Chapter 1

Matrices, Vectors, and Systems of Linear Equations

除了標註※之簡報外,其餘採用李宏毅教授之投影片教材

Vectors and Matrices (Chapter 1.1)

What is a vector?

• Physics student: Vectors have lengths and directions.

- Math student: Vectors satisfy a set of rules: $u + v$, 3u are vectors, $u + v = v + u$, ics student: Vectors have lengths and

tions.
 \longrightarrow

1 student: Vectors satisfy a set of rules:
 $\mathbf{u} + \mathbf{v}$, 3 \mathbf{u} are vectors, $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$,
 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$, ...

5
- EE/CS student: A vector **v** is a sequence of EE/CS student: A vector **v** is a sequence of $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
numbers

Vectors (from EE/CS viewpoint) ectors (from EE/CS viewpoint)
vector **v** is a sequence of numbers $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
omponents: the entries of a vector.
• The i-th component of vector **v** refers to \mathbf{v}_i
• \mathbf{v}_1 =1, \mathbf{v}_2 =2, \mathbf

- A vector **v** is a sequence of numbers
- **Components**: the entries of a vector.
	-

•
$$
v_1=1
$$
, $v_2=2$, $v_3=3$

• If a vector only has less than four components, you can visualize it.

NOTE: Later we will see a more general definition of a "vector"

 $v = |2|$

Vector Set
$$
\begin{Bmatrix} 1 \\ 2 \\ 3 \end{Bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ 2 \end{bmatrix}
$$
 A vector set with 4 elements

• A vector set can contain infinite elements

Vector Set

• \mathcal{R}^n : We denote the set of all **vectors** with *n* entries by \mathbb{R}^n

Scalar Multiplication

Properties of Vector

Objects having the following 8 properties are "vectors".

 $= -$ u

For any vectors **u**, **v** and **w** in \mathcal{R}^n , and any scalars a and b

 \bullet u + v = v + u

$$
\bullet (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})
$$

- **Properties of Vector**

For any vectors **u**, **v** and **w** in \mathbb{R}^n , and any scalars

 u + **v** = **v** + **u**

 (u + **v**) + **w** = **u** + **(v** + **w)**

 There is an element **0** in \mathbb{R}^n such that **0** + **u**

 The • There is an element 0 in \mathbb{R}^n such that $0 + u = u$
- There is an element u' in \mathcal{R}^n such that u' + $u = 0$
- \cdot 1u = u
- (ab) $u = a(bu)$
- $a(u+v) = au + av$ $\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ zero vector
- $(a+b)u = au + bu$

In Chapter 7, the above will be generalized to "vector space"

Matrix
$$
A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 1 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} 3 \times 1
$$
 1 × 3

- If the matrix has m rows and n columns, we say the size of the matrix is m by n, written m x n
- We use $M_{\text{m}xn}$ to denote the set that contains all matrices of size m x n

Matrix

先 Row 再 Column
alar in the i-th row and

Matrix the scalar in the i-th row and

the scalar in the i-th row and

the column is called (i,j)-entry of the matrix deterix
 Index of component: the scalar in the i-th row and
 j-th column is called (i,j)-entry of the matrix
 $\begin{bmatrix}\na_{11} & a_{12} & \cdots & a_{1n}\n\end{bmatrix}$

Matrix

- Two matrices with the same size can add or subtract.
- Matrix can be multiplied by a scalar

$$
A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 6 & 9 \\ 8 & 0 \\ 9 & 2 \end{bmatrix} \qquad 9B
$$

 $A + B$ $A - B$

Properties

- Properties
• A, B, C are mxn matrices, and s and t are scalars
• A + B = B + A
• $(A + B) + C = A + (B + C)$ 9)

1 a separator of the Sea and S and L are scale

1 a separator of the Sea and S and L are scale

1 a s (A + B) + C = A + (B + C)

1 a s(A + B) = sA + sB

1 a s(A + B) = sA + sB

1 a s(A + B) = sA + tA $P = P - 1$
 $P = 1$
 $P = 1$
 $P = 2 + 1$
 $P = 3 + 1$
 $P = 3 + 1$
 $P = 4 + (B + C)$
 $P = 5A + (B + C)$
 $P = 5A + 5B$
	- \bullet A + B = B + A
	- $(A + B) + C = A + (B + C)$
	- $(st)A = s(tA)$
	-
	-

Example 15 Is I₃ a diagonal matrix?
\n**7E5**
\n• Diagonal Matrix
\n• Identify Matrix
\n
$$
I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
\n
$$
I_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_6 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_7 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_8 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_9 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{10} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{11} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{12} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{13} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{14} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{15} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
I_{16} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0
$$

Transpose

Transpose
• If A is an mxn matrix, A^T (transpose of A) is an nxm
matrix whose (i,j)-entry is the (j-i)-entry of A
(1,2) matrix whose (i,j)-entry is the (j-i)-entry of A

Why do we care about the transpose of a matrix? Will explain later!

