Problem 4-1:

[Ref: HW4_林柏宇 林柏宇_DCS_HW04_20190426_stability, controllability, observability]

The characteristic equation of the closed-loop system is:

where K > 0

Using root locus, starting points are z=0, 0.2, 0.4.

To find the crossing point that roots cross the **unit circle**, let:

01	
z = a + bi where $a^2 + b^2 = 1$	(1.2)
Apply Equation (1.2) to Equation (1.1), we can obtain:	
(a+bi)(a+bi-0.2)(a+bi-0.4) = -K	(1.3)
Multiply with $(a - bi)$, and reorganize Equation (1.3):	
$a^2 - b^2 - 0.6a + 0.08 + (2ab - 0.6b)i = -K(a - b)i = $	bi) (1.4)
Reorganize Equation (1.4) separate real and imaginary parts:	

Reorganize Equation (1.4), separate real and imaginary parts:

$(a^2 - b^2 - 0.6a + 0.08) = -Ka$	(1.5)
b(2a-0.6) = Kb	(1.6)

For the case when $b \neq 0$, replace b^2 in Equation (1.5) by $b^2 = 1 - a^2$, we get Equation (1.7)

$$a^{2} - (1 - a^{2})^{2} - 0.6a + 0.08 = -a(2a - 0.6)$$
 (1.7)

Therefore,

$$a^2 - 0.3a - 0.23 = 0 \tag{1.8}$$

So,

$a \approx 0.652 \ or - o.352$	(1.9)
	()

From Equation (1.6), and apply Equation (1.9):

$K = 2a - 0.6 \approx 0.704 \ or - 1.304$	(1.10)
---	--------

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 多考答案	Date: 4/24, 2021

For another case that root locus may also cross the unit circle for b = 0 and $a = \pm 1$. Follow Equation (1.1), when b = 0, a = -1

$$-1(-1-0.2)(-1-0.4) + K = 0$$

$$K = 1.68$$
(1.11)

Follow Equation (1.1), when b = 0, a = 1

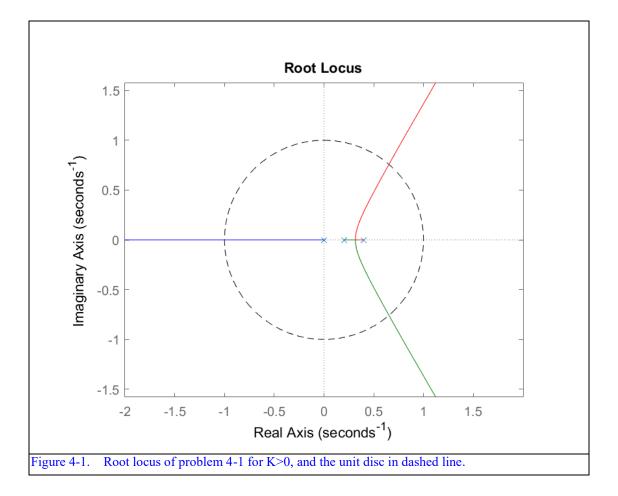
$$K = -0.48$$
 (1.12)

Therefore, consider Equation (1.10) and Equation (1.11) and K > 0:

$\begin{cases} K > 0 \\ K \le 0.704 \\ K \le 1.68 \end{cases}$	(1.13)
--	--------

We can conclude the answer:

0 < V < 0.704	Ans. of
$0 < K \leq 0.704$	Pro. 4-1



HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 多考答案	Date: 4/24, 2021

Problem 4-2:

[Ref: HW4_楊軒昱 楊軒昱_R07921006_DCS_HW4_Stability, Controllability, Observability]

As we know, the discrete time state-space model can be written like below:

x[k+1] = Fx[k] + Hu[k]	(2,1)
y[k] = Cx[k] + Du[k]	(2.1)

Compare Equation (2.1) to the question, we can get:

$\mathbf{F} = \begin{bmatrix} 0.5 & -0.5\\ 0 & 0.25 \end{bmatrix}$	
$\mathbf{H} = \begin{bmatrix} 6\\ 4 \end{bmatrix}$	(2.2)
C = [2 -4]	

(a)

To check whether the state-space model is stable, we have to find the eigenvalue of matrix F in Equation (2.2), which means we have to solve

$\lambda I - F = 0 \tag{2.3}$

And we can get

$\lambda = 0.5, 0.25$ (2.4)	
-----------------------------	--

Because the magnitude of both eigenvalues are smaller than 1, which means

the eigenvalues are inside the unit circle. Hence, the system is stable according to

Theorem 3.1 on page 11 of the lecture note: 107-2_dcs22_Stability.pdf.

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 参考答案	Date: 4/24, 2021

(b)

To check whether the state-space model is observable, we can check it by

calculating W_o in Equation (2.5)

$W_o = \begin{bmatrix} C \\ CF \end{bmatrix} = \begin{bmatrix} [2 & -4] \\ [2 & -4] \end{bmatrix} \begin{bmatrix} 0.5 & -0.5 \\ 0 & 0.25 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$	(2.5)	
--	-------	--

Because the rank of W_o is 1, which is not full rank, the state-space model is

not observable according to Theorem 3.8 on page 17 of the lecture note: 107-

2_dcs23_ControllabilityObservability.pdf.

