
113-1 Linear Algebra

Final exam solutions

Ans.

(a) True.

Let p(x), q(x) ∈ P2 and a ∈ R, we have

T (a · p(x) + q(x)) = 3 · (a · p(0) + q(0)) + (−2 · (a · p(1) + q(1)) + a · p′(0) + q′(0))x+ (a · p(2) + q(2))x2

= a ·
(
3p(0) + (−2p(1) + p′(0))x+ p(2)x2

)
+

(
3q(0) + (−2q(1) + q′(0))x+ q(2)x2

)
= a · T (p(x)) + T (q(x)).

We then show that T is a linear transformation.

(b) False.

Since we can find an example where T is not one-to-one, so T is not an isomorphism. An example
of T is not one-to-one is given as follows: Let p ∈ P2 and p(x) = −2x+ x2. We have

T (p(x)) = 3p(0) + (−2p(1) + p′(0))x+ p(2)x2 = 0.

Moreover, if p(x) = 0, we also have
T (p(x)) = 0.

From the above example, T is not one-to-one. Therefore, T is not an isomorphism.

(c) False.

To find the eigenvalues of T , we calculate its matrix representation with respect to the basis
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For B = {1, x, x2}. [T ]B = [a1 a2 a3] and

a1 = [T (1)]B = [3− 2x+ x2]B = [3 − 2 1]T ,

a2 = [T (x)]B = [T (x)]B = [−x+ 2x2]B = [0 − 1 2]T ,

a3 = [T (x2)]B = [−2x+ 4x2]B = [0 − 2 4]T .

Thus,

[T ]B = [a1 a2 a3] =

 3 0 0
−2 −1 −2
1 2 4

 .

To find the eigenvalues, we solve det([T ]B − tI) = 0, where I is the identity matrix. We have

det([T ]B − tI) = det

3− t 0 0
−2 −1− t −2
1 2 4− t

 = (3− t) det

[
−1− t −2

2 4− t

]
= −t(t− 3)2 = 0.

Thus, we find that the eigenvalues of T are t = 0 and t = 3, but rather 0 and −3. Therefore, the
statement is false.

(d) True.

To verify if the set of vectors consisting of the basis of each eigenspace for all eigenvalues of
T constitutes a basis for R3, we compute the dimensions of the eigenspaces corresponding to
eigenvalues 0 and 3:

For the eigenvalue 0, we have

rank ([T ]B − 0 · I) = rank
( 3 0 0

−2 −1 −2
1 2 4

 .
)
= 2,

and we obtain

nullity ([T ]B − 0 · I) = 3− rank ([T ]B − 0 · I) = 3− 2 = 1.

Thus, the dimension of the eigenspace for eigenvalue 0 is 1.

For the eigenvalue 3, we have

rank ([T ]B − 3 · I) = rank
( 0 0 0

−2 −4 −2
1 2 1

)
= 1,

and we obtain

nullity ([T ]B − 3 · I) = 3− rank ([T ]B − 3 · I) = 3− 1 = 2.

Thus, the dimension of the eigenspace for eigenvalue 3 is 2.

Since the sum of the dimensions of the eigenspaces for the eigenvalues 0 and 3 is

1 + 2 = 3 = dim(R3)

which equals to the dimension of R3. The set of vectors consisting of the basis of each eigenspace
constitutes a basis for R3. Thus, the statement is true.
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(e) True.

To determine whether any vector v in P2 can be uniquely represented as a linear combination
of these vectors, we would like to verify whether {1, 1 + 2x, 1 + 2x+ 3x2} is also a basis for P2.
For the set to be a basis, it must satisfy

(1) {1, 1 + 2x, 1 + 2x+ 3x2} is a linearly independent set.

(2) {1, 1 + 2x, 1 + 2x+ 3x2} is a generating set for P2.

In the following, we will address each of these two points.

(1) Let a1, a2, a3 ∈ R, it is obviously that a1 · 1+ a2(1+ 2x) + a3(1+ 2x+3x2) = 0 only when
a1 = a2 = a3 = 0. Thus, {1, 1 + 2x, 1 + 2x+ 3x2} is a linearly independent set.