Transpose

- **Transpose**
• A and B are mxn matrices, and s is a scalar
• $(A^T)^T = A$
• $(sA)^T = sA^T$
- $(A^T)^T = A$
- $(sA)^T = s$
- $(A + B)^T$ This is a linear system \odot

Symmetric Matrix $A^T = A$

$$
A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & -1 \\ 4 & -1 & 5 \end{bmatrix} = A^T \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \neq B^T
$$

The above is an over-simplified definition of a tensor. So what is a tensor?

• Informal Definition: An object that is invariant under a change of coordinates, and has components that change in a special, predictable way under a change of coordinates.

Matrix-Vector Product (Chapter 1.2)

Matrix-Vector Product

$$
A = \frac{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}{\begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{2n}x_n \end{bmatrix}} \text{Dot Product}
$$

$$
Ax = \frac{\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}}{\begin{bmatrix} a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \\ \vdots \\ a_{mn}x_n \end{bmatrix}} \text{mx1}
$$

- - -

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$

Matrix-Vector Product

Weighted sum of Columns

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

\n
$$
x_1 \longrightarrow \text{Linear}
$$

\n
$$
\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow \text{Linear}
$$

\n
$$
\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} = b_n
$$

\n
$$
Ax
$$

\n
$$
x \longrightarrow \text{Linear}
$$

\n
$$
\begin{bmatrix} \text{Linear} \\ \text{System} \end{bmatrix} \quad b = Ax
$$

\nThe matrix A represents the system.

Properties of Matrix-Vector Product (Chapter 1.2)

Matrix-vector Product

• The sizes of matrix and vector should match.

$$
A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 1 & -1 \\ -2 & 1 & 1 \end{bmatrix} \qquad \qquad \mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$

$$
A' = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 4 \end{bmatrix} \qquad A'' = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 0 & -1 \\ 1 & -3 \end{bmatrix}
$$

Properties of Matrix-vector Product

- Properties of

Matrix-vector Product
• A and B are mxn matrices, **u** and **v** are vectors in \mathbb{R}^n ,

and c is a scalar.
• $A(u + v) = Au + Av$ $\overline{}$ and c is a scalar.
- $A(u + v) = Au + Av$
- $A(cu) = c(Au) = (cA)u$
- $(A + B)u = Au + Bu$
- \cdot AO is the mx1 zero vector
- \cdot Ov is also the mx1 zero vector

$$
\bullet I_n v = v
$$

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

$$
= \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}
$$

Properties of Matrix-vector Product Properties of

Matrix-vector Product

• A and B are mxn matrices. If $Aw = Bw$ for <u>all w</u> in
 \mathbb{R}^n . Is it true that $A = B$?
 Ae $\epsilon = a$, where e_i is the i-th standard vector in \mathbb{R}^n

 \mathcal{R}^n . Is it true that $A=B$? es of

rector Product

e mxn matrices. If $Aw = Bw$ for <u>all w</u> in

e that $A = B$?

, where e_j is the j-th standard vector in \mathbb{R}^n

$$
e_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix} \quad Ae_1 = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix} = 1 \cdot a_1 + 0 \cdot a_2 + \cdots + 0 \cdot a_n
$$

$$
= a_1
$$

Area $Ae_1 = Be_1 \quad Ae_2 = Be_2 \quad Ae_n = Be_n$
$$
= b_1 \quad a_2 = b_2 \quad a_n = b_n
$$

Linear Combination (Chapter 1.2)

Linear Combination

- Given a vector set $\{u_1, u_2, \cdots, u_k\}$
- The linear combination of the vectors in the set
	- $v = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k$
	- c_1, c_2, \cdots, c_k are scalars (coefficients of linear combination)

vector set: $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ $-3\begin{bmatrix} 1 \\ 1 \end{bmatrix} + 4\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ coefficients: $\{-3,4,1\}$ $x + c_k u_k$
ars (coefficients of linear
 $-3\begin{bmatrix} 1 \\ 1 \end{bmatrix} + 4\begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
= $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$
其實就是 weighted sum 啦 ☺

Column Aspect

 $A\mathbf{x} = x_1a_1 + x_2a_2 + \cdots + x_na_n$ Linear

Combination

Example 1

$$
3x_1 + 6x_2 = 3
$$

$$
2x_1 + 4x_2 = 4
$$

Has solution or not?

$$
A = \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}
$$

$$
A = \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
$$

Is b the linear combination of columns of A ? $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right\}$ $\Big[\begin{smallmatrix} 3 \ 4 \end{smallmatrix}\Big]$

Example 1

 $3x_1 + 6x_2 = 3$
 $2x_1 + 4x_2 = 4$

Has solution or not?

• Vector set: $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$

• Is $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a linear combination of $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right\}$? NO

Example 2

$$
2x_1 + 3x_2 = 4
$$

\n
$$
3x_1 + 1x_2 = -1
$$

\n
$$
A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ -1 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ -1 \end{bmatrix}
$$

Is b a linear combination of columns of A ? $\left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$ $\left[\begin{smallmatrix} 4 \\ -1 \end{smallmatrix}\right]$

Example 2

- If **u** and **v** are any nonparallel vectors in \mathcal{R}^2 , then every vector in \mathcal{R}^2 is a linear combination of **u** and **v**
	- Nonparallel: **u** and **v** are nonzero vectors, and $\mathbf{u} \neq c\mathbf{v}$.

