Fall 2022 （111－1）

控制系統
Control Systems

Unit 50
 Root Locus（s－Domain）

Feng－Li Lian NTU－EE

Sep 2022 －Dec 2022

Unit 5
 Root Locus

- Rule 1:
- The n branches of the locus start at the poles of $\mathrm{L}(\mathrm{s})$ and
- m of these branches end on the zeros of $L(s)$.
- Rule 2:
- The loci are on the real axis to the left of an odd number of poles and zeros.
- Rule 3:
- For large s and K,
n-m branches of the loci are asymptotic
to lines at angles ϕ radiating out from the point $s=\alpha$ on the real axis, where

$$
\phi_{l}=\frac{180^{\circ}+360^{\circ}(l-1)}{n-m \quad l=1,2, \cdots, n-m} \quad \alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

- Rule 4:

$$
\sum \psi_{i}-\sum \phi_{i}=180^{\circ}+360^{\circ}(l-1)
$$

- The angle of departure of a branch of the locus from repeated poles with multiplicity q is given by

$$
\begin{array}{r}
q \phi_{l, \text { dep }}=\sum \psi_{i}-\sum_{i \neq l, d e p} \phi_{i}-180^{\circ}-360^{\circ}(l-1) \\
l=1,2, \cdots, q
\end{array}
$$

- The angle of arrival of a branch at a zero with multiplicity q is given by

$$
q \psi_{l, a r r}=\sum \phi_{i}-\sum_{i \neq l, a r r} \psi_{i}+180^{\circ}+360^{\circ}(l-1)
$$

- Rule 5:
- The locus can have multiple roots at points on the locus and the branches will approach a point of q roots at angles separated by $\quad \frac{180^{\circ}-360^{\circ}(l-1)}{q}$
- And will depart at angles with same separation.
- By Hand:

- Hand Writing in Exam (40\%)

- Use the 5 rules of Root Locus Method
to roughly sketch the root locus of any transfer function
by identifying these critical root locations
- Properly choose some roots
between these critical root locations
- By Computer:
- Multiple Choice in Exam (60\%)
- Use Matlab codes
to draw the exact root locus of any transfer function
- Design proper transfer function and
select associated and reasonable gain value
$\Rightarrow 1+K_{P} \frac{1}{s^{2}}=0$

$\Rightarrow 1+K \frac{s+1}{s^{2}}=0$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0
$$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0
$$

$$
\begin{aligned}
& \Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0 \\
& \Rightarrow 1+K \frac{(s+1)}{s^{2}(s+9)}=0
\end{aligned}
$$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0
$$

$$
\Rightarrow 1+K \frac{s+1}{s^{2}}=0
$$

$$
\Rightarrow 1+K \frac{s+1}{s^{2}}=0
$$

$\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+9)}=0
$$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0
$$

- Proper transfer function
- Reasonable gain values