(2) To determine whether {1, 1 + 2x, 1 + 2x+ 3x2} is a generating set for P2, we have to show
that whether Span{1, 1 + 2x, 1 + 2x+ 3x2} = P2.

(i) Let a1, a2, a3 ∈ R and q ∈ Span{1, 1 + 2x, 1 + 2x+ 3x2}, we have

q(x) = a1 · 1 + a2(1 + 2x) + a3(1 + 2x+ 3x2) = (a1 + a2 + a3) + 2(a2 + a3)x+ 3a3x
2.

Since q ∈ P2, we show that Span{1, 1 + 2x, 1 + 2x+ 3x2} ⊆ P2.

(ii) Let b1, b2, b3 ∈ R and p ∈ P2, we have

p(x) = b1 + b2x+ b3x
2 = c1 · 1 + c2(1 + 2x) + c3(1 + 2x+ 3x2),

where c3 = a3

3 , c2 = a2

2 − a3

3 and c1 = a1 − a2

2 . Since p ∈ {1, 1 + 2x, 1 + 2x+ 3x2}, we
show that Span{1, 1 + 2x, 1 + 2x+ 3x2} ⊇ P2.

We then show that Span{1, 1 + 2x, 1 + 2x+ 3x2} = P2.

As a result, {1, 1+2x, 1+2x+3x2} is also a basis of P2 and any vector v in P2 can be uniquely
represented as a linear combination of these vectors. Therefore, the statement is true.

Grading policy:

1. Correctly determining whether each statement is true or false earns 2 points.

2. No points are be awarded for incorrect answers, regardless of the explanations or calcu-
lations provided.

Ans. We begin by claiming that for an orthonormal basis {b1, ...,bn} of Rn,

n∑
i=1

bib
T
i = In. (1)

For any v ∈ Rn, let v =
∑n

j=1 cjbj . Then,

n∑
i=1

bib
T
i (v) =

n∑
i=1

bib
T
i

 n∑
j=1

cjbj

 =

n∑
i=1

n∑
j=1

cjbib
T
i bj =

n∑
j=1

cjbj = v. (2)
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Returning to the problem, to prove that T is orthogonal, it suffices to show that ⟨T (a), T (b)⟩ =
⟨a,b⟩ for all a,b ∈ R2.

⟨T (a), T (b)⟩ = ⟨a,v cos θ +w sin θ⟩⟨b,v cos θ +w sin θ⟩+ ⟨a,−v sin θ +w cos θ⟩⟨b,−v sin θ +w cos θ⟩
= ⟨a,v cos θ +w sin θ⟩⟨v cos θ +w sin θ,b⟩+ ⟨a,−v sin θ +w cos θ⟩⟨−v sin θ +w cos θ,b⟩
= aT (v cos θ +w sin θ)(v cos θ +w sin θ)Tb+ aT (−v sin θ +w cos θ)(−v sin θ +w cos θ)Tb

= aT
(
vvT cos2 θ +wwT sin2 θ + vvT sin2 θ +wwT cos2 θ

)
b

= aT (vvT +wwT )b

= aT I2b

= aTb

= ⟨a,b⟩.
(3)

The first equation follows from the axioms of inner product and the fact that {v,w} is an orthonor-
mal set. The second equation uses the axioms of the inner product. The sixth equation follows from
our initial claim in (1).

Note that in the definition of T , we are using dot products, so the dot product is used as the inner
product to define the orthogonal operator. In general, any other inner product can be used to define
the orthogonal operator. The same result can be proven with a similar process, but care must be taken
to ensure that the inner product used aligns with the one used in the definition of T .

Grading policy:

1. Write down the equation ⟨T (a), T (b)⟩ = ⟨a,b⟩ or provide any other equivalent definition
of the orthogonal operator can earn 4 points.