• If **u**, **v** and **w** are any nonparallel vectors in \mathbb{R}^3 , then every vector in \mathcal{R}^3 is a linear combination of **u**, **v** and **w**? **NO**
Example 3

$$
2x_1 + 6x_2 = -4
$$

\n
$$
1x_1 + 3x_2 = -2
$$

\n
$$
A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} -4 \\ -2 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} -4 \\ -2 \end{bmatrix}
$$

Is b the linear combination of columns of A ? $\begin{bmatrix} -4 \\ -2 \end{bmatrix}$ $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \end{bmatrix} \right\}$

Having Solutions or Not (Chapter 1.3)

Review

Given A and b , let's find x

• Considering any system of linear equations with 2 variables and 2 equations

$$
a_{11}x_1 + a_{12}x_2 = b_1 \quad \dots \text{line 1}
$$

\n
$$
a_{21}x_1 + a_{22}x_2 = b_2 \quad \dots \text{line 2}
$$

More

Variables?

Solving System of **Linear Equations** (Chapter 1.4)

Equivalent

• Two systems of linear equations are **equivalent** if they have exactly the same solution set.

$$
\begin{cases}\n3x_1 + x_2 &= 10 \\
x_1 - 3x_2 &= 0\n\end{cases}
$$
\n
$$
\begin{cases}\nx_1 &= 3 \\
x_2 &= 1\n\end{cases}
$$
\nSolution set: $\begin{cases}\n3 \\
1\n\end{cases}$ \n $\begin{cases}\n3 \\
1\n\end{cases}$ \n $\begin{cases}\n4x_1 &= 3 \\
x_2 &= 1\n\end{cases}$

Equivalent

- Applying the following three operations on a system of linear equations will produce an equivalent one.
- 1. Interchange

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \end{cases} \qquad \begin{cases} x_1 - 3x_2 = 0 \\ 3x_1 + x_2 = 10 \end{cases}
$$

• 2. Scaling (non zero)

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \times (-3) \end{cases} \qquad \begin{cases} 3x_1 + x_2 = 10 \\ -3x_1 + 9x_2 = 0 \end{cases}
$$

• 3. Row Addition

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \times (-3) \end{cases} \qquad \begin{cases} 10x_2 = 10 \\ x_1 - 3x_2 = 0 \end{cases}
$$

Solving system of linear equation

- Strategy
	- We know how to transform a given system of linear equations into another equivalent one.
	- We do it again and again until the system of linear equation is very simple
	- Finally, we know the answer at a glance.

$$
\begin{cases}\nx_1 & -3x_2 = 0 \times (-3) \\
3x_1 + x_2 = 10\n\end{cases}\n\qquad\n\begin{cases}\nx_1 & -3x_2 = 0 \\
10x_2 = 10 \times 1/10\n\end{cases}
$$
\n
$$
\begin{cases}\nx_1 = 3 \\
x_2 = 1\n\end{cases}\n\qquad\n\begin{cases}\nx_1 -3x_2 = 0 \\
x_2 = 1\n\end{cases}\n\qquad\n\begin{cases}\nx_1 = 3 \\
x_2 = 1\n\end{cases
$$

Augmented Matrix

• a system of linear equation

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $A\mathbf{x} = \mathbf{b}$ $\ddot{\cdot}$

$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

Augmented Matrix

• a system of linear equation

a system of linear equation
\n
$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$
\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$
\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$
\n
$$
m \times (n+1)
$$
\n
$$
m \times n \quad m \times 1
$$
\n
$$
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}
$$
\n
$$
a_{m1} \quad a_{m2} \quad \cdots \quad a_{mn} \quad b_m
$$
\n**augmented matrix**

Back to Equivalent

• 1. Interchange

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \end{cases} \qquad \begin{cases} x_1 - 3x_2 = 0 \\ 3x_1 + x_2 = 10 \end{cases}
$$

• 2. Scaling (non zero)

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \text{ X}(-3) \end{cases} \begin{cases} 3x_1 + x_2 = 10 \\ -3x_1 + 9x_2 = 0 \end{cases}
$$

• 3. Row Addition

$$
\begin{cases} 3x_1 + x_2 = 10 \\ x_1 - 3x_2 = 0 \times (-3) \end{cases} \qquad \begin{cases} 10x_2 = 10 \\ x_1 - 3x_2 = 0 \end{cases}
$$

Back to Equivalent elementary row operations

• 1. Interchange Interchange any two rows of the matrix

$$
\begin{bmatrix} 3 & 1 & 10 \ 1 & -3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -3 & 0 \ 3 & 1 & 10 \end{bmatrix}
$$

\n- 2. Scaling (non zero) Multiply every entry of some row by the same nonzero scalar\n
$$
\begin{bmatrix}\n 3 & 1 & 10 \\
 1 & -3 & 0\n \end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n 3 & 1 & 10 \\
 1 & -3 & 0\n \end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n 3 & 1 & 10 \\
 4 & 3 & 0\n \end{bmatrix}
$$
\nAdd a multiple of one row of the matrix to another row

