Midterm Exam, Control System, 109-2 (2021) Date: Friday, April 30, 2021. Time: 2pm-4pm.

Closed books, closed notes, no calculators. Only pens and erasers are allowed.

Part A. [20%] Find the best choice. (評分標準: 只需寫出正確選項)

Consider the following figures and answer the following questions.

Figure 8

Figure 9

Figure 10

(A1) For the step response shown in Figure 1, please find the best possible transfer function:

(A)
$$\frac{1}{(s+1)}$$
; (B) $\frac{4}{(s+4)}$; (C) $\frac{16}{(s+16)}$; (D) $\frac{64}{(s+64)}$;

(A2) For the step response shown in Figure 2, please find the best possible transfer function:

(A)
$$\frac{4}{(s+4)}$$
; (B) $\frac{8}{(s+8)}$; (C) $\frac{16}{(s^2+12s+32)}$; (D) $\frac{32}{(s^2+33s+32)}$;

(A3) For the step response shown in Figure 3, please find the best possible transfer function:

(A)
$$\frac{16}{(s^2+12s+32)}$$
; (B) $\frac{32}{(s^2+12s+32)}$; (C) $\frac{16}{(s^2+33s+32)}$; (D) $\frac{32}{(s^2+33s+32)}$;

(A4) For the step response shown in Figure 4, please find the best possible transfer function:

(A)
$$\frac{73}{(s^2+6s+73)}$$
; (B) $\frac{72}{(s^2+17s+72)}$; (C) $\frac{400}{(s^2+6s+409)}$; (D) $\frac{400}{(s^2+40s+375)}$;

(A5) For the step response shown in Figure 5, please find the best possible transfer function:

(A)
$$\frac{(4s+16)}{(s^2+10s+16)}$$
; (B) $\frac{(4s-16)}{(s^2+10s+16)}$; (C) $\frac{(-4s-16)}{(s^2+10s+16)}$; (D) $\frac{(16-4s)}{(s^2+10s+16)}$;

(A6) For the step response shown in Figure 6, please find the best possible transfer function:

(A)
$$\frac{(60-10s)}{(s^2+8s+80)}$$
; (B) $\frac{(20-10s)}{(s^2+8s+80)}$; (C) $\frac{(20-10s)}{(s^2+12s+32)}$; (D) $\frac{(60-10s)}{(s^2+12s+32)}$;

(A7) For the step response shown in Figure 7, please find the best possible transfer function:

(A)
$$\frac{(12s+24)}{(s^2+10s+24)}$$
; (B) $\frac{(12s-24)}{(s^2+10s+24)}$; (C) $\frac{(4s+17)}{(s^2+2s+17)}$; (D) $\frac{(4s-17)}{(s^2+2s+17)}$;

(A8) For the block diagram shown in Figure 8, please find the transfer function from R to Y: (A) $G_1 + G_2 + G_3$; (B) $G_1G_2 - G_3$; (C) $G_1 + G_2G_3$; (D) $G_1G_2 + G_3$;

(A9) For the block diagram shown in Figure 9, please find the transfer function from R to Y:

(A)
$$G_1G_2 + G_3$$
; (B) $\frac{G_1G_2}{G_3}$; (C) $\frac{G_1G_2}{1+G_1G_2G_3}$; (D) $\frac{G_1G_2}{1-G_1G_2G_3}$;

(A10) For the block diagram shown in Figure 10, please find the transfer function from *R* to *Y*:

(A)
$$\frac{G_1G_2}{1+G_1G_2G_3}$$
; (B) $\frac{G_1G_2}{1+G_2G_3}$; (C) $\frac{G_1G_2G_3}{1+G_1G_2G_3}$; (D) $\frac{G_1}{1+G_2G_3}$;

Part B. [80%] Write down proper description for the following problems.

<u>(B1) (8%)</u>

Find the transfer function (from *R* to *Y*) of the following block diagram, in terms of G_i , i = 1, 2, ..., 6:

(B2) (12%=3%*4)

For a second-order system with transfer function:

$$G(s) = \frac{2s + 1}{s^2 + 3s + 2}$$

- (a) Determine the poles and zeros of the system.
- (b) Determine whether the system is stable and why?
- (c) Find the DC gain of the system.

(d) Find the final value of the output of the system if the input is unit-step function.

<u>(B3) (10%=5%+5%)</u>

A unit negative feedback system has the following open-loop transfer function:

$$G(s) = \frac{b}{(s+a)}$$

(a) Compute the sensitivity of the closed-loop transfer function to changes in parameter *a*.

(b) Compute the sensitivity of the closed-loop transfer function to changes in parameter *b*.

<u>(B4) (10%=3%+3%+4%)</u>

For a second-order system with transfer function:

$$G(s) = \frac{1}{(s - 1)(s + 2)}$$

- (a) Find the poles and zeros of system G(s).
- (b) Determine whether the system is stable and why?
- (c) If system G(s) is added into the following block diagram,

determine the value of *K*, such that the poles of the overall closed-loop system are placed at s = -0.5+j and s = -0.5-j.

<u>(B5) (10%=5%*2)</u>

For a second-order system with transfer function:

$$G(s) = \frac{4}{s^2 + s + 4}$$

- (a) Determine the overshoot and rise time of system G(s) if unit-step input is applied.
- (b) If system G(s) is added into the following block diagram,

determine the values of K and L, such that the overshoot the overall system from R to Y is about 16% if unit-step input is applied to R.

(B6)(20%=5%*4)

A standard feedback control block diagram is shown as follows:

- (a) Compute the transfer function from *R* to *Y*.
- (b) What is the tracking error if *R* is a unit-step input?
- (c) What is the tracking error if *R* is a unit-ramp input?
- (d) What is the system type with respect to the reference inputs and the corresponding error coefficients?

(B7) (10%=5%*2)

$$G(s) = \frac{A}{s^2}$$

Consider the transfer function:

and in the following control block diagram system:

determine the steady-state values of the plant output y(t) and the plant input u(t) if the reference input r(t) is the unit-step function.

[Helpful formula]

$\lim_{s \to \infty} sF(s)$	$f(0^+)$	Initial Value Theorem
$\lim_{s \to 0} sF(s)$	$\lim_{t \to \infty} f(t)$	Final Value Theorem

$$t_r \cong \frac{1.8}{w_n}, t_p = \frac{\pi}{w_d}, M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}, t_s = \frac{4.6}{\zeta w_n} = \frac{4.6}{\sigma}$$

	9	
	8	
	7	
	6	
$\omega_n t_r$	5	
	4	
	3	0.5
	2	
	1	
	1 (0 1 2 3 4 5 6 7 8 9 10
		α

Ziegler–Nichols Tuning for the Regulator $D_c(s) = k_P(1 + 1/T_I s + T_D s)$, for a Decay Ratio of 0.25			
Type of Controller	Optimum Gain		
Р	$k_P = 1/RL$		
PI	$\begin{cases} k_P = 0.9/RL\\ T_I = L/0.3 \end{cases}$		
PID	$\begin{cases} k_P = 1.2/RL \\ T_I = 2L \\ T_D = 0.5L \end{cases}$		

Ziegler-Nichols Tuning for the Regulator $D_c(s) = k_P(1 + 1/T_I s + T_D s)$, Based on the Ultimate Sensitivity Method

Type of Controller	Optimum Gain
Р	$k_P = 0.5 K_U$
PI	$\begin{cases} k_P = 0.45 K_U \\ T_I = \frac{P_U}{1.2} \end{cases}$
PID	$\begin{cases} k_P = 1.6K_u \\ T_I = 0.5P_u \\ T_D = 0.125P_u \end{cases}$