(c)

To check whether the state-space model is controllable, we can check it by

calculating W_c in Equation (2.6)

$W_c = [H FH] =$	$\begin{bmatrix} 6 \\ 4 \end{bmatrix} \begin{bmatrix} 0.5 & -0.5 \\ 0 & 0.25 \end{bmatrix}$	$\begin{bmatrix} 6\\4 \end{bmatrix} = \begin{bmatrix} 6 & 1\\4 & 1 \end{bmatrix}$	(2.6)
-------------------	---	---	-------

Because the rank of W_c is 2, which is full rank, the state-space model is

controllable according to Theorem 3.7 on page 7 of the lecture note: 107-

2_dcs23_ControllabilityObservability.pdf.

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 多考答案	Date: 4/24, 2021

Problem 4-3

[Ref: HW4_林柏宇 林柏宇_DCS_HW04_20190426_stability, controllability, observability]

(a)

The original state function is denoted in Equation (3.1)

$x(k+1) = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$	1 0 0	$\begin{bmatrix} 2\\3\\0 \end{bmatrix} x(k) +$	$\begin{bmatrix} 0\\1\\0\end{bmatrix} u(k)$	(3.1)
--	-------------	--	---	-------

Because we want to get a control sequence, first, we can take k = 0 and k = 1 into Equation (3.1), and we can get Equation (3.2) and Equation (3.3)

$x(1) = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(0) = \begin{bmatrix} 3 \\ 3 + u(0) \\ 0 \end{bmatrix}$	(3.2)
$x(2) = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 3 + u(0) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(1) = \begin{bmatrix} 3 + u(0) \\ u(1) \\ 0 \end{bmatrix}$	(3.3)

Follow Equation (3.3), if we set $\begin{cases} u(0) = -3 \\ u(1) = 0 \end{cases}$, we can reach the origin from the initial

state x(0). That is, $x(2) = \begin{bmatrix} 3+u(0) \\ u(1) \\ 0 \end{bmatrix} = \begin{bmatrix} 3-3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So the answer for the control

sequence is

(u(0) = -3)	Ans. of
u(1) = 0	4-3 (a)

(b)

$F^2 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$	$ \begin{array}{ccc} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{array} $ $ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	(3.4)
$F^3 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	(3.5)

In general, it would take 3 steps because it is a 3rd order system.

However, we reach the origin by **<u>2 steps</u>** in this case.

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 参考答案	Date: 4/24, 2021

(c) Let's check out the controllability,

$W_c = \begin{bmatrix} H & FH & F^2H \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	(3.6)
$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		(3.0)

We can conclude from Equation (3.6) that W_c is not full rank, that is, this system is **uncontrollable**, but may be controlled.

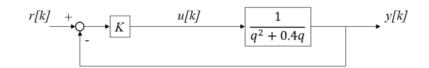
 $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ is not in the column space of W_c and can therefore not be reached from the origin. It's easily seen from the state space description that x_3 can't be changed from its initial value.

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 参考答案	Date: 4/24, 2021

Problem 4-4

[Ref: HW4_林柏宇 林柏宇_DCS_HW04_20190426_stability, controllability, observability]

(a)



For closed-loop system, the transfer function is in Equation (4.1):

$$T = \frac{\frac{K}{q^2 + 0.4q}}{1 + \frac{K}{q^2 + 0.4q}} = \frac{K}{q^2 + 0.4q + K}$$
(4.1)

The characteristic equation of the closed-loop system is in Equation (4.2):

$$q^2 + 0.4q + K = 0 \tag{4.2}$$

Using Jury's stability test on Equation (4.2),

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4.3)
---	-------

The system is stable if $\begin{cases} 1 - K^2 > 0\\ 1 - K^2 - \frac{0.16(1-K)}{1+k} > 0 \end{cases}$ that is,

$$\begin{cases} 1 - K^2 > 0\\ (1 - K)(1 + K)(K + 0.6)(K + 1.4) > 0 \end{cases}$$
(4.4)

Therefore, follow the Equation (4.3), we can obtain:

$$\begin{cases} -1 < K < 1\\ -1.4 < K < -1 \text{ or } -0.6 < K < 1 \end{cases}$$
(4.5)

Finally, we can conclude the answer in Equation (4.6):

$$-0.6 < K < 1$$
 Ans. of 4-4 a

(b) Since e(k) = r(k) - y(k), we can obtain:

$$E(z) = (1 - T(z))R(z)$$
 (4.7)

HW 4: Stability, Controllability, Observability	Digital Control Systems, Spring 2021, NTU-EE
Name: 多考答案	Date: 4/24, 2021

When r(k) is a step function, and K = 0.5, the system is stable, the final-value theorem can be used:

$$\lim_{k \to \infty} e(k) = \lim_{z \to 1} \frac{z - 1}{z} E(z) = \lim_{z \to 1} \frac{z - 1}{z} \left(1 - \frac{K}{z^2 + 0.4z + K} \right) \left(\frac{z}{z - 1} \right)$$
Ans. of
$$= \lim_{z \to 1} \frac{z^2 + 0.4z}{z^2 + 0.4z + K} = \frac{1.4}{1.4 + K} = \mathbf{0}.737$$
4-4 b