\n
$$
\begin{bmatrix}\n 3 & 1 & 10 \\
 1 & -3 & 0\n \end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n 0 & 10 & 10 \\
 1 & -3 & 0\n \end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n 0 & 10 & 10 \\
 1 & -3 & 0\n \end{bmatrix}
$$

Solving system of linear equation

elementary row operations

- 1. Interchange any two rows of the matrix
- 2. Multiply every entry of some row by the same nonzero scalar
- 3. Add a multiple of one row of the matrix to another row

$$
\begin{cases}\nx_1 & -3x_2 = 0 \times 3 \\
3x_1 + x_2 = 10\n\end{cases}
$$
\n
$$
\begin{bmatrix}\nx_1 & -3x_2 = 0 \\
10x_2 = 10 \times 1/10\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nx_1 & -3x_2 = 0 \\
10x_2 = 10 \times 1/10\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nx_1 & -3x_2 = 0 \\
x_2 = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & -3 & 0 \\
0 & 10 & 10\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nx_1 & = 3 \\
x_2 & = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 3 \\
0 & 1 & 1\n\end{bmatrix}
$$

Solving system of linear equation

- 1. Interchange any two rows of the matrix
- 2. Multiply every entry of some row by the same nonzero scalar
- 3. Add a multiple of one row of the matrix to another row

Reduced Row Echelon Form (RREF) (Chapter 1.4)

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Row Echelon Form (REF)
	- 1. Each nonzero row lies above every zero row
	-

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Row Echelon Form (REF)
	- 1. Each nonzero row lies above every zero row
	-

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Reduced Row Echelon Form (RREF)
	- 1-2 The matrix is in row echelon form
	- 3. The columns containing \Box 1 0 the leading entries are standard vectors.

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form Reduced Row Echelon Form

• A system of linear equations is easily solvable if its

• augmented matrix is in *reduced row echelon form*

• Reduced Row Echelon Form (RREF)

• 13 The matrix is in request on the particle is a
- - 1-2 The matrix is in row echelon form
	- 3. The columns containing the leading entries are standard vectors.

The pivot positions of A are $(1,1)$, $(2,3)$ and $(3,4)$. The pivot columns of A are 1st, 3rd and 4th columns.

RREF is unique!

• A matrix can be transformed into multiple REFs by row operations, but only one RREF

RREF is unique – Proof (by Induction)
 $\begin{bmatrix} 1 & 2 & 0 & 3 & r_1 \\ 0 & 0 & 1 & 4 & r_2 \end{bmatrix}$ **s**= $\begin{bmatrix} 1 & 2 & 0 & 3 & s_1 \\ 0 & 0 & 1 & 4 & s_2 \end{bmatrix}$ **R-S**= $\begin{bmatrix} 0 & 0 & 0 & 0 & r_1 - s_1 \\ 0 & 0 & 0 & 0 & r_2 - s_2 \end{bmatrix}$ **R**= $\begin{bmatrix} 0 & 0 & 1 & 4 & r_2 \end{bmatrix}$ ※ 1 \bullet 1^2 4 0^3 2 $1¹$ LU U U U $1 \bullet \bullet \bullet$ | $\bullet \bullet$ \bullet 2 **II** \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} $1¹$ LO U U **S**= $\begin{vmatrix} 1 & 2 & 0 & 3 & 5_1 \\ 0 & 0 & 1 & 4 & 5_2 \end{vmatrix}$ **R-S**= $\begin{vmatrix} 0 & 0 & 0 & 0 & 7_1 - 5_1 \\ 0 & 0 & 0 & 7_2 - 5_2 \end{vmatrix}$ 2^{\sim} 3^{\sim} $1 - u_1$ A x=0 \leftrightarrow R x=0 and S x=0; hence $(\mathbf{R}\text{-}\mathbf{S})\times=0 \implies x_{5}=0$ 1 2 and 2 $\mathbf{1}$ 2 **AX=U** \leftrightarrow **NX=U** 3 hance $(\mathbf{R}\text{-}\mathbf{S})\mathsf{v}\text{-}\mathsf{S}$ 4 $5^{\text{-}}$ **R, S** are RREF of **A**. Consider x
 Claim: $t_1 \neq 0$. $\begin{bmatrix} r_1 \\ 0 \end{bmatrix}$ 3 r_1

4 r_2

6 $\begin{bmatrix} 1 & 2 & 0 & 3 & s_1 \\ 0 & 0 & 1 & 4 & s_2 \\ 0 & 0 & 0 & 0 & u_1 \end{bmatrix}$ **R-S**= $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

of **A**. Consider x = $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$ **A**x=0 ↔ hence (**R**-