2. Provide a detailed proof that T satisfies the definition of the orthogonal operator you
stated gets 6 points.

3. Any errors in your proof will result in a deduction of at least 1 point.

Ans. By computing the reduced row echelon form of A, we can have rank A = 2 and that the first two
columns of A are linearly independent. Thus the first two columns of A form a basis for W = Col A.
The vector z that minimize ||Az− b|| are the solutions to

Az = PWb, (4)

where PW = A(ATA)−1AT . Then we have

z = (ATA)−1ATb (5a)

=

[
5/6 −1/3
−1/3 1/3

] [
1 1 0
0 2 −1

]06
3

 (5b)

=

[
2
1

]
, (5c)
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where

(ATA)−1 =

[
2 2
2 5

]−1

=

[
5/6 −1/3
−1/3 1/3

]
. (6)

Grading policy:

1. Correctly write (5a) earns 5 points.

2. Correctly answer (5c) earns 5 points.

Ans.

(a) For B be a basis of M2×2, it must satisfy

(1) B is a linearly independent set.

(2) B is a generating set for M2×2.

In the following, we will address each of these two points.

(1) Let x1, x2, x3, x4 ∈ R, it is obviously that x1b1 + x2b2 + x3b3 + x4b4 =

[
x1 x2 + x3

x2 x1 + x4

]
=[

0 0
0 0

]
only when x1 = x2 = x3 = x4 = 0. Thus, B is a linearly independent set.

(2) To determine whether B is a generating set for M2×2, we have to show that whether
Span B = M2×2.

(i) Let x1, x2, x3, x4 ∈ R and C ∈ Span B, we have

C = x1b1 + x2b2 + x3b3 + x4b4 =

[
x1 x2 + x3

x2 x1 + x4

]
=

[
a b
c d

]
,

where a = x1, b = x2 + x3, c = x2 and d = x1 + x4. Since C ∈ M2×2, we show that
Span B ⊆ M2×2.
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(ii) Let y1, y2, y3, y4 ∈ R and D ∈ M2×2, we have

D =

[
a b
c d

]
=

[
y1 y2 + y3
y2 y1 + y4

]
= y1b1 + y2b2 + y3b3 + y4b4,

where y1 = a, y2 = c, y3 = b − c and y4 = d − a. Since D ∈ Span B, we show that
Span B ⊇ M2×2.

We then show that Span B = M2×2.

Since B is a linearly independent and also a generating set for M2×2, B is a basis of M2×2.

Grading policy:

1. Show that B is a linearly independent set earns 1 point.

2. Show that Span B = M2×2 and thus B is a generating set of M2×2

(a) Show that Span B ⊆ M2×2 earns 1 point.

(b) Show that Span B ⊇ M2×2 earns 1 point.

3. Earn 1 point if one state that B is a basis of M2×2 since B is a linearly independent and
also a generating set for M2×2.

(b) Given B, we have [T ]B = [a1 a2 a3 a4] and

a1 = [T (b1)]B =
[ [1 2

3 4

] ]
B
= [b1 + 3b2 − b3 + 3b4]B = [1 3 − 1 3]T ,

a2 = [T (b2)]B =
[ [

2 1
4 3

] ]
B
= [2b1 + 4b2 − 3b3 + b4]B = [2 4 − 3 1]T ,

a3 = [T (b3)]B =
[ [0 1

0 3

] ]
B
= [0b1 + 0b2 + b3 + 3b4]B = [0 0 1 3]T ,

a4 = [T (b4)]B =
[ [0 2

0 4

] ]
B
= [0b1 + 0b2 + 2b3 + 4b4]B = [0 0 2 4]T .

The matrix representation of the linear transformation T with respect to the basis B is

[T ]B =


1 2 0 0
3 4 0 0
−1 −3 1 2
3 1 3 4

 . (7)

Grading policy:

