rank(B^T) = rank(B)$ From (1a)

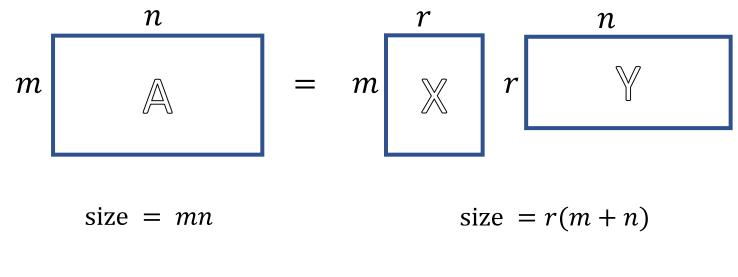
Suppose A is a m x n matrix, and B is a n x k matrix. We know $Rank(AB) \leq min(Rank(A), Rank(B))$ (2) If B is a matrix of rank n, then Rank(AB) = Rank(A)Rank(AB) = Rank(PAB) = Rank(RB)PA = R in RREF P is an invertible matrix Rank(A) = Rank(PA) = Rank(R)**1** b_1 + 0 b_2 + ... + $a_{1n}b_n$ **1** 1 b_1 0 0 a_{1n} 1 $0 b_1 + 1 b_2 + ... + a_{2n} b_n$ Linear 2 b_2 $Rank(R)^2$ 0 a_{2n} 0 Independent = r r b_n 0 0 0 BRB R $\mathbf{\times}$

Suppose A is a m x n matrix, and B is a n x k matrix. We know $Rank(AB) \le min(Rank(A), Rank(B))$ (3) If A is a matrix of rank n, then Rank(AB) = Rank(B)

(proof)
rank(AB) = rank(
$$B^TA^T$$
) = rank(B^T)

Suppose A is a m x n matrix. $Rank(A^{T}A) = Rank(A)$ $(Proof) PA^{T} = R, P$ is an invertible matrix, $R_{n\times n}$ is in RREF. Hence, Rank(R) = Rank(A) $Rank(A^{\mathsf{T}}A) = Rank(P^{-1}RR^{\mathsf{T}}(P^{-1})^{\mathsf{T}}) =$ $Rank(RR^{\mathsf{T}}) = Rank(R_1R_1^{\mathsf{T}}) = Rank(R_1)_{\mathsf{T}}$ a_{1n} = Rank(R) = Rank(A)R₁ 2 0 1 0 a_{2n} r 0 $R^{T} = [(R_{1}^{T}); 0]; R_{1}$ is full rank. 0 $\mathbf{0}$ R

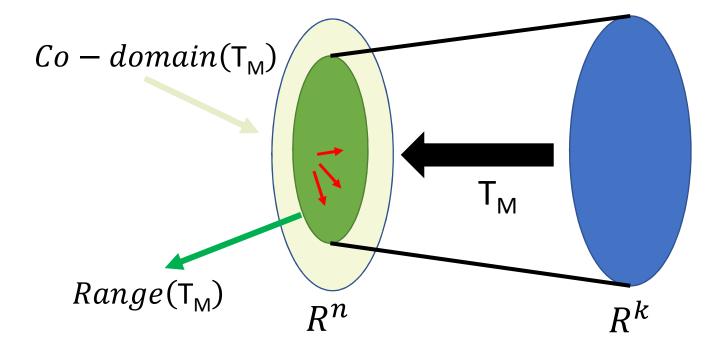
Rank A is the minimum r such that A = XY



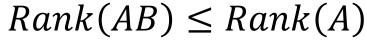
For small r, mn > r(m + n)

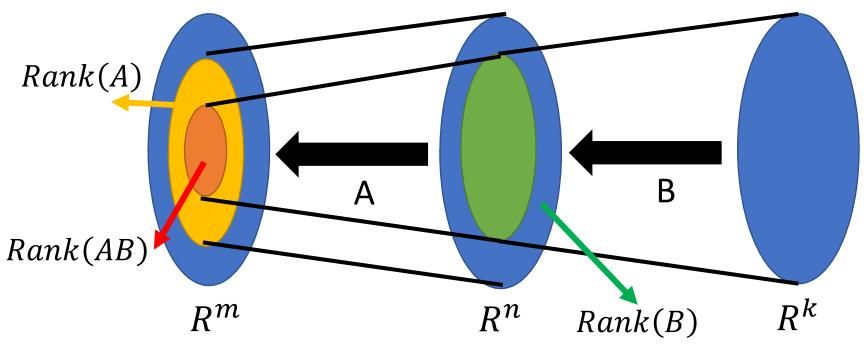
Given a $n \ge k$ matrix M, let T_M be its linear transformation.

Rank(M) is the maximum number of linear independent vectors in range(T_M).



If A is a m x n matrix, and B is a n x k matrix.





HW: Proof $Rank(A + B) \leq Rank(A) + Rank(B)$