≠ 0. $\begin{bmatrix} r_1 \\ 0 \\ r_2 \\ 0 \\ -1$ If $t_1 = 0$, consider y= $\begin{bmatrix} r_2 \\ 0 \end{bmatrix}$ $\begin{array}{c} 3 \ 3 \ 4 \ 5 \ 4 \ 6 \ 0 \ 1 \ 0 \ 1 \end{array}$ **R-S**= $\begin{bmatrix} 0 & 0 & 0 & 0 & r_1 - s_1 \\ 0 & 0 & 0 & 0 & r_2 - s_2 \\ 0 & 0 & 0 & 0 & t_1 - u_1 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$ **A**x=0 \leftrightarrow **R**x=0 and **S**x=0;

hence (**R-S**)x=0 \rightarrow x₅ =0
 $\begin{bmatrix} 3 & s_1 \\ 4 & s_2 \\ 0 & u_1 \end{bmatrix}$ **R-S**= $\begin{bmatrix} 0 & 0 & 0 & 0 & r_1 - s_1 \\ 0 & 0 & 0 & 0 & r_2 - s_2 \\ 0 & 0 & 0 & 0 & t_1 - u_1 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$ **A**x=0 \leftrightarrow **R**x=0 and **S**x=0;

hence (**R-S**)x=0 \Rightarrow x₅ =0
 Ry=0 -≠ 0 If $t_1 \neq 0 \implies t_1 = 1, r_1 = r_2 = 0$ e RREF of **A**. Consider $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$
 aim: $t_1 \neq 0$. $\begin{bmatrix} r_1 \\ 0 \\ r_2 \\ -1 \end{bmatrix}$

⇒ 0, consider $y = \begin{bmatrix} r_1 \\ 0 \\ r_2 \\ -1 \end{bmatrix}$

⇒ 0 → $t_1 = 1$, $r_1 = r_2 = 0$

wise, we can show that $u_1 \neq 0$ Likewise, we can show that $u_1 \neq 0 \implies u_1 = 1$, $s_1 = s_2 = 0$ = $\begin{vmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{vmatrix}$ **A**x=0 \leftrightarrow **R**x=0 and **S**x=0;
hence (**R-S**)x=0 \rightarrow x₅ =0
Ry=0 -- a contradiction,
since y₅ ≠ 0
 \neq 0 $\rightarrow u_1 = 1$, $s_1 = s_2 = 0$
ES $R = S$ Consider x =

How to find RREF (Chapter 1.4)

Reduced Row Echelon Form (RREF)

• Gaussian elimination: an algorithm for finding the reduced row echelon form of a matrix.

• Because RREF of a matrix is unique, the order of elementary row operations in not important.

$$
\begin{array}{ll}\nx_1 & +2x_2 - x_3 + 2x_4 + x_5 = 2 \\
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6 \\
2x_1 + 4x_2 - 3x_3 + 2x_4 & = 3 \\
-3x_1 - 6x_2 + 2x_3 & +3x_5 = 9\n\end{array}
$$

$$
x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2
$$

\n
$$
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6
$$

\n
$$
2x_1 + 4x_2 - 3x_3 + 2x_4 = 3
$$

\n
$$
-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9
$$

$$
x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2
$$

\n
$$
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6
$$

\n
$$
2x_1 + 4x_2 - 3x_3 + 2x_4 = 3
$$

\n
$$
-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9
$$

$$
x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2
$$

\n
$$
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6
$$

\n
$$
2x_1 + 4x_2 - 3x_3 + 2x_4 = 3
$$

\n
$$
-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9
$$

$$
x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2
$$

\n
$$
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6
$$

\n
$$
2x_1 + 4x_2 - 3x_3 + 2x_4 = 3
$$

\n
$$
-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9
$$

$$
\begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \ 0 & 0 & -1 & -2 & -2 & -1 \ 0 & 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 2 & -1 & 0 & -1 & -2 \ 0 & 0 & -1 & 0 & 0 & 3 \ 0 & 0 & 0 & 1 & 1 & 2 \ 0 & 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}
$$

$$
x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2
$$

\n
$$
-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6
$$

\n
$$
2x_1 + 4x_2 - 3x_3 + 2x_4 = 3
$$

\n
$$
-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9
$$

\n
$$
-1 \quad 0 \quad -1 \quad -2
$$

\n
$$
-1 \quad 0 \quad 0 \quad 0 \quad 3 \quad 8
$$

\n
$$
0 \quad 1 \quad 1 \quad 2
$$

\n
$$
0 \quad 0 \quad 0 \quad 0
$$

1 $\begin{array}{c|cccc}\n\textcircled{1} & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & \textcircled{1} & 0 & 0 & -3 \\
0 & 0 & 0 & \textcircled{1} & 2\n\end{array}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -5 - 2x_2 + x_5 \\ x_2 \\ -3 \\ 2 - x_5 \\ x_5 \\ \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} -5 \\ 0 \\ -3 \\ 2 \\ 0 \end{bmatrix}$

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -5 - 2x_2 + x_5 \\ x_2 & 1 \\ -3 \\ 2 - x_5 & 3 \\ x_5 - 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} -5 \\ 0 \\ -3 \\ 2 \\ 0 \end{bmatrix}
$$

\n
$$
x_1 \text{ free}
$$

\n
$$
x_1 + 2x_2 + -x_5 = -5
$$

\n
$$
x_3 = -3
$$

\n
$$
x_4 + x_5 = 2
$$

\n
$$
x_4 = 2 - x_5
$$

\n
$$
x_5 = -3
$$

\n
$$
x_4 = 2 - x_5
$$

\n
$$
x_5 = -3
$$

\n
$$
x_4 = 2 - x_5
$$

\n
$$
x_5 = -3
$$

\n
$$
x_5 = -3
$$

\n
$$
x_4 = 2 - x_5
$$

\n
$$
x_5 = -3
$$

\n<math display="</math>

Span (Chapter 1.6)
Span

• A **vector set**
$$
S = {\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_k}
$$