1. Correctly answer (7) earns 5 points.

2. No points are awarded for incorrect answers, regardless of the explanations or calculations
provided.
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(c) Through the Gram-Schmidt process, we can obtain the orthonormal basis {v1,v2,v3,v4} of
B = {b1,b2,b3,b4} with respect to the Frobenius inner product. By Gram-Schmidt process, we
can have

x1 = b1 =

[
1 0
0 1

]
, (8)

x2 = b2 −
⟨ b2,x1⟩
||x1||2

x1 =

[
0 1
1 0

]
− 0

2

[
1 0
0 1

]
=

[
0 1
1 0

]
, (9)

x3 = b3 −
⟨ b3,x2⟩
||x2||2

x2 −
⟨ b3,x1⟩
||x1||2

x1 =

[
0 1
0 0

]
− 1

2

[
0 1
1 0

]
− 0

2

[
1 0
0 1

]
=

[
0 1/2

−1/2 0

]
, (10)

x4 = b4 −
⟨ b4,x3⟩
||x3||2

x3 −
⟨ b4,x2⟩
||x2||2

x2 −
⟨ b4,x1⟩
||x1||2

x1 =

[
0 0
0 1

]
− 0− 0− 1

2

[
1 0
0 1

]
=

[
−1/2 0
0 1/2

]
.

(11)

We obtain {x1,x2,x3,x4} as an orthogonal basis of B with respect to the Frobenius inner product.
Normalize x1, x2, x3 and x4, we have

v1 =
x1

||x1||
=

√
2

2

[
1 0
0 1

]
, (12)

v2 =
x2

||x2||
=

√
2

2

[
0 1
1 0

]
, (13)

v3 =
x3

||x3||
=

√
2

2

[
0 1
−1 0

]
, (14)

v4 =
x4

||x4||
=

√
2

2

[
−1 0
0 1

]
. (15)

Lastly, we obtian {v1,v2,v3,v4} as an orthonormal basis of B with respect to the Frobenius
inner product.

Grading policy:

1. Correctly answer (12), (13), (14) and (15) earns 6 points.

2. Deduct 2 points for each incorrect answer to (12), (13), (14), or (15), until the score
reaches 0 points.

3. If you only provide the orthogonal basis without normalizing it

(a) Correctly answer (8), (9), (10) and (11) earns 4 points.

(b) Deduct 1 points for each incorrect answer to (8), (9), (10), or (11), until the score
reaches 0 points.
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(d) Find the projection of h =

[
1 2
3 4

]
to W = Span {b1,b2}. We have

ProjW(h) =
⟨ h,b1⟩
||b1||2

b1 +
⟨ h,b2⟩
||b2||2

b2 (16a)

=
5

2

[
1 0
0 1

]
+

5

2

[
0 1
1 0

]
(16b)

=
5

2

[
1 1
1 1

]
. (16c)

Grading policy:

1. Correctly answer (16c) gets 5 points.

2. If one correctly write (16a) but fail to obtain (16c) due to calculation errors, you will still
earn 2 points.

Ans.

(a) (i) Prove that Null AT ⊆ Null AAT :

∀v ∈ Null AT , ATv = 0 ⇒ AATv = A(ATv) = 0 ⇒ v ∈ Null AAT ⇒ Null AT ⊆ Null AAT

(ii) Prove that Null AAT ⊆ Null AT :

∀v ∈ Null AAT , AATv = 0 ⇒ vTAATv = 0 ⇒ (ATv)TATv = ∥ATv∥2 = 0

⇒ ∥ATv∥ = 0 ⇒ ATv = 0 ⇒ v ∈ Null AT ⇒ Null AAT ⊆ Null AT

Since Null AT ⊆ Null AAT and Null AAT ⊆ Null AT , Null AAT = Null AT .

Grading policy:

• 2 points will be deducted if only (i) or (ii) were correctly proved.

• If prove by showing that Null AAT and Null AT are both {0}, the derivations must
contain sufficient details / justifications. Otherwise some points will be deducted.

(b) (i) Prove that x0 and x− x0 are orthogonal:

xT
0 = (AT (AAT )−1b)T = bT ((AAT )−1)T (AT )T = bT ((AAT )T )−1A = bT (AAT )−1A.

xT
0 (x− x0) = bT (AAT )−1A(x− x0) = bT (AAT )−1(Ax−Ax0) = bT (AAT )−1(b− b) = 0

Therefore x0 and x− x0 are orthogonal.
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(ii) By Pythagorean theorem:

∥x∥2 = ∥x0 + (x− x0)∥2 = ∥x0∥2 + ∥x− x0∥2 ⇒ ∥x0∥2 ≤ ∥x∥2 ⇒ ∥x0∥ ≤ ∥x∥

Grading policy:

• Correctly prove (i) earns 3 points.

