Final Exam, Control Systems, 110-1 (2021) Wi
Date: Friday, January 7, 2022. Time: 9:10am-11:10am. ¥ % :
Closed books, closed notes, no calculators. JLIE
Only pens and erasers are allowed.

[100%] Write down proper description for the following problems.

(1) 20%=5%+5%+10%), (By B07901004 B R E)

For the characteristic equation:

1 + K

S(s+5)(s+7)

(@) Draw the real-axis segments of the corresponding root locus.
(b) Sketch the asymptotes of the locus for K — oo .
(c) Sketch the locus.

0

Solution:

(a)

The characteristic function has five poles: s =0, 0, 0, -5, -7 and no zeros.

For Rule 2, the locus is on the real axis to the left of an odd number of poles and zeros.
That 1s, at -5 <s <0 and s < -7, as the two red lines shown in the following figure.
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(b)
ForRule3,n=5 m=0.

Thus,
b = 180° + 360° (1 — 1) _180° + 360° (1 — 1)
b n—1m o 5
= +36° 4 108° 1809,
_ ¥Ypi—- Xz _ 04040+ (-5)+(-7) — 0 _
o = = = —24

n—m 5
There are five asymptotes centered at s = -2.4 and at the angles + 36°, + 1087, 180°

As the five red lines shown in the following figure.
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(c)
For Rule 4, the branches depart from the pole at s = 0 (multiplicity = 3) at the angles:

qPragep = D i— Y. ¢ —180°% —360°(I—1)
17%l1,dep

3 qbl,dep = - 1800 - 36OO(Z — ].)

b1 4ep = £ 607 180°
Another branch departs from s = -5 (multiplicity = 1) at the angle:

b1 dep = 3 x 1807 — 180% — 360°(1 — 1)

= Q°

The other branch departs from s = -7 (multiplicity = 1) at the angle:
bl dep = 4% 180% — 180° — 360°(1 — 1)

= 180°,

The locus is shown in the following figure.
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(2) 20%=4%+4%+4%+8%), (By B08901120 $E3i %)

Consider the following four functions:
Dy(s) = (s + 10) Da(s) = (s + 1000)
D3(s) = (s2 4 0.8s 4 3600) D4(s) = (s+ 60)?
(@) Please sketch the Bode plots of D1(8) and D2(s),

D1(s
Do(s) = (s)
(b) Please sketch the Bode plot of Do(s).

Is it a lead or lad compensator? Justify your answer.

Do(s)
Dy(s) =
(c) Please sketch the Bode plot of D1(s).

Is it a lead or lad compensator? Justify your answer.

De(s) = D3(s)

(d) Please plot the Bode plots of D3 (s) D4(s) and Dy(s).

What is the special name for the Dec(s) compensator?




Solution:

(@) (b)

The Bode plots of DI(s), D2(s), Da(s) are shown in the following plots. Da(s) is a lead
compensator because it can increase phase margin.

(@) (c)

Magnitude (dB)

Phase (deg)

Bode Diagram

100

41}
o
T

o
T

50|

N F

a5t

10"

100

10°

102
Frequency (rad/s)

10°

104

10°

The Bode plots of DI(s), D2(s), Db(s) are shown in the following plots. Da(s) is a lag
compensator because it can decrease phase margin.
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(d)

The Bode plots of D3(s), D4(s), Dc(s) are shown in the following plots. Dc(s) is a notch
compensator because it is cable of filtering one specific frequency of oscillation, i.e., at 60
rad/sec in this case.
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(3) 20%=5%+5%+10%), (By B08901111 f§7=HT)

Consider the following block diagram:

Controller Plant

Ro—> B Y
D(s) G(s)

where
10

G8) = 2% 1554 10),

(@) We design a lead compensator as follows:
s+ z
s+ 52

Please find the minimum value of K, such that the velocity constant is more than (or
equal) 10, i.e., Ky > 10,

D¢(s) = K K > 0.

(b) We design a lag compensator as follows:

5
De(s) = KS:T;’ K > 0.

Please find the minimum value of K, such that the velocity constant is more than (or
equal) 10, i.e., Ky > 10,

(c) We design a PD-Type compensator as follows:
Dc(s) = K(14+As), A>1, K>0

Please show that the closed-loop system is always stable using Routh’s Stability
Criterion.




Solution:

(a)
Ky = lim s D¢(s) G(s)
s—0

— lims K12 10

s—0 s+5z s(s24155s+10)
T

5
= K > 50

So, the minimum value of K is 50.

(b)
Ky, = lim s D¢:(s) G(s)
s—0
= lims K 5TP 19
s—0 s+p s(s24+15s+10)
= 5K > 10
= K>2

So, the minimum value of K 1s 2.

(c)
The characteristic equation is:
1 —I_ Dc(S) G(S) =0
10
= 0
s(s24+ 155+ 10)

= 14+ K (14 As)

= 3 4+ 155 4+ (104 10AK) s + 10K = 0
Routh’s Stability Criterion:

s"3: 1 10+104K
sN2: 15 10K
S: al 0

1: a2 0




where

1|1 104104K| 1
115 10K | _

Because K >0 and A > 1, then, the four numbers: 1, 15, al, and a2 are all > 0.
So, the closed-loop system is stable.