Span
• A vector set $S = \{u_1, u_2, \dots, u_k\}$
• Span S is the vector set of all linear combinations
of u_1, u_2, \dots, u_k of u_1, u_2, \dots, u_k

$$
Span S = \{c_1 u_1 + c_2 u_2 + \dots + c_k u_k | for all c_1, c_2, \dots, c_k\}
$$

- Vector set $V = Span S$
	- \bullet "S is a generating set for V'' or "S generates V"
	- One way to describe a vector set with infinite elements

$$
\mathsf{Span} \qquad \qquad c_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Span

\n
$$
c_{1}\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
\n• Let $S_{0} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, what is Span S_{0} ?

\n• Ans: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ (only one member)

\n• (1, 1, 2, 3, 4, 5, 6, 7). The sum of S_{0} is a constant, and the sum of S_{0} is the sum of S_{0} and S_{1} is the sum of S_{0} and S_{2} .

• Let
$$
S_1 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}
$$
, what is Span S_1 ?

•
$$
\text{Span } S_1 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \dots \right\}
$$

• If S contains a non zero vector, then Span S has infinitely many vectors

(Different number of vectors can generate the same space.)

Span

• Let
$$
S_3 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}
$$
, what is Span S_3 ?

Every vector in \mathcal{R}^2 is their linear combination

Span $S_3 = \mathcal{R}^2$

Span

Let $S_3 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ what is Span $S_3 = ?$

Let $S_4 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$ what is Span S_4 =?

Useless Vector in Span (Chapter 1.6)

v是多餘: 【←■■】 v是 S 其餘成員的 Given vector set $S = \{u_1, u_2 \cdots u_k, v\}$ Given vector set $S' = \{u_1, u_2 \cdots u_k\}$ 多餘Vector 的特徵 Given vector set S = { u_1 , u_2
Given vector set S' = { u_1 , u_2

$$
Span S = Span S'
$$

linear combination $(v \in Span S')$

$$
\boldsymbol{v} = \left[\boldsymbol{b}_1 \boldsymbol{u}_1 + \boldsymbol{b}_2 \boldsymbol{u}_2 + \cdots + \boldsymbol{b}_k \boldsymbol{u}_k\right]
$$

Target

$$
\mathbf{w} \in \text{Span } S
$$
\n
$$
\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k + c \mathbf{v}_k \in \text{Span } S'
$$
\n
$$
= (c_1 + cb_1)\mathbf{u}_1 + (c_2 + cb_2)\mathbf{u}_2 \dots + (c_k + cb_k)\mathbf{u}_k
$$
\n
$$
\mathbf{w} \in \text{Span } S'
$$
\n
$$
\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k \quad c = 0
$$
\n
$$
= c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k + c \mathbf{v} \in \text{Span } S
$$

36 Vector i
$$
\frac{1}{2}
$$
 Given vector set $S = \{u_1, u_2 \cdots u_k, v\}$

\nGiven vector set $S' = \{u_1, u_2 \cdots u_k\}$

\n**6** $v \stackrel{\frown}{=} \S$ \S \S

 $v = 0u_1 + 0u_2 + \cdots + 0u_k + 1v$

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

\n
$$
x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}
$$

\nIs *b* the linear combination of
\n
$$
b_1
$$

\n
$$
\vdots
$$

\

Dependent and Independent (Chapter 1.7)

 $Ax=0$

Definition

$$
x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}
$$

- A set of n vectors $\{\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_n\}$ is linearly dependent Find one **Obtain many**
	- If there exist scalars x_1, x_2, \dots, x_n , not all zero, such that

$$
x_1a_1 + x_2a_2 + \dots + x_n a_n = 0
$$

• A set of n vectors $\{\boldsymbol{a}_1^{\top},\boldsymbol{a}_2^{\top},\cdots,\boldsymbol{a}_n\}$ is linearly independent

$$
x_1 a_1 + x_2 a_2 + \dots + x_n a_n = 0
$$

Only if $x_1 = x_2 = \dots = x_n = 0$ unique

- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *dependent*
	- If there exist scalars x_1, x_2, \dots, x_n , not all zero, such that $x_1a_1 + x_2a_2 + \cdots + x_na_n = 0$
- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *independent*

$$
x_1a_1 + x_2a_2 + \dots + x_na_n = 0
$$

Only if $x_1 = x_2 = \dots = x_n = 0$

$$
\begin{bmatrix} -4 \\ 12 \\ 6 \end{bmatrix}, \begin{bmatrix} -10 \\ 30 \\ 15 \end{bmatrix}
$$
Dependent or Independent
dependent

$$
x_1 \begin{bmatrix} -4 \\ 12 \\ 6 \end{bmatrix} + x_2 \begin{bmatrix} -10 \\ 30 \\ -2 \end{bmatrix} = 0
$$

- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *dependent*
	- If there exist scalars x_1, x_2, \dots, x_n , not all zero, such that $x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = 0$
- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *independent*

 $x_1a_1 + x_2a_2 + \cdots + x_na_n = 0$ Only if $x_1 = x_2 = \cdots = x_n = 0$

Dependent or Independent? dependent $\begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$ Dependent or Independent
 $\begin{bmatrix} x_1 \\ 3 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 8 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix} = \mathbf{0}$

$$
x_1\begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix} + x_2\begin{bmatrix} 1 \\ 8 \\ 3 \end{bmatrix} + x_3\begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix} = \mathbf{0}
$$

- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *dependent*
	- If there exist scalars x_1, x_2, \dots, x_n , not all zero, such that $x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = 0$
- A set of n vectors $\{a_1, a_2, \cdots, a_n\}$ is linearly *independent*

 $x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = 0$ Only if $x_1 = x_2 = \cdots = x_n = 0$

$$
\left\{\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix} \right\}
$$
 Dependent or Independent?
dependent
dependent

$$
x_1 \begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix} = \mathbf{0}
$$

Any set containing zero vector would be linearly dependent

Linearly Dependent

(for $n \geq 2$)

Given a vector set $\{a_1, a_2, ..., a_n\}$, there exists scalars $x_1, x_2, ..., x_n$, that are **not all zero**, such that \vert $x_1a_1 + x_2a_2 + \cdots + x_na_n = 0.$

永遠可以找到某㇐項有非 0係數

Given a vector set $\{a_1, a_2, ..., a_n\}$, if there exists any $\|$ a_i , that is a linear combination of other vectors

Linearly Dependent

(for $n \geq 2$)

Given a vector set $\{a_1, a_2, ..., a_n\}$, there exists scalars $x_1, x_2, ..., x_n$, that are **not all zero**, such that \vert $x_1a_1 + x_2a_2 + \cdots + x_na_n = 0.$

en a vector set {**a**₁, **a**₂, ..., **a**_n}, there exists
ars
$$
x_1
$$
, x_2 , ..., x_n , that are **not all zero**, such that

$$
x_1 + x_2 a_2 + \dots + x_n a_n = 0.
$$

$$
a_i = c_1 a_1 + c_2 a_2 ... + c_n a_n
$$

$$
-c_1 a_1 - c_2 a_2 ... + a_i ... - c_n a_n = 0
$$

$$
\overline{\pm} \mathcal{D} \equiv \overline{\pm} \oplus \overline{\pm} \equiv \overline{\pm} \oplus \overline{\pm} \quad \mathcal{E} \oplus \overline{\pm} \equiv \overline{\pm} \oplus \overline{\pm} \quad \mathcal{E}
$$

Given a vector set $\{a_1, a_2, ..., a_n\}$, if there exists any $\|$ a_i , that is a linear combination of other vectors

Linearly Dependent = Vector Set 中有多餘的

Given a vector set $\{a_1, a_2, ..., a_n\}$, there exists scalars $x_1, x_2, ..., x_n$, that are **not all zero**, such that \vert $x_1a_1 + x_2a_2 + \cdots + x_na_n = 0.$

$$
\prod_{i=1}^{n}
$$

$$
(for n \geq 2)
$$

Given a vector set $\{a_1, a_2, ..., a_n\}$, if there exists any $\|$ a_i , that is a linear combination of other vectors

Linearly Independent

= Vector Set 中沒有多餘的

Ax=0 has infinite solutions

• Columns of A are dependent \rightarrow If Ax=b has a solution, it will have Infinite solutions

We can find non-zero solution **u** such that $Au = 0$

 $A\boldsymbol{v}=\mathbf{b}$

 $A(u + v) = b$

There exists **v** such that $\begin{bmatrix} u + v & i s & a \end{bmatrix}$ another solution different to **v**

• If Ax=b has **Infinite** solutions \rightarrow Columns of A are dependent Ax=0 has infinite solutions

$$
u \neq v \qquad \begin{array}{c} Au = b \\ Av = b \end{array} \qquad \qquad \sum A(u - v) = 0
$$

Column Correspondence Theorem (Chapter 1.7)

Column Correspondence Theorem

RREF
\n
$$
A = [\mathbf{a}_1 \cdots \mathbf{a}_n]
$$

\nIf \mathbf{a}_j is a linear
\ncombination of
\nother columns of A
\n $\mathbf{a}_5 = -\mathbf{a}_1 + \mathbf{a}_4$
\n
\n $\mathbf{a}_5 = -\mathbf{a}_1 + \mathbf{a}_4$
\n
\n $\mathbf{a}_1 = \begin{bmatrix} r_1 & \cdots & r_n \end{bmatrix}$
\n**EXERCISE**
\n r_j is a linear combination of the
\n**corresponding** columns of R with
\n $r_5 = -r_1 + r_4$

 a_i is a linear combination of the corresponding columns of A with the same coefficients

$$
a_3 = 3a_1 - 2a_2 \qquad \qquad r_3 = 3r_1 - 2r_2
$$

If r_i is a linear combination of other columns of R

Column Correspondence Column Correspondence
Theorem - Example

• The RREF of matrix A is R $Ax = b$ and $Rx = b$ have the same solution set?

