Fall 2022 (111-1)

控制系統 Control Systems

Unit 7A Control System Design: Principles

Feng-Li Lian NTU-EE

Sep 2022 – Dec 2022

Control System Design

 Examples of Control Systems Designation 	jn
 Outline of Control Systems Design 	
 Satellite's Attitude Control 	
Lateral & Longitudinal Control of Boeing	
Fuel–Air Ratio in an Automotive Engine	
 Read Write Head of a Hard Disk 	
RTP Systems in Wafer Manufacturing	
Chemotaxis Swims Away from Trouble	
Quadrotor Drone	Control Tutorials Website
Quadrotor Drone	 Control Tutorials Website Cruise Control
Quadrotor Drone	 Control Tutorials Website Cruise Control Motor Speed
Quadrotor Drone	 Control Tutorials Website Cruise Control Motor Speed Motor Position
Quadrotor Drone	 Control Tutorials Website Cruise Control Motor Speed Motor Position Suspension
Quadrotor Drone	 Control Tutorials Website Cruise Control Motor Speed Motor Position Suspension Inverted Pendulum
Quadrotor Drone	 Control Tutorials Website Cruise Control Motor Speed Motor Position Suspension Inverted Pendulum Aircraft Pitch

Source : IEEE CSM 2013

Key Terminologies in Feedback and Control

- (Step 1)
- Understand the Process and
- Translate Dynamic Performance Requirements into time, frequency, or pole-zero specifications.
 - Step response inside some constraint boundaries
 - Open-loop frequency response satisfying certain constraints
 - Closed-loop poles to the left of some constraint boundary

- (Step 2)
- Select Sensors

 Select the types and number of sensors considering location, technology

Number of sensors and locations:	Select minimum required number of sensors and their optimal locations
Technology:	Electric or magnetic, mechanical, electromechanical, electro- optical, piezoelectric
Functional performance:	Linearity, bias, accuracy, bandwidth, resolution, dynamic range, noise
Physical properties:	Weight, size, strength
Quality factors:	Reliability, durability, maintainability
Cost:	Expense, availability, facilities for testing and maintenance

- (Step 3)
- Select Actuators
 - The device that influences the response is the actuator
 - Select the types and number of actuators considering location, technology, noise, and power

Number of actuators and locations:	Select minimum required actuators and their optimal locations
Technology:	Electric, hydraulic, pneumatic, thermal, other
Functional performance:	Maximum force possible, extent of the linear range, maximum speed possible, power, efficiency, etc.
Physical properties:	Weight, size, strength
Quality factors:	Reliability, durability, maintainability
Cost:	Expense, availability, facilities for testing and maintenance

- (Step 4)
- Construct a Linear Model
 - Construct a linear model of the process, actuator, and sensor
- (Step 5)
- Try a simple PID or Lead-Lag design (Proportional-Integral-Derivative)
 - Try a simple trial design based on the concepts of lead-lag compensation or PID control
- (Step 6)
- Evaluate / Verify Plant

Consider modifying the plant itself for improved closed-loop control

(Step 7)

- Try an Optimal Design (State Space design) <Not Included>
 - If the performance from the simple compensator in Step 5 is not adequate,

Perform a trial pole-placement design

based on optimal control or other criteria

- (Step 8)
- Build a Computer Model, and Compute (Simulate) the Performance of the Design
 - Simulate the design, including the effects of nonlinearities, noise, and parameter variations.
 - If the performance is not satisfactory, return to Step 1 and repeat.
 - Consider modifying the plant itself for improved closed-loop control
- (Step 9)
- Build a Prototype