• Correctly prove (ii) earns 2 points.

• Partially correct proof might still receive some points if it covers at least some of the key
parts of the solution.

6. (40%) Throughout this problem, we consider the vector space Rn endowed with the usual dot
product and its induced norm. Let A be an n× n symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ λ3 ≥
· · · ≥ λn (counted with multiplicity). We denote the corresponding eigenvectors by v1,v2,v3, . . . ,vn

and they form an orthonormal basis forRn. Answer the following questions. You may use the theorems
or certain properties taught in class.

(a) (5%) Show that the matrix A can be written in the following form:

A =

n∑
j=1

λjvjv
T
j . (17)

(Hint: For any symmetric matrix A, there exist a diagonal matrix D and an orthogonal matrix
P such that A = PDP−1.)

Ans. Since the set of eigenvectors {vj}nj=1 forms a basis of Rn, Theorem 5.2 of the textbook

implies that A = PDP−1, where D is a diagonal matrix with k-th diagonal entry being λk and

P :=
[
v1 v2 · · · vn

]
.

Furthermore, since {vj}nj=1 is orthonormal, the matrix P is an orthogonal matrix by definition.

Theorem 6.9 of the textbook implies that P−1 = PT . Then, by matrix multiplication formula,
we have

A = PDPT (18a)

=
[
v1 v2 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 [
v1 v2 · · · vn

]T
(18b)

=
[
λ1v1 λ2v2 · · · λnvn

] [
v1 v2 · · · vn

]T
(18c)

=

n∑
j=1

λjvjv
T
j (18d)

as claimed.

Grading policy:

1. Correctly show A =
∑n

j=1 λjvjv
T
j by (18) earns 5 points.

2. Any errors in your answers will result in a deduction of at least 1 point.
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(b) (5%) Let

x =


x1

x2

...
xn


be a unit vector in Rn. Calculate √√√√ n∑

j=1

(x · vj)
2
.

Express your answer in the simplest form.

Ans. For any x ∈ Rn, we have the following representation with respect to the orthonormal
basis {vj}nj=1 (see for example p. 376 of the textbook):

x =

n∑
j=1

(x · vj)vj . (19)

Since x is a unit vector, the orthonormal basis {vj}nj=1 guarantees that

1 =
√
xTx =

√√√√ n∑
i=1

n∑
j=1

(x · vi)(x · vj)vi · vj =

√√√√ n∑
j=1

(x · vj)2 = 1. (20)

Grading policy:

1. Correctly obtain
√∑n

j=1(x · vj)2 = 1 by calculating (20) earns 5 points.

2. Failing to answer
√∑n

j=1(x · vj)2 = 1 but correctly writing (19) earns 2 points.

(c) (5%) Consider a function
f(x) = xTAx, x ∈ Rn.

Show that there exists a unit vector x1 ∈ Rn such that f(x1) ≥ f(x) for all unit vectors x ∈ Rn.
Find an instance of x1 and the corresponding f(x1).

Ans. Using (17), we have

f(x) = xT
n∑

j=1

λjvjv
T
j x (21a)

=

n∑
j=1

λj(x
Tvj)

2 (21b)

≤
n∑

j=1

λ1(x
Tvj)

2 (21c)

= λ1, (21d)

where the last line follows from (20) in Problem (b). This proves the first part.

Using (17) and the orthonormal basis {vj}nj=1, the eigenvector v1 saturates the above inequality,
i.e. x1 = v1 and f(x1) = f(v1) = λ1.
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Grading policy:

1. Answering f(x1) = λ1 and x1 = v1 along with providing correct reasons (e.g. using (21))
earns 5 points.

2. Provide correct reasons (e.g. using (21)) but fail to answer f(x1) = λ1 and x1 = v1 earns
3 points.

3. Correctly answer f(x1) = λ1 or x1 = v1 without providing reasons earns 1 points each.

(d) (5%) Let V be a subspace of Rn. We say that V is an invariant subspace of an n×n matrix B if

Bx ∈ V, ∀x ∈ V.