- The RREF of augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ is $\begin{bmatrix} R & b' \end{bmatrix}$ $Ax = b$ and $Rx = b'$ have the same solution set
- The RREF of matrix A is R

 $Ax = 0$ and $Rx = 0$ have the same solution set

How about Rows?

• Are there row correspondence theorem? NO

Check Independence (Chapter 1.7)

Checking Independence Linearly independent $S = \left\{ \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \right\}$ or not?

A set of n vectors $\{a_1, a_2, ..., a_n\}$ is linearly dependent

Given a vector set $\{a_1, a_2, ..., a_n\}$, if there exists any a_i that is a linear combination of other vectors

 $= 0$ have non-zero solution

Checking Independence

$$
\begin{bmatrix}\nx_1 & x_2 & x_3 & x_4 \\
2 & 0 & 4 & 2 & 0 \\
1 & 1 & 1 & 3 & 0\n\end{bmatrix}
$$
 RREF
$$
\begin{bmatrix}\nx_1 & x_2 & x_3 & x_4 \\
1 & 0 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0\n\end{bmatrix}
$$
 dependent
$$
x_1 + 2x_3 = 0
$$

$$
x_2 - x_3 = 0
$$

$$
x_4 = 0
$$

$$
x_4 = 0
$$

$$
\begin{bmatrix}\nx_1 \\
x_2 \\
x_3 \\
x_4\n\end{bmatrix} = \begin{bmatrix}\n-2x_3 \\
x_3 \\
x_3 \\
x_4\n\end{bmatrix} = x_3 \begin{bmatrix}\n-2 \\
1 \\
1 \\
0\n\end{bmatrix}
$$
 setting $x_3 = 1 \begin{bmatrix}\nx_1 \\
x_2 \\
x_3 \\
x_4\n\end{bmatrix} = \begin{bmatrix}\n-2 \\
1 \\
1 \\
2 \\
1 \\
0\n\end{bmatrix}$

Checking Independence $S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$ hot? 其實這題用看 not? 其實這題用看的就 知道答案了!

A set of n vectors $\{a_1, a_2, ..., a_n\}$ is linearly dependent

Given a vector set $\{a_1, a_2, ..., a_n\}$, if there exists any a_i that is a linear combination of other vectors

 $= 0$ have non-zero solution

Column Correspondence Theorem

The pivot columns are linearly independent.

Column Correspondence Theorem

The non-pivot columns are the linear combination of the previous pivot columns.

Independent

Dependent

The column is the linear combination of left pivot column.

Independent

Independent

 $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ dependent

Dependent or Independent? (矮胖型) The columns are dependent dependent

More than 3 vectors in $R³$ must be dependent.

More than m vectors in \mathbb{R}^m must be dependent.

Independent
Rank of a Matrix (Chapter 1.7)

Rank

Rank $R =$ Rank A

Maximum number of Independent Columns A

 $\overline{\mathsf{I}}$

Number of Pivot

Column

$$
= \left[\begin{array}{rrrrrr} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{array}\right]
$$

 \sim

Rank = $? 3$ 3

$$
R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\nRank = ? 3

Number of Non-zero rows

 \prod

Rank

- - Rank $A \leq min(m, n)$

Matrix A is **full rank** if Rank $A = min(m, n)$

Matrix A is rank deficient if Rank A < min(m,n)

- **Pank**

 Given an mxn matrix A:

 Given an mxn matrix A:

 Rank A \leq min(m, n)

 Because "the columns of A are independent • Because "the columns of A are independent" is equivalent to "rank $A = n$ "
	- If m < n, the columns of A are dependent.

In R^m , you cannot find more than m vectors that are independent.

Rank

Rank Maximum number of Nur Independent Columns Number of Pivot Columns Number of Non-zero rows of RREF Number of Basic Variables Rank

Maximum number of

Independent Columns

Number of Non-zero

Number of Basic

Nullity = no. column - rank

Nullity = no. column - rank

Number of zero rows

Number of Free

of RREF

RREF vs. Span (Chapter 1.7)

Consistent or not

 $0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$

• Given Ax=b, if the reduced row echelon form of [A b] is

• Given Ax=b, if the reduced row echelon form of [A **b**] is
 $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ inconsistent

b is NOT in the span of the columns of A

Consistent or not

The Big Picture of $Ax = b$

Square Matrix: 方程式數 = 變數個數 唯一解? 無窮多解? 無解?

Fat Matrix: 方程式數 <<變數個數 很可能有無窮多解

Tall Matrix: 方程式數 > 變數個數 很可能無解

Number of Solutions of $Ax = b$

One Solution

可否找到好的近似解? (Linear regression)

No Solution **Infinite Solutions**

可否找到最小的解?

Pseudo-inverse Matrix (based on SVD) ※

Solutions of $Ax = b$ Zero, One, Infinity ...

No Solution

One Solution

- \bullet b is NOT a linear combination of column vectors of A
- \cdot b is a linear combination of column vectors of A
- Ax=0 only has zero solution

Infinite Solutions

- \cdot b is a linear combination of column vectors of A
- Ax=0 has a non-zero solution