(4) (20%=10%+10%), (By B08901095 E[;5.£H)

Consider the following two transfer functions:

s+1 s—1
el Gols) = =
(s—1) (s+1)

The Bode plot, Nyquist plot, root locus plot of these two transfer functions are shown in
the following plots. Please find the detailed answers for the following two questions.

Gi1(s) =

(@) For GI(s), please use the above plots to determine the ranges of K in K >0 for which
KGI(s)is STABLE or UNSTABLE.

(b) For G2(s), please use the above plots to determine the ranges of K in K >0 for which
KG2(s) 1s STABLE or UNSTABLE.
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Solution:
(@) For G1(s)

The curve is the case when K = 1 and it crosses the real axis at -0.5 and 1.
From the Nyquist plot we can observe that

i i

D =g<-3

In this case, we have 0 < K< 2,N=0,P=2,s0 Z = 2.

That is, when 0 < K < 2, the system is unstable and there are two closed-

loop roots in RHP.
(ﬁ—§<—%<0
In this case, we have K> 2,N=-2,P=2,s0 Z=0.

That is, when K > 2, the system is stable and there are no closed-loop roots
in RHP.

1
B)0<-=<1

In this case, we have K< —1,N=—-1,P=2,s0 Z=1.
That is, when K < —1, the system is unstable and there is one closed-loop
root in RHP.

1
@1<--

In this case, we have —1 < K< O,N=0,P=2,s0 Z = 2.
That is, when —1 < K < 0, the system is unstable and there are two closed-
loop roots in RHP.
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(e) We can use Routh’s criterion to verify that the closed-loop system of KG; is
stable if K > 2. The steps are shown in Figure 5.

Cloged - [nr 'fhm‘)c!! an:'fM-"

|
Kas) K -(—;rs;f, _ K (s5+1)
I+ KG ) [+ K (:':I'],_ -(2-R)s + (1K)

C hemctervin q,u-l-u\n‘ S (2K)s+ (11K) = 9

Usha, Routht cviterion ¢ g | [+K.
i 0
8’ 14K

Fw d‘alﬁ,i*’,l -2tK50  and 14K >0 .
Tht &, ks2a ad k>

& i k>2 =) S‘h]-lp, ’ a-]-llcr‘wu =) hhs'flUL.

Figure 5. The steps of using Routh’s criterion to verify the condition for stability of KG, (s).

(b) For G2(s)

The curve is the case when K = 1 and it crosses the real axis at 0.5 and -1.
From the Nyquist plot we can observe that
(Hho<K<1

In this case, we have N =0,P =0,s0 Z = 0.

That is, the system is stable and there are no closed-loop roots in RHP.
2)K>1

In this case, we have N=1,P=0,s0 Z = 1.

That is, the system is unstable and there is one closed-loop root in RHP.
B)K< -2

In this case, N=2,P=10,s0 Z = 2.

That is, the system is unstable and there are two closed-loop roots in RHP.
4)-2<K<0

In this case, we have N =0,P =0,s0 Z = 0.

That is, the system is stable and there are no closed-loop roots in RHP.

(e) We can use Routh’s criterion to verify that the closed-loop system of KG, is
stable if —2 < K < 1. The steps are shown in Figure 10.
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Figure 10. The steps of using Routh’s criterion to verify the condition for stability of KG,(s).
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(5) (20%=10%+10%), (By B08502048 P& H)

For the unity feedback system with the following function:

K
s(s+1)(+1),

K G(s) =

The Bode plots of the above function with K=/, K=5 and K=25 are shown as follows:
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(a) Please design a lead compensator such that Ky = 5 and PM

(b) Please design a lag compensator such that Ky = 5 and PM
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Solution:

(a)

For Kv = 5,wehave

Therefore, K = 5.
From the Bode plots, we can roughly identify the phase margin for the case of K=5 is
about 5 degrees at w = 2 rad/sec.
Determine a phase lead =40 + 10 + 5 = 55.
Looking at the plot of Max Phase Lead and 1/a,
we choose 1/a=10 and a zero at wv/e@ = 2 x V0.1 =0.6 or around z=1.
Pick the pole at (1/a)*zero = 10*1 = 10.
So, design the lead compensator as follows:

D % +1 10 s+ 1

e(s) = S+1 s+ 10

Or, aggressively, we can choose 1/0=20 to have more phase margin. The new lead
compensator is as follows:

Ky = lIimsKG(s) = K
5s—0 .

De(s) = atl — 208+1
2i0—|—1 s+ 20

(b)

Looking at the Bode plots, to have Phase Margin = 50, it is at about w = 0.6 rad/sec.
Also, the Gain at this frequency is about 15dB or we can use Gain = 20dB. The gain is
selected as K = 5/10 = 0.5 to reduce the gain.

Hence, choose the zero at 0.6/10 = 0.06 rad/sec.

For Ky = 5

Ky = lims K D¢(s) G(s)
s—0

. TIS+1 1
= |lims K «
s—0 aTrs +1s(s+1)(Z+1)
5 = Ko
5
oa = — = 10
So, 0.5 .

Then, choose the pole at (1/a)*zero = 0.1*0.06 = 0.006.
So, design the lag compensator as follows:

oo T1 s + 0.06
0.006 + 1 S + 0.006 .
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[Helpful Information]
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