Now suppose a subspace V of Rn is an invariant subspace of an n × n symmetric matrix A.
Prove that its orthogonal complement, i.e., V ⊥, is also an invariant subspace of A.

Ans. We need to show that Ax ∈ V ⊥ for all x ∈ V ⊥. Indeed, for all y ∈ V ,

(Ax)Ty = xTATy = xTAy = 0, (22)

because V is an invariant subspace of A, i.e., Ay ∈ V , and recalling that x ∈ V ⊥. This proves
the claim.

Grading policy:

1. Complete the proof with (22) earn 5 points.

2. Any errors in your answers will result in a deduction of at least 1 point.

(e) (5%) For every integer k ∈ {1, 2, . . . , n}, find a subspace V of Rn with dimension (n − k + 1)
such that

λk = max
x∈V :∥x∥=1

xTAx. (23)

Justify your answer.

Ans. The case of k = 1 has been shown in (c), where V = Rn. For the case of k = 2,
we may want to choose any subspace that is orthogonal to Span {v1}. On the other hand,
Span {v1} is an invariant subspace of A because v1 is an eigenvector of A. Plus, (d) implies
that (Span {v1})⊥ is also an invariant subspace of A. Hence, we choose the (n− 1)-dimensional
subspace V = (Span {v1})⊥ = Span {v2, . . . ,vn}. Applying the argument employed in (c) but
now restricting the underlying vector space Rn to V , it holds that λ2 = maxx∈V :∥x∥=1 x

TAx.

For every integer k, we then choose an (n− k+ 1)-dimensional subspace V = Span {vk, . . . ,vn}
so that λk = maxx∈V :∥x∥=1 x

TAx by following the similar reasoning.

Grading policy:

1. Answer a (n − k + 1)-dimensional subspace V = Span{vk, ...,vn} and correctly justify
(23) by using V (5 points).

2. Answer a (n−k+1)-dimensional subspace V = Span{vk, ...,vn} but not correctly justify
(23) by using V (3 points).
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(f) (5%) Let k be an integer, K be an k-dimensional subspace of Rn, and V be an (n − k + 1)-
dimensional subspace of Rn. Prove that K ∩ V is a nonzero subspace of Rn.

(Hint: Recall that Rn can only have at most n linearly independent vectors.)

Ans. We first show that K ∩ V is a subspace of Rn. Firstly, 0 ∈ K ∩ V since 0 ∈ K and 0 ∈ V .
For all x1,x2 ∈ K ∩ V and real scalars c1 and c2, we have{

c1x1 + c2x2 ∈ K

c1x1 + c2x2 ∈ V
,

because K and V are subspaces. Then, c1x1 + c2x2 ∈ K ∩V , showing that K ∩V is a subspace.

We pick k linearly independent vectors in K, say {x1,x2, ...,xk} ⊂ K, and pick (n − k + 1)
linearly independent vectors in V , say {y1,y2, ...,yn−k+1} ⊂ V . SinceRn can only have at most n
linearly independent vectors, the union {x1,x2, ...,xk}∪{y1,y2, ...,yn−k+1} is linearly dependent.
Then, there exists a set of non-all-zero scalars {a1, a2, ..., ak} and {b1, b2, ..., bn−k+1} such that∑k

i=1 aixi+
∑n−k+1

j=1 bjyj = 0. Then,
∑k

i=1 aixi = −
∑n−k+1

j=1 bjyj ̸= 0 because, by construction,

linear independence of the set {x1,x2, ...,xk} and {y1,y2, ...,yn−k+1} implies
∑n−k+1

j=1 bjyj ̸= 0.

Note that the left-hand side
∑k

i=1 aixi belongs toK and the right hand side
∑n−k+1

j=1 bjyj belongs

to V . This means that K ∩ V contains a nonzero vector
∑k

i=1 aixi = −
∑n−k+1

j=1 bjyj , proving
the claim.

Grading policy:
Part 1: K ∩ V is a subspace of Rn (2 points).

1. No criteria (implicitly) verified (0 points).

2. Other errors (e.g. incomplete statement, typo, conclusion missing...) (1 point).

3. Flawless (2 points).

Part 2: K ∩ V is nonzero (or nontrivial) (3 points). This part can be proved by contradiction,
which is annotated in the following grading.

1. Invalid justification (e.g. wrong inference or unclear inference with no direct connections
to the result) (0 points).

2. No substantial explanation of why the union of 2 linearly independent sets in K and L is
still a linearly independent set in Rn if K ∩ V = {0} (proof by contradiction) (1 point).

3. No substantial explanation of why a set of n+1 linearly independent vectors in Rn leads
to a contradiction. (proof by contradiction) (1 point).

4. No substantial explanation of why the union of 2 linearly independent sets in K and L is
a linearly dependent set in Rn (1 point).

5. No justification of why it is impossible that K ∩ V = {0} given the union of 2 linearly
independent sets in K and L is linearly dependent in Rn (1 point).

6. Other errors (e.g. incomplete statement, typo, conclusion missing...) (2 points)

7. Flawless (3 points).

Additional Note:

1. Only the trivial case n = 1 is proved with no scores in previous parts (1 point).
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(g) (10%) Prove that for every integer k ∈ {1, 2, . . . , n},

λk = min
V⊆Rn : dimV=n−k+1

max
x∈V : ∥x∥=1

xTAx. (24)

Here, the minimization is over all (n− k + 1)-dimensional subspaces of Rn.

Ans. Problem (e) already showed the inequality ‘≥’ in (24). To prove the converse, we need to
show that for any (n − k + 1)-dimensional subspace V of Rn, there exists a unit vector x ∈ V
satisfying λk ≤ xTAx. To that end, we would like to find a unit vector x ∈ V of the form:

x =

k∑
j=1

cjvj (25)

with
∑k

j=1 c
2
j = 1 (by Problem (b)).If so, then

xTAx =

k∑
j=1

λjc
2
j ≥

k∑
j=1

λkc
2
j = λk.

Since the (n− k + 1)-dimensional subspace V of Rn is arbitrary, we have shown

λk ≤ inf
V⊆Rn : dimV=n−k+1

sup
x∈V : ∥x∥=1

xTAx

= min
V⊆Rn : dimV=n−k+1

max
x∈V : ∥x∥=1

xTAx,
(26)

where supremum in the last line can be attained because of the Extreme Value Theorem, the fact
that x 7→ xTAx is a continuous function, and that the unit sphere x ∈ V : ∥x∥ = 1 is compact.
The infimum can be attained because of the existence shown in Problem (e).(Note: One does
not have to show that the inf-sup can be attained. Writing min-max in (26) is just fine.)

Finally, it remains to show that a vector x ∈ V of the form in (25) does exist. Indeed, the subspace
K := Span {v1, . . . ,vk} is of dimension k. By the result of Problem (f),we have K ∩ V ̸= {0}.
Hence, we can choose such a unit vector x ∈ K ∩ V ⊂ V , concluding the proof.
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Grading policy :
Part 1: for any (n−k+1)-dimensional subspace V of Rn, there exists x =

∑k
j=1 cjvj ∈ V with∑k

j=1 c
2
j = 1. (6 points)

1. Invalid justification (e.g. wrong inference or unclear inference with no direct connections
to the result) (0 points)

2. More than 1 implicit statement (3 points)

3. 1 implicit statement (4 points)

4. Typo (5 points)

5. Flawless (6 points)

Part 2: λk ≤ xTAx (3 points).

1. No clear mention of Part 1 statement (0 points)

2. Wrong derivation or no derivation (0 points)

3. Implicit statement (1 point)

4. Typo (2 points)

5. Flawless (3 points)

Part 3: There exists a subspace V of Rn with dimension (n − k + 1) such that λk =
maxx∈V :||x||=1 x

TAx, that is, Problem 6(e). (1 point)

1. No clear mention of statements for each part (0 points)

2. Otherwise (1 point)

Additional Note:

1. Only the trivial case n = 1 is proved with no scores in previous parts (1 point)
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